Discussion of

## Discount Rates and Employment Fluctuations by Jaroslav Borovička and Katarína Borovičková

Mathieu Taschereau-Dumouchel

The Wharton School of the University of Pennsylvania

Cowles Macro and Labor Conference 2016

#### This paper

- Can we explain unemployment fluctuations with shocks to the way cash-flows from jobs are valued?
- Quantify this channel using asset pricing model (Hall, 2014)
- This discussion
  - Brief overview and some comments

This paper

- Can we explain unemployment fluctuations with shocks to the way cash-flows from jobs are valued?
- Quantify this channel using asset pricing model (Hall, 2014)

This discussion

• Brief overview and some comments

This paper

- Can we explain unemployment fluctuations with shocks to the way cash-flows from jobs are valued?
- Quantify this channel using asset pricing model (Hall, 2014)

This discussion

• Brief overview and some comments

• Average cost of hiring a worker

$$\frac{\kappa}{q\left(\theta_{t}\right)}$$

• Expected value of a job

$$J_t = \sum_{j=1}^{\infty} E_t \left[ eta^j \left( 1 - \delta 
ight)^j \left( z_{t+j} - w_{t+j} 
ight) 
ight]$$

Free-entry

$$\frac{\kappa}{q\left(\theta_{t}\right)}=J_{t}$$

• Changes in  $J_t 
ightarrow$  changes in  $heta_t 
ightarrow$  changes in  $u_t$ 

• Average cost of hiring a worker

$$\frac{\kappa}{q\left(\theta_{t}
ight)}$$

• Expected value of a job

$$J_t = \sum_{j=1}^{\infty} E_t \left[ \frac{S_{t+j}}{S_t} \left( 1 - \delta \right)^j \left( z_{t+j} - w_{t+j} \right) \right]$$

Free-entry

$$\frac{\kappa}{q\left(\theta_{t}\right)}=J_{t}$$

• Changes in  $J_t 
ightarrow$  changes in  $heta_t 
ightarrow$  changes in  $u_t$ 

• Average cost of hiring a worker

$$\frac{\kappa}{q\left(\theta_{t}
ight)}$$

• Expected value of a job

$$J_t = \sum_{j=1}^{\infty} E_t \left[ \frac{S_{t+j}}{S_t} \left( 1 - \delta \right)^j \left( z_{t+j} - w_{t+j} \right) \right]$$

$$\frac{\kappa}{q\left(\theta_{t}\right)}=J_{t}$$

• Changes in  $J_t 
ightarrow$  changes in  $heta_t 
ightarrow$  changes in  $u_t$ 

Average cost of hiring a worker

$$\frac{\kappa}{q\left(\theta_{t}
ight)}$$

• Expected value of a job

$$J_t = \sum_{j=1}^{\infty} E_t \left[ \frac{S_{t+j}}{S_t} \left( 1 - \delta \right)^j \left( z_{t+j} - w_{t+j} \right) \right]$$

• Free-entry

$$\frac{\kappa}{q\left(\theta_{t}\right)}=J_{t}$$

• Changes in  $J_t \rightarrow$  changes in  $\theta_t \rightarrow$  changes in  $u_t$ 

$$J_t = \sum_{j=1}^{\infty} E_t \left[ \frac{S_{t+j}}{S_t} \left( 1 - \delta \right)^j \left( z_{t+j} - w_{t+j} \right) \right]$$

- Most of the literature shocks z
- ► Here, focus on *S*
- Note
  - The real risk-free rate does not move much in the data
  - Variation must come from the dispersion of S (risk premium)

$$J_t = \sum_{j=1}^{\infty} E_t \left[ \frac{S_{t+j}}{S_t} \left( 1 - \delta \right)^j \left( \frac{Z_{t+j}}{Z_{t+j}} - w_{t+j} \right) \right]$$

- Most of the literature shocks z
- Here, focus on S
- Note
  - The real risk-free rate does not move much in the data
  - Variation must come from the dispersion of S (risk premium)

$$J_t = \sum_{j=1}^{\infty} E_t \left[ \frac{S_{t+j}}{S_t} \left( 1 - \delta \right)^j \left( \mathbf{z}_{t+j} - \mathbf{w}_{t+j} \right) \right]$$

- Most of the literature shocks z
- Here, focus on S
- Note
  - The real risk-free rate does not move much in the data
  - Variation must come from the dispersion of S (risk premium)

$$J_t = \sum_{j=1}^{\infty} E_t \left[ \frac{S_{t+j}}{S_t} \left( 1 - \delta \right)^j \left( \mathbf{z}_{t+j} - \mathbf{w}_{t+j} \right) \right]$$

- Most of the literature shocks z
- Here, focus on S
- Note
  - The real risk-free rate does not move much in the data
  - Variation must come from the dispersion of S (risk premium)

$$J_t = \sum_{j=1}^{\infty} E_t \left[ \frac{S_{t+j}}{S_t} \left( 1 - \delta \right)^j \left( \mathbf{z}_{t+j} - \mathbf{w}_{t+j} \right) \right]$$

- Most of the literature shocks z
- Here, focus on S
- Note
  - The real risk-free rate does not move much in the data
  - ▶ Variation must come from the dispersion of *S* (risk premium)

# Statistical model of $S_{-}$

• Epstein-Zin preferences

$$U_t = (1 - \beta) \log C_t - \frac{\beta}{\theta_t} \log E_t \left[ \exp \left( -\theta_t U_{t+1} \right) \right]$$

where  $1 + \theta_t$  is time-varying risk-aversion parameter.

