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This document is an online supplement for the paper “Endogenous Returns to Scale”. Part A
provides the details of the data exercises of Section 6 along with several robustness checks. Part
B provides additional information about the calibration exercise of Section 7. Part C provides the
proofs of the formal results. Part D contains several extensions of the model along with robustness

exercises.

A Supplement for Section 6

This online supplement contains details about the reduced-form results of Section 6.

A.1 Details of the Spanish Orbis data

Our Spanish firm-level data are drawn from the Orbis Historical Disk. Orbis is commonly
regarded as the most comprehensive cross-country firm database, covering both public and private
firms’ financial statements and measures of real activity (Kalemli-Ozcan et al., 2024). We focus on
Spain because firm coverage is close to universal-—capturing over 95% of total industry gross output

after 2010—making it well-suited for economy-wide analysis. Our sample spans 1995-2019.3%

Sample cleaning Our sample construction closely mirrors the cleaning steps used in our earlier
work (Kopytov et al., 2024). We begin by merging each firm’s descriptive information with its
financial statements using the unique BVD firm identifier (BVDID). We then restrict our analysis to
Spanish firms, defined as firms that satisfy two criteria: 1) their latest address is in Spain and 2)
their BVDID starts with the ISO-2 code ES. In the resulting Orbis Spain sample, we implement the

following standard cleaning procedure:

380rbis offers good coverage of the Spanish economy starting from 1995. Moreover, the most recent
observations in the version of Orbis Historical Disk Product that we use are from 2021. We therefore use
2019 as the last year of the sample since there is usually a two-year reporting lag for some variables (see
Kalemli-Ozcan et al. (2024) for details).
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1. We harmonize the calendar year of each firm-year observation using the variable
closing_date: if the closing date is on or after July 1, the current year is assigned as the

calendar year. Otherwise, the previous year is assigned.?’

2. In a given year, a firm in the Orbis database might have multiple financial statements from
different sources (local registry, annual report, or others), for consolidated or unconsolidated
accounts. When several source-consolidation combinations exist for a firm, we deduplicate
by selecting the account that, in order of priority, 1) shows the most consistent reporting
frequency (closest to regular annual reporting), 2) offers the longest non-missing time series
for key financial variables (fixed assets and/or sales), and 3) is consolidated, if the first two

criteria are tied.

3. We only keep firm-year observations with non-missing and positive sales
(operating_revenue_turnover), fixed  assets  (fixed_assets), wage  bills
(costs_of _employees), and material costs (material_costs). We also harmonize the

units of all monetary values to be in current euros.

4. To prevent outliers from affecting the production function estimation, we exclude any firm-
year observation whose average revenue product of any input (fixed assets, wage bills, or
material costs) lies above the 99th percentile or below the 1st percentile of that year’s distri-

bution.0

A.2 Detalils of the production function and RTS estimation

This online supplement describes in detail how we implement the production-function estimation

procedure that delivers the results used in the main text.*!

39This adjustment matters little for the Spanish sample, as 99% of firms close their books on December
31.

490ne might worry that trimming on average revenue products of inputs could mechanically remove
observations corresponding to extreme returns to scale, since average revenue products of variable inputs are
inversely related to the chosen 7. In practice, however, the extreme tails in the data are unlikely to reflect
meaningful limits of n; they typically coincide with implausible or mismeasured inputs and would require
implausibly extreme n to rationalize.

41Many recent papers have used production-function estimation to recover heterogeneity in returns to
scale at the firm or industry level, including De Loecker et al. (2020), Ruzic and Ho (2023), Chiavari (2024),
McAdam et al. (2024), Savagar and Kariel (2024), Demirer (2025), Hubmer et al. (2025) and Gao and Kehrig
(2025).

47



We use the Blundell and Bond (2000) IV-GMM estimator to estimate the production functions
as our benchmark. This estimator is designed for dynamic panel settings with persistent firm-level
variables and, under standard moment conditions, delivers consistent estimates of output elastici-
ties. Our model imposes a competitive output market in a sector. In this setting, the identifying
assumptions are most plausible when there is sufficient persistent variation in predetermined inputs
and in the cost of flexible inputs, so that observed input choices are not collinear with unobserved
productivity. Recent work by De Ridder et al. (2022) further shows, through Monte Carlo simula-
tions, that this approach performs well when such identifying variation is strong.

Our empirical strategy builds on the model’s implication that, within a sector, firms that are
similar in size should operate under similar production technologies and therefore exhibit similar
returns to scale. We use this prediction to estimate returns to scale across the firm-size distribution.
For each sector i and year ¢, we rank firms by a smoothed measure of size: the 7-year moving average
of firm-level log sales computed over the window from ¢ — 3 to t + 3. 42 We then assign firms to 10
deciles, d; = {1,...,10}, based on this sector-year ranking.*> Using a moving average reduces the
influence of short-run fluctuations and measurement error in annual sales, and thus provides a more
stable proxy for the scale of a firm’s production. For each sector-decile-year cell (i,d;,t) (using the

7-year rolling sample around t), we assume firms share a common Cobb-Douglas technology:

,d¢ (1) i,d¢ (1)

i ds (1
Qe = BLa, . le + By e + By emae + 1O i O 0,
i de(l ; i do(l i do(l ;
a;ltt( ) = pz’dt(l) aZl,tt—(l) + Btht( )a |Pz’dt(l)‘ <1,
iyde (D)
Ll) M A(0),

where q;i¢, liie, kir, mie are the logs of output, labor, capital, material inputs for firm [. These

42We use the centered window whenever feasible. Near the sample boundaries and when firm-year obser-
vations are missing, we use the longest available window to preserve coverage.

43We reassign a few small sectors with few firms to closely related sectors that produce similar goods
or services, for the purpose of production function estimation. Specifically, (i) we merge sectors 5, 6, 7,
and 9—Manufacture of food products, beverages and tobacco products; Manufacture of textiles, wearing
apparel and leather products; Manufacture of wood and of products of wood and cork (except furniture);
manufacture of articles of straw and plaiting materials; and Printing and reproduction of recorded media—
into sector 8 (Manufacture of paper and paper products). (ii) We merge sector 12—Manufacture of basic
pharmaceutical products and pharmaceutical preparations—into sector 11 (Manufacture of chemicals and
chemical products). (iii) We merge sector 20—Manufacture of motor vehicles, trailers and semi-trailers—into
sector 19 (Manufacture of machinery and equipment n.e.c.).
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are measured as deflated values of, respectively, sales, wage bills, fixed assets and material costs

using the GDP deflator in the Annual Spanish National Accounts. We assume a firm’s productivity
, di(1) i,de (1)

, a firm-specific effect and an

i,di(1)

autoregressive component a’ di(l) with ii.d. innovation e’ it

contains three components: a year-specific component ~,
The model admits the following

dynamic representation:

¢ )Qzl t—1+ 5, Jdi (1 zlt — phdell )51 Jdi (1)t lzl t—1 + 51 Jdi (D)t kilt - ﬂi’dt(l)ﬁgjt(lm kil,t—l
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Q'th_pyt

dl
+Bzdt tmzlt_ Z ‘ )/Bzdt l)tmzlt 1‘*’7

dt(l) ide(l) zdt(

where 7, b =, b (1)

l)’}’ and k *z dt(l)

the following dynamic specification with current and lagged variables:

= (1—p" df(l))f@jzdt(l). Therefore, we can estimate
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where, under our assumption, the AR(1) productivity structure implies restrictions across coeffi-
cients (e.g., %) = pidi() and ﬁfét(l) L =—p" dell on , for x € {L, K, M}).

Blundell-Bond system-GMM moments We now describe the system-GMM moment con-
ditions we exploited to estimate the model in (39). Our choice of moment conditions follows the
exact implementation in Table III, column 5 of Blundell and Bond (2000), where we treat {q, [, k, m}
as potentially endogenous and use two sets of moments:

(i) Difference equation (levels dated ¢ — 2 and earlier):

E[xil,tfs Aezlft( )} =0 forzxe{ql k,m} and s > 2. (40)

(ii) Levels equation (first differences dated ¢t — 1 only):

E[Amiu_l (Ii:li’dt(l) + ejﬁlt(l))} =0 forxze{ql k,m}. (41)
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Moreover, year dummies are included as controls and treated as exogenous instruments in the

levels equation. We implement this estimation using the xtabond2 command in Stata.

