Switching-Track after the Great Recession
by Francesca Vinci and Omar Licandro

Discussed by
Mathieu Taschereau-Dumouchel

Cornell University

Bank of Canada Monetary Policy Workshop
Introduction

• Outline for this discussion
 1. Data: A change in steady-state after the Great Recession?
 2. Overview of the model
 3. Comments and suggestions
Motivation for the paper

- Strong departure from long-run (log) linear path after the Great Recession
Aftermath of the Great Recession

- Can growth accounting tell us where the action is?
 - Labor and Capital
 - In contrast, no much action from TFP (Solow residual)
Aftermath of the Great Recession

- Can growth accounting tell us where the action is?
 - Labor and Capital
 - In contrast, no much action from TFP (Solow residual)
This paper

- **New Keynesian model to explain the change in steady-state**
 - After small shocks the economy goes back to original steady-state
 - But large/prolonged shocks push the economy to lower trajectory

- **Key ingredients:**
 - Endogenous growth model
 - An initial shock that destroys a lot of capital
 - A Taylor rule whose target output changes over time
This paper

• New Keynesian model to explain the change in steady-state
 ▶ After small shocks the economy goes back to original steady-state
 ▶ But large/prolonged shocks push the economy to lower trajectory

• Key ingredients:
 ▶ Endogenous growth model
 ▶ An initial shock that destroys a lot of capital
 ▶ A Taylor rule whose target output changes over time
Key ingredients: AK setup + nature of the shock

• Endogenous growth framework with aggregate capital externality
 ▶ Parametrize the model to get AK structure

• Basic AK properties
 ▶ Capital always grows at a constant rate (even out of steady state)
 \[\gamma_k = \gamma_c = A - (n + \delta + \rho) \]
 ▶ Shocks that destroy capital move the economy to a different steady state
 • Seems appropriate in view of the data!

• Microfoundation for the capital destruction shock
 ▶ Firms go bankrupt and bankruptcy leads to more depreciation.
Key ingredients: AK setup + nature of the shock

- Endogenous growth framework with aggregate capital externality
 - Parametrize the model to get AK structure

- Basic AK properties
 - Capital *always* grows at a constant rate (even out of steady state)
 \[\gamma_k = \gamma_c = A - (n + \delta + \rho) \]
 - Shocks that destroy capital move the economy to a different steady state
 - Seems appropriate in view of the data!

- Microfoundation for the capital destruction shock
 - Firms go bankrupt and bankruptcy leads to more depreciation.
Key ingredients: AK setup + nature of the shock

- Endogenous growth framework with aggregate capital externality
 - Parametrize the model to get AK structure

- Basic AK properties
 - Capital *always* grows at a constant rate (even out of steady state)
 \[\gamma_k = \gamma_c = A - (n + \delta + \rho) \]
 - Shocks that destroy capital move the economy to a different steady state
 - Seems appropriate in view of the data!

- Microfoundation for the capital destruction shock
 - Firms go bankrupt and bankruptcy leads to more depreciation.
Key ingredients: Taylor rule with moving output target

• But why aren’t all shocks moving the steady states around?
 ▶ Monetary authority pushes the economy around

• Taylor rule

\[
R_t^m = \bar{R} + \rho_\pi (\pi_t - \bar{\pi}_t) + \rho_y \left(\log \hat{GDP} - \log y_t^p \right)
\]

with the ZLB constraint \(R_t = \max(1, R_t^m) \) and the adjusting target

\[
y_t^p = y_{t-1}^p + \rho \left(\frac{1}{n} \sum_{j=1}^{n} \hat{GDP}_{t-4-j} - y_{t-1}^p \right)
\]

• Importance for dynamics
 ▶ For small recession, \(y_t^p \) does not move much
 • Central Bank pushes for a return to the previous steady state
 ▶ For large recession, \(y_t^p \) falls down
 • During recovery the Central Bank stops pushing before reaching the old steady state
 ⇒ New steady state
Key ingredients: Taylor rule with moving output target