- Need stochastic process for C<sub>t</sub> and all components of cash-flows
  - VAR on

$$X_t = \left(1, \Delta c_t, \mathit{rx}_t^m, \Delta y_t, \mathit{pd}_t, \mathit{r}_t^f, \log\left(1 - \delta_t
ight)
ight)$$

- SDF from data
  - Given  $\theta_t$  use  $C_t$  from data to compute SDF  $S_t$
  - Pick  $\theta_t$  to exactly match excess return on stock market
- Use the estimated VAR to figure out  $J_t$
- Plug  $J_t$  into free-entry to figure out  $u_t$

# Statistical model of S \_\_\_\_

• Epstein-Zin preferences

$$U_t = (1 - \beta) \log C_t - rac{\beta}{\theta_t} \log E_t \left[ \exp \left( -\theta_t U_{t+1} 
ight) 
ight]$$

where  $1 + \theta_t$  is time-varying risk-aversion parameter.

- Need stochastic process for  $C_t$  and all components of cash-flows
  - VAR on

$$X_t = \left(1, \Delta c_t, r \mathbf{x}_t^m, \Delta y_t, p d_t, r_t^f, \log\left(1 - \delta_t\right)
ight)$$

- SDF from data
  - Given  $\theta_t$  use  $C_t$  from data to compute SDF  $S_t$
  - Pick  $\theta_t$  to exactly match excess return on stock market
- Use the estimated VAR to figure out J<sub>t</sub>
- Plug  $J_t$  into free-entry to figure out  $u_t$

# Statistical model of S \_\_\_\_

• Epstein-Zin preferences

$$U_t = (1 - \beta) \log C_t - rac{\beta}{\theta_t} \log E_t \left[ \exp \left( -\theta_t U_{t+1} 
ight) 
ight]$$

where  $1 + \theta_t$  is time-varying risk-aversion parameter.

- Need stochastic process for  $C_t$  and all components of cash-flows
  - VAR on

$$X_t = \left(1, \Delta c_t, r x_t^m, \Delta y_t, p d_t, r_t^f, \log\left(1 - \delta_t
ight)
ight)$$

- SDF from data
  - Given  $\theta_t$  use  $C_t$  from data to compute SDF  $S_t$
  - Pick  $\theta_t$  to exactly match excess return on stock market
- Use the estimated VAR to figure out J<sub>t</sub>
- Plug J<sub>t</sub> into free-entry to figure out u<sub>t</sub>

# Statistical model of S \_\_\_\_

• Epstein-Zin preferences

$$U_t = (1 - \beta) \log C_t - rac{\beta}{\theta_t} \log E_t \left[ \exp \left( -\theta_t U_{t+1} 
ight) 
ight]$$

where  $1 + \theta_t$  is time-varying risk-aversion parameter.

- Need stochastic process for  $C_t$  and all components of cash-flows
  - VAR on

$$X_t = \left(1, \Delta c_t, r \mathbf{x}_t^m, \Delta y_t, p d_t, r_t^f, \log\left(1 - \delta_t\right)
ight)$$

- SDF from data
  - Given  $\theta_t$  use  $C_t$  from data to compute SDF  $S_t$
  - Pick  $\theta_t$  to exactly match excess return on stock market
- Use the estimated VAR to figure out  $J_t$
- Plug  $J_t$  into free-entry to figure out  $u_t$

# Results



Standard deviation of (detrended) unemployment rate

- Data: 0.129
- Model: 0.0845

# Results



Standard deviation of (detrended) unemployment rate

- Data: 0.129
- Model: 0.0845

# Comments

• Huge swings in risk-aversion  $\theta_t \in [-10, 25]$ 

- Do we have the right model of the SDF?
- Is the estimation loading on risk-aversion features of the cashflows?
- Many alternative specifications
  - ► Long-run risk (Bansal & Yaron 2004)
  - Habit formation (Campbell & Cochrane 1999)
  - Disaster risk (Barro 2006)
- These models explain excess returns with various combinations of SDF vs cashflows structure
  - Fitting them to the data would give us different SDFs
  - Using these SDFs to value cashflow from a job should give us different results

# Comments

- Huge swings in risk-aversion  $\theta_t \in [-10, 25]$ 
  - Do we have the right model of the SDF?
  - Is the estimation loading on risk-aversion features of the cashflows?
- Many alternative specifications
  - Long-run risk (Bansal & Yaron 2004)
  - Habit formation (Campbell & Cochrane 1999)
  - Disaster risk (Barro 2006)
- These models explain excess returns with various combinations of SDF vs cashflows structure
  - Fitting them to the data would give us different SDFs
  - Using these SDFs to value cashflow from a job should give us different results