Obtaining the Firm-level Returns-to-Scale Estimates After estimating (39), we then
use the minimum distance estimator by Séderbom (2009) to impose the AR(1)-implied restrictions

and get the restricted parameter estimates (pi’dt(l), Bint(l) o BiLdt(l) o B%t(l) t) . The estimated returns

to scale n;;; for a firm [ in sector ¢ and year t is therefore given by the sum of these elasticities:

AK AL AM
Mitt = Bia, )0 + Biayy.e + Bioau ).t

Because 1995 and 1996 contain relatively few firm-year observations for production-function esti-
mation, we report results using only the 1997-2019 estimates matched to the firm-level data for our

analysis.

A.3 Constructing the Tornqvist productivity index

To compare productivity across firms, we rely on the Tornqvist productivity index. We provide
here theoretical results about that index to link our model with our estimation procedure.

Lemma 3 shows that returns to scale are increasing in &;, but we do not observe ¢; directly in
the data. In addition, comparing measured productivity et A; (n;;) ¢ (n;) across firms with different
technologies faces well-known issues about the choice of units. When going to the data, we rely
instead on a Tornqvist productivity index, which is commonly used to compare productivities across
firms or countries with different production functions (Caves et al., 1982a; Caves et al., 1982b)
and recently in Penn World Table by Feenstra et al. (2015). Specifically, we use the multilateral
Tornqvist productivity index by Caves et al. (1982a) that has been extensively used in the firm
dynamics context (Aw et al., 2001).

Definition 3 (Multilateral Térnqvist productivity index). Consider a sector i in year t. Let N;; be
the number of firms observed in (i,t). Define the sector-year reference firm’s moments as log Q;; =
N%t Zl log Qiit, log Oy = N%t Zl log Oy, ﬁT,it = N%t Zz Bo,iit where O € {K,L,M} and Bo i are
firm-level output elasticity of input O. The multilateral Térnqvist productivity index of firm [ is
defined as:

Zigp = (log Qiit — M) - Z

O€e{K,L,M}

(Bo,itt + Bo,it) (log Oy —log Ojt) .

N |
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For any two firms k and [ in sector ¢ and year ¢, we say firm k is more productive than firm [ if

Zikt > Zilt-

Intuitively, the measure z;; compares productivity between firm [ and the reference firm by
looking at how much more output one produces relative to the other, adjusting for differences in
technology and input use. It is "multilateral" because z;; is defined relative to a common sector-
year reference firm constructed from all firms in (i,t), so productivity comparisons z;x; — 2j¢ are
base-firm invariant and can be consistently ranked across all firm pairs. In our benchmark case, we
set all Bo i = Bi(,)dt(l),t to obtain the estimated productivity index Z;;; and use it as our measured
productivity in all cross-sectional exercises that involve comparisons between firms within a sector-
year. We find the T6rnqvist index to be a good proxy for productivity in model-simulated data. In
our calibrated economy of Section 7, the within-sector correlation between the Térnqvist index and
gi1 is above 0.99. The same number for ;; + a; (1,,) is about 0.92.

However, when analyzing within-firm productivity changes over time, we use a chained (within-
firm) Tornqvist productivity index—i.e., an approximate Divisia index—following the implemen-
tation in Star and Hall (1976). Specifically, to account for the fact that firms may simultaneously

adjust both their technology (and hence elasticities) and their input mix, we define

. 1 /- R
AR — Aog Quy — Z Bo,itAlog Oyy,  where Bo i = 3 (55 a0t T Bi? dt,l(l),tfl)'
Oe{K,L,M}

We then normalize each firm’s initial (log) within-firm productivity to zero and construct the level

index éfg’tlthm by accumulating changes over time, i.e.,

swithin __ swithin ~within swithin
Ziy =gy FAZETT, Z =0

This normalization is innocuous because our within-firm analysis in 6.3.2 includes firm fixed effects,

so only productivity changes (not the level) are identified.

A.4 Robustness of the production function and RTS estimation

This online supplement shows that the documented positive RTS-size and RTS-productivity
relationships, both across firms in the cross-section (Section 6.3.1) and within a firm over time
(Section 6.3.2), are not driven by a particular estimator, choice of IV-GMM instruments, or grouping
design. We first vary the Blundell and Bond (2000) system-GMM specification by changing the

treatment of year dummies and the internal instrument set, following the implementation in De
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Ridder et al. (2022) (Supplement A.4.1). We then re-estimate production functions using standard
control-function approaches-Olley and Pakes (1996) and Levinsohn and Petrin (2003)-to verify that
our results are not specific to IV-GMM (Supplement A.4.2). Moreover, we account for potential
market power by adding markup controls (proxied by sales shares) within an Ackerberg et al. (2015)
estimator (Supplement A.4.3). Finally, we show that our conclusions are robust to alternative ways
of forming size groups (Supplement A.4.4).

We report coefficients from simple regressions to summarize the robustness of our empirical
findings both across firms and within firms with these alternative estimates of returns to scale and
productivity. To show robustness for Figure 7, which documents the cross-sectional pattern that
larger and more productive firms have higher returns to scale within a sector-year, we estimate two

simple regressions of returns to scale on log sales and productivity:

niir = Po log (Salesy) + 0ir + €, Nie = B1Zie + O + €y, (42)

where d;; denotes sector-year fixed effects. The estimated coefficients of 5y and 5y are displayed in
Table 2 across all specifications.
Similarly, to show robustness for Figure 8 and document our within-firm pattern that firms have

higher returns to scale when they grow larger or become more productive, we estimate:

N = 7o log (Salesiy) + ki + 0t + €, Nie = V1AM + ki + Oir + € (43)

where k; denotes firm fixed effects, so identification comes from within-firm variation over time. In
the productivity specification, we use a within-firm To6rnqvist productivity index, ég’z’gthin , which is
appropriate for within-firm comparisons.** The estimated coefficients of 7 and ~; are presented in
Table 3 across all specifications.

Results using our benchmark estimator are reported in column (1) of Tables 2 and 3. We now

describe the alternative estimators and grouping designs used in the robustness checks.

swithin

4Since the within-firm productivity index 231 is a chained index, it can be constructed only for firm-
years with complete sales and input data from the firm’s first observation onward (so that the chain can be
formed), which reduces the usable sample.

52



Table 2: Across-firm variation in returns to scale, productivity, and firm size with alternative
production function estimators

Dependent variable: Firm-level RTS
(1) BB (2) BB (3) OP (4) LP (5) ACF (6) Av.-size (7) Cur.-size

baseline  alternative market power percentiles deciles

log (Sales;;;) 0.023*** 0.028*** 0.045*** 0.037*** 0.050*** 0.019*** 0.007***

(0.001) (0.001) (0.001) (0.001) (0.000) (0.001) (0.001)
Sector-Year FE Yes Yes Yes Yes Yes Yes Yes
Observations 9,424,952 9,424,952 9,424 952 9,424,952 9,424,952 9,424,952 9,424,952
R? 0.688 0.688 0.642 0.806 0.564 0.728 0.655
Zilt 0.050*** 0.058*** 0.083*** 0.080*** 0.091*** 0.034*** 0.021***

(0.002) (0.003) (0.002) (0.003) (0.005) (0.002) (0.002)
Sector-Year FE Yes Yes Yes Yes Yes Yes Yes
Observations 9,424,952 9,424,952 9,424,952 9,424,952 9,424,952 9,424,952 9,424,952
R? 0.655 0.648 0.567 0.760 0.507 0.684 0.652

Notes: This table reports coefficients from cross-sectional regressions of firm-level returns to scale (RT'S) on (i) log sales and (ii)
firm productivity,z;;¢, each including sector-year fixed effects. Column (1) uses our benchmark Blundell-Bond (BB) estimates;
column (2) uses an alternative BB specification as implemented in De Ridder et al. (2022). Columns (3) and (4) use the
Olley—Pakes (OP) and Levinsohn—Petrin (LP) control-function estimators, respectively. Column (5) reports results from the
Ackerberg-Caves—Frazer (ACF) estimator with market power controls (proxied by firms’ sales shares). Columns (6) and (7)
use alternative grouping methods for estimating elasticities: rolling average-size percentiles and contemporaneous size deciles.
The regressions use a sample of Spanish firms from Orbis. See Supplement A.1 for details on variable construction and sample
selection. Standard errors (in parentheses) are two-way clustered at the firm and sector-year level. * ** *** indicate significance
at the 10%, 5%, and 1% levels, respectively.