- But why aren't all shocks moving the steady states around?
 - Monetary authority pushes the economy around

- Taylor rule

\[R_t^m = \bar{R} + \rho_{\pi} (\pi_t - \bar{\pi}_t) + \rho_y \left(\log \hat{GDP} - \log y_t^p \right) \]

with the ZLB constraint \(R_t = \max(1, R_t^m) \) and the adjusting target

\[y_t^p = y_{t-1}^p + \rho \left(\frac{1}{n} \sum_{j=1}^{n} \hat{GDP}_{t-4-j} - y_{t-1}^p \right) \]

- Importance for dynamics
 - For small recession, \(y_t^p \) does not move much
 - Central Bank pushes for a return to the previous steady state
 - For large recession, \(y_t^p \) falls down
 - During recovery the Central Bank stops pushing before reaching the old steady state
 \(\Rightarrow \) New steady state
Key ingredients: Taylor rule with moving output target

- But why aren't all shocks moving the steady states around?
 - Monetary authority pushes the economy around

- Taylor rule

\[
R_t^m = \bar{R} + \rho_\pi (\pi_t - \bar{\pi}_t) + \rho_y \left(\log \widehat{\text{GDP}} - \log y_t^p \right)
\]

with the ZLB constraint \(R_t = \max(1, R_t^m) \) and the adjusting target

\[
y_t^p = y_{t-1}^p + \rho \left(\frac{1}{n} \sum_{j=1}^{n} \widehat{\text{GDP}}_{t-4-j} - y_{t-1}^p \right)
\]

- Importance for dynamics
 - For small recession, \(y_t^p \) does not move much
 - Central Bank pushes for a return to the previous steady state
 - For large recession, \(y_t^p \) falls down
 - During recovery the Central Bank stops pushing before reaching the old steady state
 - New steady state
Results: Large shock
Results: Small shock

- Outcomes after a small shock (blue lines)
Comments

• Nice, interesting paper!
 ▶ Different behavior for small vs large shock
 ▶ Reasonable mechanism with plausible outcomes

• What’s next?
 ▶ Some comments about the exposition and the state of the literature
I would suggest to better motivate two key assumptions

- Spillovers in the depreciation cost of bankruptcy
 - When an entrepreneur defaults, she increases the loss in capital of other defaulting entrepreneurs
 - Not clear to me why this is needed or what feature of the data motivates this assumption
 - But assuming that there are no spillovers more-or-less kills the mechanism, why?

- The behavior of the Central Bank feels odd to me.
 - The CB’s output target is low because the economy is depressed because the CB’s output target is low
 - Smart Central Bankers could fix the whole problem!
 - The observed decline in the reported output target might be a sign of something deeper going on.
Comments

I would suggest to better motivate two key assumptions

• **Spillovers in the depreciation cost of bankruptcy**
 ▶ When an entrepreneur defaults, she increases the loss in capital of other defaulting entrepreneurs
 ▶ Not clear to me why this is needed or what feature of the data motivates this assumption
 ▶ But assuming that there are no spillovers more-or-less kills the mechanism, why?

• **The behavior of the Central Bank feels odd to me.**
 ▶ The CB’s output target is low because the economy is depressed because the CB’s output target is low
 ▶ Smart Central Bankers could fix the whole problem!
 ▶ The observed decline in the reported output target might be a sign of something deeper going on.
I would suggest to better motivate two key assumptions

- **Spillovers in the depreciation cost of bankruptcy**
 - When an entrepreneur defaults, she increases the loss in capital of other defaulting entrepreneurs
 - Not clear to me why this is needed or what feature of the data motivates this assumption
 - But assuming that there are no spillovers more-or-less kills the mechanism, why?