## Comments

- Huge swings in risk-aversion  $\theta_t \in [-10, 25]$ 
  - Do we have the right model of the SDF?
  - Is the estimation loading on risk-aversion features of the cashflows?
- Many alternative specifications
  - Long-run risk (Bansal & Yaron 2004)
  - Habit formation (Campbell & Cochrane 1999)
  - Disaster risk (Barro 2006)
- These models explain excess returns with various combinations of SDF vs cashflows structure
  - Fitting them to the data would give us different SDFs
  - Using these SDFs to value cashflow from a job should give us different results

## Comments \_

- Huge swings in risk-aversion  $\theta_t \in [-10, 25]$ 
  - Do we have the right model of the SDF?
  - Is the estimation loading on risk-aversion features of the cashflows?
- Many alternative specifications
  - Long-run risk (Bansal & Yaron 2004)
  - Habit formation (Campbell & Cochrane 1999)
  - Disaster risk (Barro 2006)
- These models explain excess returns with various combinations of SDF vs cashflows structure
  - Fitting them to the data would give us different SDFs
  - Using these SDFs to value cashflow from a job should give us different results

## Comments \_

- Huge swings in risk-aversion  $\theta_t \in [-10, 25]$ 
  - Do we have the right model of the SDF?
  - Is the estimation loading on risk-aversion features of the cashflows?
- Many alternative specifications
  - Long-run risk (Bansal & Yaron 2004)
  - Habit formation (Campbell & Cochrane 1999)
  - Disaster risk (Barro 2006)
- These models explain excess returns with various combinations of SDF vs cashflows structure
  - Fitting them to the data would give us different SDFs
  - Using these SDFs to value cashflow from a job should give us different results

## Comments \_

- Huge swings in risk-aversion  $\theta_t \in [-10, 25]$ 
  - Do we have the right model of the SDF?
  - Is the estimation loading on risk-aversion features of the cashflows?
- Many alternative specifications
  - Long-run risk (Bansal & Yaron 2004)
  - Habit formation (Campbell & Cochrane 1999)
  - Disaster risk (Barro 2006)
- These models explain excess returns with various combinations of SDF vs cashflows structure
  - Fitting them to the data would give us different SDFs
  - Using these SDFs to value cashflow from a job should give us different results

- Asset side of the model assumes endowment economy, labor side assumes production economy
  - Fine as first pass
  - Interesting interaction between the two (Petrosky-Nadeau, Zhang & Kuehn 2016; Kilic & Wachter 2016)
    - What drives the changes in the SDF?

- Asset side of the model assumes endowment economy, labor side assumes production economy
  - Fine as first pass
  - Interesting interaction between the two (Petrosky-Nadeau, Zhang & Kuehn 2016; Kilic & Wachter 2016)
    - What drives the changes in the SDF?

- Asset side of the model assumes endowment economy, labor side assumes production economy
  - Fine as first pass
  - Interesting interaction between the two (Petrosky-Nadeau, Zhang & Kuehn 2016; Kilic & Wachter 2016)
    - What drives the changes in the SDF?

• Cost of a vacancy is



- Would be interesting to see counterfactual  $u_t$  when terms in payoffs are held constant
- Hiring decisions have no impact on wages
- Using return on the market instead of return on wealth
- How does the household interpret risk-aversion  $\theta_t$ ?

• Cost of a vacancy is

$$\underbrace{\kappa_0}_{6} + \underbrace{\kappa_1}_{-102} \times \frac{v_t}{1 - u_t}$$

- Would be interesting to see counterfactual  $u_t$  when terms in payoffs are held constant
- Hiring decisions have no impact on wages
- Using return on the market instead of return on wealth
- How does the household interpret risk-aversion  $\theta_t$ ?

• Cost of a vacancy is

$$\underbrace{\kappa_0}_{6} + \underbrace{\kappa_1}_{-102} \times \frac{v_t}{1 - u_t}$$

- Would be interesting to see counterfactual  $u_t$  when terms in payoffs are held constant
- · Hiring decisions have no impact on wages
- Using return on the market instead of return on wealth
- How does the household interpret risk-aversion  $\theta_t$ ?

• Cost of a vacancy is

$$\underbrace{\kappa_0}_{6} + \underbrace{\kappa_1}_{-102} \times \frac{v_t}{1 - u_t}$$

- Would be interesting to see counterfactual  $u_t$  when terms in payoffs are held constant
- · Hiring decisions have no impact on wages
- Using return on the market instead of return on wealth
- How does the household interpret risk-aversion  $\theta_t$ ?

• Cost of a vacancy is

$$\underbrace{\kappa_0}_{6} + \underbrace{\kappa_1}_{-102} \times \frac{v_t}{1 - u_t}$$

- Would be interesting to see counterfactual *u*<sub>t</sub> when terms in payoffs are held constant
- · Hiring decisions have no impact on wages
- Using return on the market instead of return on wealth
- How does the household interpret risk-aversion  $\theta_t$ ?

- Interesting first attempt at carefully measuring importance of SDF for unemployment fluctuations
- · Look forward to see the cross-sectional results