A.4.1 With alternative Blundell-Bond specifications

Our baseline specification follows Blundell and Bond (2000) and includes year dummies. Includ-
ing year effects is recommended in dynamic-panel GMM applications because it absorbs economy-
wide shocks and thereby reduces cross-firm correlation in the regression residuals. At the same
time, once common year shocks are removed, identification of flexible-input elasticities relies on
variation that is not common across firms in a group. In practice, this shifts weight toward per-
sistent within-year differences in flexible input costs or wedges across firms. If such variation is
interpreted literally as firm-specific input prices, it can raise concerns about measurement—because
input quantities constructed from expenditures may mechanically inherit noise from unobserved
firm-level prices. 4°

As a robustness check, we therefore also implement the Blundell-Bond estimator specification

45However, if the relevant heterogeneity operates through non-monetary wedges—e.g., distortions that
affect effective input costs without changing the recorded unit prices paid by the firm, in the spirit of Hsieh
and Klenow (2009)—then this concern is mitigated because observed input quantities are not mechanically
distorted by unobserved prices.
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Table 3: Within-firm variation in returns to scale, productivity, and firm size with alternative
production function estimators

Dependent variable: Firm-level RTS
(1) BB (2) BB (3) OP (4) LP (5) ACF (6) Av.-size (7) Cur.-size

baseline  alternative market power percentiles deciles
log (Sales;;;) 0.013** 0.018*** 0.022%* 0.019*** 0.027** 0.010*** 0.004***
(0.001)  (0.001)  (0.001)  (0.001) (0.001) (0.001) (0.001)
Firm FE Yes Yes Yes Yes Yes Yes Yes
Sector-Year FE Yes Yes Yes Yes Yes Yes Yes
Observations 9,248,461 9,248,461 9,248,461 9,248,461 9,248,461 9,248,461 9,248,461
R? 0.799 0.813 0.875 0.927 0.693 0.853 0.739
Zyithin 0.008*** 0.008*** 0.012%** 0.014** 0.021*** 0.005*** 0.004***
(0.000)  (0.001)  (0.000)  (0.001) (0.001) (0.000) (0.001)
Firm FE Yes Yes Yes Yes Yes Yes Yes
Sector-Year FE Yes Yes Yes Yes Yes Yes Yes
Observations 5,254,839 5,254,839 5,254,839 5,254,839 95,254,839 5,254,839 5,254,839
R? 0.829 0.845 0.911 0.947 0.741 0.882 0.768
Notes: This table reports coefficients from within-firm regressions of firm-level returns to scale (RTS) on (i) log sales and (ii)
within-firm productivity, 2;}’?}‘1“ , each including firm fixed effects and sector-year fixed effects. Column (1) uses our benchmark

Blundell-Bond (BB) estimates; column (2) uses an alternative BB specification as implemented in De Ridder et al. (2022).
Columns (3) and (4) use the Olley—Pakes (OP) and Levinsohn—Petrin (LP) control-function estimators, respectively. Column
(5) reports results from the Ackerberg-Caves—Frazer (ACF) estimator with market power controls (proxied by firms’ sales
shares). Columns (6) and (7) use alternative grouping methods for estimating elasticities: rolling average-size percentiles and
contemporaneous size deciles. The regressions use a sample of Spanish firms from Orbis. See Supplement A.1l for details on
variable construction and sample selection. Standard errors (in parentheses) are two-way clustered at the firm and sector-year
level. * ** *** indicate significance at the 10%, 5%, and 1% levels, respectively.

used by De Ridder et al. (2022), which omits year dummies and uses a more conservative internal-
instrument set. Concretely, our baseline estimates a dynamic sales equation with current and one-lag
terms for labor, capital, and materials, includes year fixed effects, and instruments the endogenous
variables with lags starting at t —2 (and deeper) in the transformed equation, while treating the year
dummies as standard instruments in the levels equation. In contrast, the De Ridder et al. (2022)
specification removes year dummies and restricts the GMM-style instruments to a single deeper lag
(the third lag) for output and inputs. Relative to our baseline, this alternative places less weight
on within-year cross-sectional price/wedge variation as the driver of instrument relevance and also
reduces instrument proliferation by construction. The results using the alternative Blundell-Bond

estimates are reported in column (2) of Tables 2 and 3.
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A.4.2 With different production function estimators

We also use other commonly used production function estimators as a robustness check. In
particular, we consider the control-function approach and implement the Olley and Pakes (1996)

and Levinsohn and Petrin (2003) estimators.

The Olley—Pakes Estimator We first implement the Olley and Pakes (1996) (OP) estimator
to estimate the production function for each sector—decile-year cell. The Olley and Pakes (1996)
estimator is a semiparametric control-function method that addresses simultaneity bias, since unob-
served productivity affects firms’ input choices. It assumes that investment is a function of capital
and productivity and, under a monotonicity condition, can be inverted to express unobserved pro-
ductivity in terms of observed investment and capital. Substituting this inverted control function
into the production function, the method first estimates the elasticities of freely adjustable inputs
(labor and materials in our case) while controlling for productivity, and then uses a Markov assump-
tion on productivity to recover the coefficient on the quasi-fixed input, capital. To implement this
approach, we measure real investment as the change in the capital stock net of depreciation, and
we recognize that this can generate zero or negative investment values, which reduces the usable
sample for production function estimation.?® The results using the OP estimator are reported in
column (3) of Tables 2 and 3.

The Levinsohn—Petrin Estimator Because investment can be lumpy in practice and the
Olley and Pakes (1996) procedure may force us to drop observations with zero or negative invest-
ment, we also apply the Levinsohn and Petrin (2003) (LP) estimator as an additional robustness
check. Instead of using investment, this method uses intermediate inputs (materials in our case) as
the control variable. It assumes that materials are flexibly chosen after observing productivity, while
capital is still treated as quasi-fixed. Under the assumption that materials demand is a function
of capital and productivity and is monotone in productivity (conditional on capital), the materials
demand function can be inverted to recover unobserved productivity. This control function allows
consistent estimation of the labor elasticity, and additional moment conditions then recover the
elasticities of capital and materials. The results using the LP estimator are reported in column (4)
of Tables 2 and 3.

46This reduces the production function estimation sample within each sector-decile-year cell, but we
apply the resulting coefficients to the common baseline panel, so the main regression sample is unchanged.
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A.4.3 With controls for market power

Our model abstracts from market power and markups, but these forces could hinder the iden-
tification of output elasticities and obscure the positive RTS—size relationship we identify in the
cross section. When firms have market power, they may charge different output prices, so elas-
ticities estimated using deflated sales can be closer to revenue elasticities than to physical output
elasticities.

That said, we do not expect this channel to explain our results. Under monopolistic competition,
larger firms typically have higher markups. Higher markups mechanically dampen the sensitivity
of revenue to input expansion, implying lower revenue elasticities for larger firms relative to smaller
firms. If anything, this would bias against finding a positive RTS—size relationship. Therefore, the
presence of markups would tend to weaken our estimated positive RT'S—size relationship, suggesting
that the underlying relationship could be even stronger.

Nonetheless, we follow common practice and re-estimate the production function with explicit
controls for market power, treating price variation as an additional measurement component to be
partialed out. Specifically, following Baqaee and Farhi (2019) and De Loecker et al. (2020), we
control for markups using firms’ sales shares (measured at the NACE 3-digit and 4-digit levels) and
estimate production functions using the Ackerberg et al. (2015) (ACF) estimator. The results using
the ACF estimator are reported in column (5) of Tables 2 and 3.