- **The behavior of the Central Bank feels odd to me.**
 - The CB’s output target is low because the economy is depressed because the CB’s output target is low
 - Smart Central Bankers could fix the whole problem!
 - The observed decline in the reported output target might be a sign of something deeper going on.
I would suggest to better motivate two key assumptions

- **Spillovers in the depreciation cost of bankruptcy**
 - When an entrepreneur defaults, she increases the loss in capital of other defaulting entrepreneurs
 - Not clear to me why this is needed or what feature of the data motivates this assumption
 - But assuming that there are no spillovers more-or-less kills the mechanism, why?

- **The behavior of the Central Bank feels odd to me.**
 - The CB’s output target is low *because* the economy is depressed *because* the CB’s output target is low
 - Smart Central Bankers could fix the whole problem!
 - The observed decline in the reported output target might be a sign of something deeper going on.
I would suggest to better motivate two key assumptions

- **Spillovers in the depreciation cost of bankruptcy**
 - When an entrepreneur defaults, she increases the loss in capital of other defaulting entrepreneurs
 - Not clear to me why this is needed or what feature of the data motivates this assumption
 - But assuming that there are no spillovers more-or-less kills the mechanism, why?

- **The behavior of the Central Bank feels odd to me.**
 - The CB’s output target is low because the economy is depressed because the CB’s output target is low
 - Smart Central Bankers could fix the whole problem!
 - The observed decline in the reported output target might be a sign of something deeper going on.
Comments

Is it possible to derive some theoretical results?

- Does the economy actually change steady-state after a large shock or is the adjustment just really slow?

- Does the economy go back to the old steady state after small shock, or are all shocks permanent?

- Resolution methods can be tricky with multiple steady states → theoretical results would be a nice addition. Maybe in a simplified model.
Is it possible to derive some theoretical results?

- Does the economy actually change steady-state after a large shock or is the adjustment just really slow?

- Does the economy go back to the old steady state after small shock, or are all shocks permanent?

- Resolution methods can be tricky with multiple steady states → theoretical results would be a nice addition. Maybe in a simplified model.
Is it possible to derive some theoretical results?

• Does the economy actually change steady-state after a large shock or is the adjustment just really slow?

• Does the economy go back to the old steady state after small shock, or are all shocks permanent?

• Resolution methods can be tricky with multiple steady states → theoretical results would be a nice addition. Maybe in a simplified model.
Is it possible to derive some theoretical results?

- Does the economy actually change steady-state after a large shock or is the adjustment just really slow?

- Does the economy go back to the old steady state after small shock, or are all shocks permanent?

- Resolution methods can be tricky with multiple steady states → theoretical results would be a nice addition. Maybe in a simplified model.
General comment about the literature

- We now have many papers that generate multiple steady states/equilibria/non-linear dynamics.

- Some recent and/or famous contributions:
 ▶ Shopping externalities: Kaplan and Menzio (2014)
 ▶ Information externalities: Fajgelbaum, Schaal and Taschereau-Dumouchel (2017)
 ▶ Beliefs updating: Kozlowski, Veldkamp and Venkateswaran (2020)
 ▶ Matching function non-linearities: Petrosky-Nadeau, Kuehn, and Zhang (2013)
 ▶ ... and many more!

- Next step
 ▶ Which mechanism is actually important?
 ▶ Many models seem consistent with macro data → looks to micro data to add discipline
General comment about the literature

• We now have many papers that generate multiple steady states/equilibria/non-linear dynamics.

• Some recent and/or famous contributions:
 ▶ Shopping externalities: Kaplan and Menzio (2014)
 ▶ Information externalities: Fajgelbaum, Schaal and Taschereau-Dumouchel (2017)
 ▶ Beliefs updating: Kozlowski, Veldkamp and Venkateswaran (2020)
 ▶ Matching function non-linearities: Petrosky-Nadeau, Kuehn, and Zhang (2013)
 ▶ ... and many more!

• Next step
 ▶ Which mechanism is actually important?
 ▶ Many models seem consistent with macro data → looks to micro data to add discipline