A.4.4 With different size-based grouping methods

Grouping firms by 7-year average sales percentiles Our benchmark approach groups
firms in sector ¢ and year t into deciles based on their 7-year average log sales. While straightforward,
this discretization can generate non-smooth variation across firm sizes. As a robustness check, we
therefore implement a rolling-percentile approach based on firms’ 7-year average sales. For each
sector-year, we rank firms into 100 percentiles using their 7-year average (log) sales. In each sector
i, for each percentile p;, we construct a local sample consisting of firms whose percentile rank lies
between p; — 15 and p; + 15 in year t. We then estimate output elasticities for each cell (i,t, p;)
using the Blundell-Bond estimator on the corresponding 7-year rolling-window sample. The results

using the rolling-percentile grouping approach are reported in column (6) of Tables 2 and 3.
Grouping firms by contemporaneous sales deciles Alternatively, we group firms into

deciles based on contemporaneous firm-level (log) sales in year ¢, rather than the 7-year average.

We then estimate output elasticities for each cell (7,t, d;) using the same Blundell-Bond estimator
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on a 7-year rolling-window sample. The results using the contemporaneous sales-decile grouping

approach are reported in column (7) of Tables 2 and 3.

A.4.5 Summary

Overall, the main empirical patterns are robust. Across all alternative production-function
estimators (alternative Blundell-Bond specifications, Olley-Pakes, Levinsohn-Petrin, and ACF with
market-power controls) and alternative grouping methods (rolling percentiles and contemporaneous
deciles), we continue to find a positive relationship between firm-level returns to scale and firm size,
as well as between returns to scale and productivity, both in the cross section (within sector-years)
and within firms over time. While magnitudes vary across specifications, the sign and statistical

significance of these relationships are stable (see Tables 2 and 3).

A.5 Estimation of the tail index

This online supplement describes how we estimate the tail index of the firm-size distribution in
each sector-year using the log-rank estimator of Gabaix and Ibragimov (2011). For each sector i and
year t, let S;; denote firm [’s sales, and let N;; be the number of firms observed in (i,t). We assign
ranks r = 1,..., N according to their sales, where r = 1 corresponds to the firm with the largest
sales. Let Sj1)r > Sj2)r = -+ = Si(,,)¢ denote sales sorted in descending order within sector-year
(i,t).

We focus on the right tail of the sales distribution and select the tail sample as follows: If
Ni > 5000, we use firms in the top 1% of the sales distribution in (7,¢). If N < 5000, we use
the 50 firms with the largest sales in (i,¢).4” For each sector-year (i,t), we estimate the Pareto
tail index (;; within the tail sample using the Gabaix and Ibragimov (2011) bias-corrected log-rank

regression:

1
log <7“ - 2) = @it — Git 10g Si(ry + Uirt.- “

This regression relates the log bias-corrected rank log (r — %) to log sales. We recover Zz’t as the
negative of the OLS slope coefficient on log S;(,); and use it as the tail index of sales in Figure 9.
A.6 Details of the imported-input tariff shock exercise

This online supplement provides additional details on the imported-input tariff shock used in

Section 6.3.2. Our goal is to measure changes in input costs driven by changes in import tariffs.

47If fewer than 50 firms are observed, we use all available firms.
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To isolate variation that differs across downstream sectors and over time, we construct a shift-share
exposure measure that combines (i) predetermined import input shares from the OECD multi-
country input—output tables and (ii) tariff changes from the Global Tariff Project (Teti, 2024).
Let downstream sectors in Spain be indexed by ¢. Index a foreign exporter-sector pair by
n = (¢, s), where ¢ denotes the exporting country and s the exporting sector. For each Spanish

downstream sector ¢ and year ¢, we define the tariff-based input cost shifter as

log Ty =Y (ImportShare%g’;)e;ﬁz?iﬁt(ec w1 log(1+ TariﬁRateiEiii)), (45)

c,s

Intermediate

where ImportShare(Spainvi)<_(C,S)7t_1

is the share of sector i’s total intermediate inputs imported from
exporter-sector n = (¢, s), measured in year t—1 using the OECD multi-country input-output tables.
TariﬁRate(Ss i;r; is the ad valorem tariff rate applied by Spain to imports from exporter-sector (c, s)
in year t, taken from the Global Tariff Project. Sector ¢ and foreign sectors s are defined according
to the OECD input—-output classification, which is slightly more aggregated than the NACE 2-digit
level. When tariff data are available at a more disaggregated level in Teti (2024), we aggregate to
(¢, s) using a simple (unweighted) mean across subsectors. Note that log Tj; is essentially a weighted
average of log tariff factors across upstream foreign inputs, with weights given by the downstream
sector’s lagged import input structure. It rises when tariffs increase on inputs that the sector ¢ relies
on more intensively. The shift-share structure uses lagged import shares to reduce concerns that
contemporaneous changes in sourcing respond mechanically to tariff changes.

We then estimate the dynamic impact of these shocks on returns to scale using panel local

projections for horizon years h = —2,...,5:

Nitt+h — Nitt—1 = Brlog Tie + Yin + Ven + €atn,

controlling for firm (;,) and year () fixed effects. Under the assumption that tariff changes for
a given exporter-sector pair (c, s) are not systematically correlated with unobserved, time-varying
shocks to Spanish downstream sector ¢ (conditional on these fixed effects), variation in log T;; pro-

vides plausibly exogenous movements in input costs across sectors and over time.

A.7 Details of the cross-country firm-level data

This online supplement describes the firm-level data sources and sample construction for our

cross-country analysis. We augment the analysis with firm-level data from a total of 24 countries
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(including Spain). For 22 European countries, we use Orbis and restrict attention to countries
with good coverage of the variables required for production-function estimation. For developing
countries, we use China’s National Bureau of Statistics (NBS) manufacturing firm database and
India’s Annual Survey of Industries (ASI). Both the NBS and ASI datasets are censuses of above-
scale manufacturing firms.*® To ensure comparability across countries, we restrict all datasets to
manufacturing firms. For each country, we select a seven-year window that maximizes the number

of firm-year observations. We briefly discuss the data cleaning below.

Orbis For Orbis, we start from the raw firm-year panel for each country and apply the same
four-step cleaning procedure used in Supplement A.1 for Spain. We then (i) restrict the sample
to manufacturing firms (corresponding to USSIC codes 2000-3999) and (ii) deflate all nominal
financial variables using the country-specific GDP deflator from the World Bank. After cleaning
and deflation, we implement the seven-year window selection described above and keep the window

with the largest number of firm-year observations for each country.

India ASI Our Indian data come from the Annual Survey of Industries (ASI) for 1998-2018. We
harmonize industry codes to NIC-2004 and then map them to the USSIC division level, retaining
only manufacturing divisions. We measure sales using the gross sale value of all products. We
measure capital using the average of the opening and closing gross book value of total capital.
We measure labor using total wage bills. All variables are deflated using India’s GDP deflator
from the World Bank. We then select the seven-year window with the largest number of firm-year
observations (2012-2018).

China NBS The China data are annual firm-level surveys collected by the National Bureau
of Statistics (NBS). We use the 1998-2007 sample period. We measure sales using product sales
revenue, capital using total fixed assets, and labor using total annual wages payable. Firms are
classified by a four-digit Chinese Industry Classification (CIC) code, which we harmonize to the
USSIC division level. We retain manufacturing divisions only. All nominal variables are deflated
using China’s GDP deflator from the World Bank. We then select the seven-year window with the

largest number of firm-year observations within the available sample period (2001-2007).

48For China, the NBS data also include state-owned enterprises below these thresholds. For India, the
ASI includes a representative sample of small firms below the census cutoff.
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Production function and RTS estimation We estimate production functions using the
Blundell-Bond approach, following our baseline estimation strategy. We treat manufacturing as a
single sector within each country. For each country c, let [¢,,(c) — 3, tmn(c) + 3] denote the selected
seven-year window and t,,(c) is the median year of that window. We only estimate production
functions for firms existing in the median year ¢,,(c). We group firms into deciles for year t,,(c) based
on their seven-year average log sales. We then estimate a decile-specific Cobb-Douglas production
function using the full seven-year panel.

Let BCO (1) o () denote the estimated output elasticity of input O € {K, L, M} for country ¢ and
sales decile d. The returns to scale assigned to firm [ in country ¢ at year ¢,,(c) is computed as the
sum of the estimated input elasticities:

Nettm(©) = Per@) tm(e) + Beid(t)tm(c) T Perd@) tmc)
We then construct the Toérnqvist productivity index gcltm(c) using these estimates and compute
the covariance between returns to scale and log sales, as well as between returns to scale and
productivity Zyy,, () used in Figure 10 panel (a). In panel (b), we plot the seven-year average
(tm(c) —3 to tm(c) +3) of log GDP per capita obtained from Penn World Table version 11.0 against

the covariance between returns to scale and productivity z,, (c)-

B Supplement for Section 7

This section contains details about the calibration of Section 7.

B.1 Calibration data

This section describes the datasets used in the calibration and how the associated sectoral

moments are computed.

1. We calibrate the sectoral parameters using the 2010 input-output table from the Spanish Na-
tional Accounts. This table partitions the Spanish economy into 62 sectors which are usually

defined at the 2-digit NACE industry level.* Conforming to the accounting conventions in

49Gector 63 (household-related production activities) and sector 64 (services by extraterritorial organiza-
tions and bodies) are also present in the 2010 input-output table, but their input-output data is missing.
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the data, we calibrate the input elasticities of good s’ in the production of sector s as

ass/ =

Input from s’ at basic prices, "
Total input at basic prices
Intermediate consumption at purchaser’s prices,

Intermediate consumption at purchaser’s prices, + total labor expenditure,

and the labor elasticity as

1 Z . total labor expenditure;

_ Bt = 7
- ** " Intermediate consumption at purchaser’s prices, + total labor expenditure,

S

which corresponds to the labor share of total cost in the data.®®%! We calibrate the con-
sumption share s to be the share of final consumption expenditure of good s in the sum of

consumption expenditure spent on the 62 sectors.

2. We compute cross-sectional moments from the Orbis sample. After steps 1-4 in Supplement
A.1 and the production function estimation in Supplement A.4.1, we perform a few additional

steps:

(a) We winsorize the estimated returns to scale n;; at the top or bottom 0.5% of the firm-
year distribution. In addition, we cap values above 0.99 at 0.99. Using firm-level returns
to scale n;;;, we compute each sector’s effective returns to scale 7;; as the sales-weighted

average of these firm-level estimates.

(b) We compute profits as Il;;; = (1 — 1) PitQy¢ and winsorize it at the top or bottom

0.5% within each sector—year.
(¢c) We then compute the interquartile ranges of I;;; and n;;; at the sector-year level.

(d) Finally, we average these sector—year moments over time to obtain sector-level moments

used in our static model.

50Because sector-to-sector data at purchasers’ prices (i.e., adjusted for taxes less subsidies on products)

are unavailable, we calibrate the intermediate-input expenditure share of inputs from sector s’ used by sector
Input from s’ at basic prices,
Total input at basic prices, °

51We deliberately omit capital in this calibration because the Spanish input-output table does not dis-
tinguish the user cost of capital from profits.

s with the share computed in basic prices,
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B.2 Interquartile ranges for returns to scale and profits

From (12), we have

1
Mg =1- 1—¢; il =i
l_fh' + - ZQ’Y;L
which implies®? ) )
IQR (7hZ> = 1=0. ) =Ty ) ) (46)
oy 2ip-1(025) 1=2 + 2 01(0.75)

where @ (-) is the cumulative distribution function of the standard normal random variable.

Profit of firm [ in sector i is given by (54). Plugging (10) and (12) in this expression, we get

1— g 2
logIl; = — (2% LA i +5il> +log H;, (47)
dy; 1=
which implies®®
IOR (logIL,) = %0 [ 71 0.75) — F~! 0.25 48
Q (Og il) - 47% Xz(Qvi(l—W)) ( ) ) B Xg(Qw(l—w)) ( ’ ) ’ ( )
T\ os(1—95) L\ oi(1—m;)

where F 2, (+) is the cumulative distribution function of noncentral x? distribution with one degree
o

T%.

Equations (46) and (48) make clear that IQRs of returns to scale and log profits are functions

of freedom and the non-centrality parameter x, and p; =

of g;,7;, and 7;. We can, therefore, use them to identify o; and ;. We choose ¢; and ; to minimize
the distance between model-implied and empirical IQRs, with a constraint ¢; € [0,1] Vi. Figure 13
shows that the calibrated model matches the targeted IQRs well.

Figure 14 shows calibrated values of o; and ~; for all sectors. The sector with most volatile
productivity is “Petroleum”, with o; = 3.09. At the same time, this sector has a high cost of
adjusting returns to scale, v; = 7.24, meaning that its effective productivity dispersion is not too

large, ¢; = 0.66.

52For all firms with n;; € (0,1), 7y is strictly increasing in €;;. In the calibrated economy, the fraction of
firms with n;; ¢ (0,1) is very small.

53From (10) and (12) , 2y 11:“7‘;1 — wi + ey > 0 for all firms with n; € (0,1). For these firms, logIl; is
strictly increasing in ;. In the calibrated economy, the fraction of firms with nu ¢ (0,1) is very small.
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Figure 13: Interquartile ranges in returns to scale and profits

(a) Returns to scale (b) Log profits
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Notes: Panels (a) and (b) report sectoral interquartile ranges in returns to scale and log profits in the calibrated model and in
the data.

B.3 Calibration details for Section 7.3

We analyze the model with sales tax in Supplement D.6. In that supplement, we show that the
model with sales taxes can be analyzed analogously to the main model if we properly redefine the

mean and the variance of sectoral shocks:
fii = pi +log (1 — TZ-S) and &; = (1 —b;) 0;.

We can identify &; and ; in the same way as described in Supplement B.2. The only difference is
that we need to use after-tax profits in (48).

To pin down the parameters of the tax process (37), we proceed as follows. In the data, we
compute the covariance of pre-tax profits with log (1 - 7'5 ) for each sector. Using (47), we can

compute the model analogue of this quantity as

1 1— @ 2
Cov (log T, log (1 — T{?)) = Cov <4’Y (2% T Z;Z — f; + 5i1> —log (1 — T{‘l;) Jlog (1 — Tg)) =
) — TR

bi o (1—pi b;
1o <1—77,~ +1—b,~>'

We can identify b; from this equation.
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Figure 14: Calibrated ~; and o;

(a) Calibrated ~;
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3

,we rely on equation (87), derived in Supplement D.6, which we reproduce below:

7S

(2

To compute

(83)

L=

s
4802"71‘1—,% =+
2

b
1-0b;

as the sales-weighted average tax rate in sector i. Then, (87) can

S
7

In the data, we can observe

S
T

be used to identify

Finally, equation (86) makes clear that the proper measure of sectoral returns to scale 7; uses

after-tax sales as weights.
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B.4 Additional quantitative results

Figure (15) shows effective sectoral returns to scale 7; for all sectors. In our data, the sector

with lowest returns to scale is “Water transport” with 7; = 0.54, and the sector with the highest

returns to scale is “Retail trade” with 7; = 0.98. The mean and median returns to scale are both

0.83 and 0.82, respectively.

Figure 15: Effective returns to scale 7); across sectors
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Figure 16 decomposes the gap in GDP between our baseline model and the fixed returns-to-scale

economy in its sectoral components. It reports the two terms in (26) that captures a sector’s impor-

tance: 1) its Domar weight w; and 2) the flexibility of its sectoral productivity % (1 —;)log 1%%.

We see that the “Water transport” sector is the most flexible one. However, since its Domar weight

is only 0.0021, its importance for the economy is small. High-Domar-weights sectors like “Finance”,

“Real estate”, and “Electricity and gas” that are also flexible are where the endogenous returns-to-

scale mechanism has the most impact on GDP.

B.5 Sensitivity analysis for Section 7.3

In Section 7.3, we experiment with removing wedges that are correlated with firm productivity.

As we discuss there, removing these wedges leads to higher productivity dispersion. For some

o2

sectors, removing wedges would imply that ¢; = - > 1, which is not allowed by our model. For

=2

these sectors, we set ¢; = 0.99. In this online supplement, we explore how sensitive our results are to

this threshold. Table 4 shows log GDP gains due to removal of sales wedges if we set @mqr = 0.985,

0.99 (main text), and 0.995. We see that the GDP gains become larger as ¢, increases. In the

model, having sectors with ¢; — 1 is particularly valuable because they feature a larger mass of
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Figure 16: Domar weights, w;, and productivity gain due to endogenous returns to scale,

(1 — ;) log 1%%, across sectors
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firms with very high productivity draws operating at nearly constant returns to scale, which makes

these sectors especially productive.

Table 4: Log GDP change after removal of sales wedges: Sensitivity analysis

D — 0.985 Do — 0.99 Ornae — 0.995
Baseline economy 160% 167% 177%
Dispersed RTS 134% 138% 142%
Fixed RTS 69% 70% 70%

Notes: Increases in log GDP due to removal of sales wedges in the baseline economy, and in the economies with fixed and
dispersed returns to scale, for three values of maximum effective productivity dispersion ¢.

C Proofs

C.1 Sectoral Domar weights

Multiplying the resource constraint for good i, given by (9), by P; we get

M;
PQi=PC+ Y P [ X
- 0
J
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From the problem of the household we know that P;C; = 3; PY. It follows that

PiQi b /Mi
v =3 = X;qdl
PY ﬁz + ; PY 0 Ji,lal,

where we have divided by nominal GDP PY. Next, from the problem of firm [ in sector j we know
that

PiXjii = ajinPiQji-

Combining with the previous expression yields

or

Solving this linear system leads to (18).

C.2 Proof of Lemma 1

Lemma 1. The firm’s marginal cost of production A; is given by

1

M= —————
P e Ay ()

HZW Hzll—?m 7 (3)

where H; = Wlfzé'vzla” H;VZI Pja” 1s the price of the variable input bundle in sector i, and Il is
profits,
Iy = (1 = nat) N Q- (4)

Proof. We tackle problem (2) through its cost minimization dual:

N
| in WLy + Y PiXij, subject to Fi(La, Xu,mu) > Qu. (49)
il Ll Xigl -
j=1
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The Lagrangian is
N il
) 1 SN o i
L=WLy+ ZPinj,l — Xt | €A (na) C(na) | Ly —77 7 H ng -Qa ),

J=1

and the first-order conditions with respect to Ly and X;;; are

N
na | 1— Z aij | AaQu = WLy, (50)
nacii A Qi = P X (51)

Plugging back into the constraint, we find

1 1-74
Nig = —————H; (1 —nq) Qu) ™ . (52)
(e=it Ay (i) it

Using the definition of II; from (4) yields the result.

Note also that the envelope theorem implies that );; is the marginal production cost of the firm.

Notice that A;; is increasing in @;; for n;; < 1. As usual, we can then write the profit maximization

problem of the firm as
Qi
max Qi — / Ait (@) de,
Qi 0

where the notation makes clear the dependence of A;; (@Q;;) on the size of the firm. This problem’s
first-order condition implies that P; = \;; (Qy), so that the firm sets @ to equalize its marginal
cost to the price of its good. O

C.3 Proof of Lemma 2

Lemma 2. At an interior solution, the firm chooses its returns to scale n; € (0,1) according to

da; (ni)
dn;

= log H; — logIly, (5)

where a; (ny) = log A; (n:).
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Proof. The first-order condition for n; in the cost-minimization problem (49) is

N il N il
dA; (n; 1-N ay; i d . - iy y
ddi(ma) oy Ly ==L x50 |+ AiGna) ¢ () Ly == ] x4 (53)
dTh‘l i=1 ’ d?’hl ol s
N Nil
d 172N: (o791 i
+A4; (mz)C(mz)% Ly == I xai | =o.
j=1

Note that we do not include Lagrange multipliers for the constraints 0 < n; < 1 since we focus on

interior solutions. Dividing by @Q;; yields

il
dlog A; (ny) , dlog((ny) = d 1=y i
—1 L. J X. Y =0.
dny * dng * dng o8|~ ]:1_11 il
Combining this with (50) and (51) yields (5). O

C.4 Proof of Lemma 3

Lemma 3. At an interior solution, the returns-to-scale parameter 1; satisfies"

dnit dniy d*a; ] dnit da; ]
_ — (1) B . and — (1)Ll .
dey  dlog P, (1 =na) dn? >0, an dlog H; (1 =ma) dn? <0

Proof. We can combine (3) with the firm’s optimality condition \; = P; to write

log IT;; = (log P; + ei + a; (na) — na log H;) . (54)

L =4
Together with (5), we can write the first-order condition with respect to n; as

d log Az (nil)

log A; (1) , 55
i +log A; (m31) (55)

log H; — log P; — gy = (1 — ny1)

K

where we use K as a temporary variable to denote the left-hand side of (55). Full differentiation

54When increasing P;, we keep the price of the variable input bundle constant to distinguish the two
channels that affect 7;;.
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yields

__ dng dlog A; (nar) d*log A; () dna _ dlog Ai (na) dna

+ (1 —na)

dK dn; dn? dK dni dK -
Simplifying we find
dnia 1
dK (1 _ ) @log Ai(n)’
(1 771[) d777;2[ :
and the result follows. O

C.5 Proof of Lemma 4

Lemma 4. At an interior solution, the elasticity of output Q; with respect to productivity €; is

given by
dlogQq _ 1 1 dny
deg 1 —my 1 —my dey
~—— —_————

Fized n effect  Flexible n effect

In addition, the elasticities of output Q; with respect to prices are given by

dlog Q; ; 1 dn; dlog Q; ; 1 dn;
g Qzl _ il + il >0, and g Qzl _ it + il <0.
dlog P; 1 — i 1 —ny dlog P dlog H; 1 —mi 1 —n; dlog H;
—— —_———— ———— —_————
Fized n effect Flexible n effect Fized n effect Flexible n effect

Proof. Profit maximization implies that the firm’s marginal cost of production A; is equal to the

price P;, and so we can invert (3) and (4) to write

il

1 _ /P
On = (¢4 Ay (mi)) T (

or, in log form, as

1 1 il
logQ;; = —log (1 —ny) + Eil + a; (M) + log P, — log H;) . 56
g Qi g (1 —mu) T p (mit) 1—7h'z( g g H;) (56)

Without endogenous returns to scale, it is immediate that

OlogQy 1 J dlog Qj OlogQy

dei  1—my o dlog P, dlogH; 1—my
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With endogenous returns to scale, we can combine (5) and (54) to find

da; (n;
— (1 —ma) ad7(777 ) _ log P; + ey + a; (n;) — log H;. (57)
il

Combining (56) and (57), we get

da; (n;
log Qi = —log (1 —nu) — dr(]i ) _ (log P; — log H;) . (58)
Differentiating with respect to ¢;;, we find
dlogQq _ 1 dng  dai(na) dna
dey 1 —my dey dn  dey’

Combining with Lemma 3 yields the result. The derivatives with respect to log P; and log H; can
be computed in a similar way. The last part of the result follows from the signs of the derivatives

in Lemma 3. O

C.6 Proof of Proposition 1

Proposition 1. Suppose that Assumption 1 holds. Without endogenous returns to scale, the dis-
tribution of Qq in sector i is log-normal. With endogenous returns to scale, the right tail of the

distribution of Q; behaves like a Pareto distribution with tail index 1/¢;, in the sense that

1
log (P(Qi > q)) ~ ——logq, as q — .

)

Proof. Without endogenous returns to scale, the log of Q;; is given by (56). The only random term
is € and so Q) is log-normal. We now turn to the case with endogenous returns to scale. Under
Assumption 1, we can write (57) as

1 e+ B

T —na 274

9

where we define B; := log P; — log H; as a temporary variable to simplify the notation. Combining

with (58), we can write

o+ B 4 B\ 2
logQiz=10g<5’l+ ’>+% <€Zl+ Z> — B;.
27 2y
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We want to characterize the right tail of Q;. Because of the logarithm, we need to be careful
about eventual bounds on ¢;;. We impose here that ;; ~ N (pi, 01-2) is normally distributed with a
truncation such that ;; > —B;. We provide a full treatment of the model with truncated normal
distribution in Supplement D.1. To simplify the notation, we drop the subscripts ¢ and [ from now
on.

Step 1. We want to characterize the Complementary CDF (CCDF) Sg (¢) = P(Q > q) as
q — oo. Let us define g : (—B,c0) — R as the function that maps € to log Q:

T+ B z+ B\?
g(a;)—log<2ry >+’y< o > - B.

One can show that g is a strictly increasing function. It is therefore invertible, and we can write

Sq(9) =P(logQ >logq) =P (g(c) >1logq) =P (¢ > g~ " (logq)) .

Given the properties of g, the right tail of @ corresponds to the right tail of e.
Step 2. Let y = g(x). We need to characterize the asymptotic behavior of z = ¢g~! (y) as

y — 00. Letting X = x;rvB, the equation y = g (x) can be rewritten as
y+ B =log X +~vX2.

As y — oo, it must be that X — oco. In this limit, the quadratic term vX? dominates log X and
we can write®®

y+ B ~yX?, asy — .

This implies that X ~ (/y/~ for large y.
Now, we relate this to = g~ (y). Since z = 2yX — B, we have

g (y) =2 =2vX — B ~2\/yy.

since the constant B is negligible as y — co. We will come back to this expression momentarily.

Step 3. The CCDF of the truncated normal ¢ is given by

55 As usual, we write “f (z) ~ g (z) as * — o0” if and only if lim, ., f (z) /g (x) = 1.
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where £ is the untruncated normal with the same mean and variance, and where K7 is a constant.

It is well-known that approximating the Mills ratio implies that

2
? (1'_/.1/)) as r — O0.

R

We can therefore write

log S. (z) ~ log <[;> - (3”2_05)2 +log (W) .

As © — oo, the quadratic term dominates the others and thus
72

530 88 T — 00.
o

Step 4. We now combine the results. Let z, = g~! (logg). From Step 1, Sg (¢) = S- ().
From Step 3, for large ¢, and consequently large x,

2
Lq

log Sq (q) ~ EEYOR

We can now substitute the asymptotic form for z, from Step 2. Let y =loggq. As ¢ — o0, y = o0

and

zq =g " (logq) ~2y/ylogq.

It is well-known that if f ~ g then f" ~ ¢" for r real. Therefore,
22 ~ 4vylogq.
q
Since ~ is transitive, we can substitute in the expression for log Sg to find
2
log Sq (q) ~ —%logq, as q — 0o,
o

which is the result. O
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C.7 Proof of Lemma 5

Lemma 5. The returns to scale n; of firm I in sector i is given by

1 :1_30i+5il_,ui
l—ny 1= 2vi

Furthermore, the moments of the firm-level returns-to-scale distribution are given by

1 1—; [ 1 } ©i [ 1 ]
E; = —, 'V, =, and Cov; |—,g;| = ¢; > 0.
' [1—772'1} L= L= ma 2; T vi

Proof. Given Assumption 1, we can write the returns to scale first-order condition (55) as

2;
L —ny’

log P, —log H; + ¢;; =

Combining that expression with itself when ¢; = pu; yields

1 1 4 Sl

T—ma  1—m () 2v;

)

and the result follows from combining with (64), derived below, and taking the moments.

C.8 Proof of Proposition 2

Proposition 2. The marginal cost of sector i is given by

N
1 1—p SN o Ao
A — W i D i1 Oij | | P i
" Zi () i

where sectoral total factor productivity Z; (n;) is defined as

2
. . o 1 1 R 1 R
log Z; (1)) == Mi‘i‘ai(r]i)‘i‘?zl_ﬁi + 2(1—771')109;(1_%) = (1 —1i)logk;.
—_—
Ezogenous returns to scale Superstar effect Entry cost

Furthermore, the effective returns to scale 7; is given by

1
1—7i 2% (1—¢;)

(i +log P, — log H,).
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Proof. Since firms in a sector all face the same sales price, they have the same marginal cost through
profit maximization. We therefore define the marginal cost A; of a sector ¢ as the marginal cost of
any firm in that sector, such that A\; := \;; for any [.

Together with (54), the free-entry condition (8) imposes that

1
o0 ailA’L' i fb
/ ()\ie(m)> o fi(eqr) deip = kW, (59)

Ui
o H"

I,

where f; is the probability density function of a normal distribution N (,ui,ag). Multiplying the

term inside the parentheses by one, we find

_1
(1—ny) 2 ] 1=y

< [ X\ H, B Vel
/ Héil p e A (na) fi(ea) deq = KiW,
oo | H]

)i
H.(l nzl)lfﬁi )\1_’71'
(2

)

which can be reorganized as

N
1 A N N
A== (sW)TH (Wi [T PV | (60)
Z; =
where Z; is defined as
R 1 1—7;
) o 73 Y52 i
Zi = / : e“it Ay (mqr) fi (eqr) dey
oo H;

To simplify the notation, define s; := log A\; —log H;. Using the definition of s; and A;, we can write
1=

1
00 M= o\ Tomy
/ <€$7‘ 1—9; +ei l—nu> E fZ (eil) dé‘il] . (61)

—00

7 =

For an arbitrary set of firm-level returns to scale {7;} this integral cannot be computed analytically,

but we can do so here, given the relationship between ¢; and 7; implied by the model. Using
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Assumption 1, we can write the returns to scale first-order condition (55) as®®

2 .
log \; —log H; +¢; = 1 Vi 9 (mit) 5 (62)
~— — Nl
=5
which implies that
L siten and 1t _ sitein— 2y
I —mny 2v; 1 —ny 27

Combining with Z;, we find

o0 (Si+5il)2_ s 1
Z; = / e i 170 fi(ey) dey :

—00

Given the structure of the normal distribution f;, this integral can be computed when 27; > o2 and

2 1_771'
27 (i + i) 8
S exp o~ - .
2v; — o] 2(2%—02.) 11—

We will rewrite this expression using 7;. To do so, notice that we can write

yields

7 =

7 = JymaPiQadl L J; (1 = ny) PQudl 4 J; Wyl (63)
" [ PQudl J, PiQadl ik %Wﬂizdl'
Using the profit expression (54), we can compute these integrals and find
. 1 — i
1= =2y =1 =) (1 —mi(p)), (64)

i+ i

where n; (1;) is the returns to scale chosen by the firm with &;; = p; (computed from (62)). Notice
that (64) implies (17) because s; is given by (62).

Combining (64) with our expression for Z;, we find

1-7;
- 1 1— N i
Zi= |4/ (i .
‘ [1_¢iexp<1_ﬁiaz(nz)+1_ﬁi

56In equilibrium, the price charged by firms in sector i must be equal to their marginal costs, so that
Ai =P

76



Taking the log yields

o2 1

21— 7 (1_772)108;(\/1_4)01')7

log Z; (1) := pi + a; () + —-

where we have used the definition of ¢; and Assumption 1. The quantity Z; corresponds to the
total factor productivity of sector i if we treat the mass of firms in that sector as an independent
factor. But it will be often convenient to lump that input together with labor. In that case, we can

rewrite (60) as

) N us
\ = _ Wl 77z 1 Qg alj ,
Y Zi (i) 1;[
where Z; := Z; (1};) /ﬁ}fﬁi, which completes the proof. O
C.9 Proof of Proposition 3
Proposition 3. The equilibrium price vector P = (Py, ..., Py) satisfies
log 10> = £ (i) = (1) (19)
0g — = —
gW n)y=mn,

where z (1) = (log Z1 (M) , ... ,1og Zn (1n)) is the vector of log sectoral productivities (16). Further-
more, equilibrium log GDP y :=logY is given by

~ AN\ T ~ 7
= |w z + log L. 20
y) = lw®] z() g (20)
Aggregate productivity Labor endowment

Proof. Since in equilibrium prices must be equal to marginal costs, we can use (15) to write

& B 1 ﬁ & Niij
w o Z;i (1;) - w ’

J=1

Taking the log of this equation leads to

P N P,
log WZ = —log Z; (i) + n; ; a;jlog W]

In vector notation, this becomes log (P/W) = —z(n) + diag(n) alog (P/W). Solving it for

7



log (P/W) yields (19).
We now turn to the GDP equation. The budget constraint of the household is PY = WL.
Together with the definition of the price index, P = Hi\i1 PZ-B i =1, we can therefore write

N
P; _
— g Bilog—l + log L,
p w

and the result follows from combining this expression with (18) and (19). O

C.10 Proof of Proposition 4

Proposition 3. There exists a unique equilibrium, and it is efficient. Furthermore, the equilibrium

vector of effective returns to scale 1) mazximizes GDP y (7).

Proof. This proof proceeds in two steps. First, we write down the maximization problem of the
social planner and show that its first-order conditions coincide with the equilibrium conditions.
Since there exists at least one maximizer to the planner’s problem, there is at least one solution to
the planner’s first-order conditions and so at least one efficient equilibrium exists. Second, we show
that the equilibrium conditions imply that there can be at most one equilibrium.

Step 1. The planner maximizes

C7X7L7M777

subject to the goods resource constraint

C; —|—ZM /Xﬂ ) fi(e)de < M; /Q Vfi(e)de Vie{l,..,N} (multiplier \;),
7=1
and the labor resource constraint

ZM / e) fi(e)de + ZM k; < L (multiplier ).

=1
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The first-order necessary conditions are as follows:

azﬁ(g) A g% 8 —n=0
a)gf(g) : Aim ~% =0,
62?&) : 88673;((;) =90,
c‘)aj\f./i : / XiQi(e) — g/\sz‘j(é‘) —uLi(e)| file)de = pk;.

Now, we demonstrate that the competitive equilibrium allocation satisfies the planner’s optimality
conditions. To do this, we identify the planner’s shadow prices with the equilibrium market prices.
Set u = W. Consequently, the planner’s shadow price for good 4, A;, corresponds to the market
price P;. The first condition corresponds to the household’s optimality condition (Section 2.4). The
second and third optimality conditions correspond to the standard firm equilibrium optimality con-
ditions (50) and (51). The planner’s fourth optimality condition coincides with the firm equilibrium
condition (53). Finally, the last optimality condition of the planner coincide with the free entry con-
dition (8). Since the resource constraints are the same in the planner’s problem and the equilibrium
definition, we have shown that the planner’s first-order conditions coincides with the equilibrium
conditions. Since the planner’s constraint set is closed and bounded, and that the objective function
is continuous, the Extreme Value Theorem implies that there exists a maximizer to the planner’s
problem. This maximizer must satisfy the first-order necessary conditions. Therefore, there exists
an equilibrium and that equilibrium is efficient.

Step 2. We now show that there can be at most one equilibrium. The equilibrium of the model
boils down to equations (17) and (19). Indeed, if we let p := log (P/W') we can write these equations

as

p=—L(H)z(), (65)

where

20 (7) = p + ai () + = — + (1 —17;)log ( > — (1 — ;) log ki, (66)

1
V1=
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and
1 1

N
— = o — i . 67
1— 2v: (1 — Spi) Hi T+ Pi Z ijDj ( )

Jj=1

There is a unique equilibrium if there are unique vectors 7 and p that solve these equations. We
can combine these equations into a single one. Let us introduce the variable v := (I — a)p and a

constant C; = 27; (1 — ¢;) > 0. We can then rewrite (67) as

l—fi=——<&h= :
Yot Hi + v
We are interested in equilibrium of the firm 0 < %; < 1 for all 4.5” This implies that we can restrict

the relevant domain of v to be

wi +v; > C;.
Using that notation, we can simplify the equation (66) for z; as

—Ty C
2 = 'u'7'2 z_'_ul—ijvllog(Kz/Hz);

where K; := 1/4/T — ¢;. Next, we can premultiply (65) by £ (7)~' = (I — diag (1) a) to find
(I —diag (7)) o) (I — ) to = —2

or

<I—|— diag(1 —n)a (I — a)_1> v=—z.

Substituting the expression for z and 1 — 7, we find

F;(v) = % (i + 0’ + Ci (@l =)™ ) +log (Ki/ki)) = 0.

There is a unique equilibrium if there is a unique solution v to the equation F'(v) = 0. Recall that
-1
p= (I —a)  v. Then

E; (p) := Fi (v(p) = % (1 + (I = @) p),)* + Ci ((ap); + log (Ki/ki)) .

57Tt is straightforward to write sufficient conditions on the parameters so that the equilibrium is of that
form. In particular, large p lead to higher equilibrium 7.
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The Jacobian of F is
Mk (p) = (pi + (I — @) p);) (I — @)y, + Ciaip,.

In matrix form,

M (p) = diag (1 + v (p)) (I — o) + diag (C) c.
The diagonal elements of M are
My = (pi +v3) (1 — ayg) + Ciag > 0,
which is positive given our domain restriction that p; + v; > C;. For off-diagonal terms i # k,
M, = — (pi +vi) cig + Ciaug = g (Ci — (i + 7)) <0,

such that M is a Z-matrix. Further notice that

D Mgl = (i +0i) = Ci) Y e

ki k#i
For M to be strictly diagonally dominant, it must be that
(i + i) (1= i) + Cicvig > (i +vi) = Ci) Y cvig,
ki

which we can reorganize as

Zk Ak
1= % ik

This condition is true since C; > 0 and p; +v; > C;. Therefore, M is diagonally dominant. It follows

wi +v; > —C;

that M (p) is a non-singular M-matrix for every p. Since nonsingular M-matrices are a subset of
P-matrices, M (p) is also a P-matrix for every p. By the Gale and Nikaido (1965) theorem, F' (p)
is therefore injective and can have at most one solution F (p) = 0. There is therefore a unique p
that solves our original system of equations. From the vector p, it is straightforward to recover all
other equilibrium quantities in a unique fashion. There is therefore a unique equilibrium and it is

efficient. [
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C.11 Proof of Lemma 6

Lemma 6. An increase in average productivity p; increases returns to scale in all other sectors,

such that

diji 1
ﬂ; =V Kij > 0. (22)
Furthermore, the impact of productivity dispersion UJQ- on M; s giwen by
dﬁl 1 aZj . . 6222‘
=V Ky=—5-10(=j) — |, 23
dajz ! " 80]2 (i =17) 80128@ (23)
where
(923‘ 1 1-— ﬁj 0 <8zl> 1 1
= — + >0,and — | == | = - .
9oz 2(1—1;) 4y (1—¢y) 97 \Oni)  2(1—m)*  Avi(l— )

In particular, dﬁi/dajz >0 fori#j.

Proof. This proof proceeds as follows. First we derive the first-order conditions of the social planner.
Second, we write down the derivative of the first-order conditions with respect to 7;. Third, we use
this expression together with the implicit function theorem to derive the impact of p; and 0'32- on 7.

First step. Let us first compute the first-order conditions of the planner’s problem. Differen-

tiating (20) with respect to 7; and setting that expression to zero implies that

dy _ grdt

dn); dn);

T dz (1)

— = 0.
dn);

2 (1) + [w (7)]

Computing the derivative of z (77), we find

<dz (ﬁ)) _ dac}ff?) + % (1_1771_)2 + %log (1 —p;)+logr; ifj=i
@75 o if ) #

Next, the derivative of the Leontief inverse yields

e d(1—diag(n)a)™? 4
= = — 1 -
an, an, (1 — diag (1) @)

-y [11-1]04} L=La; L.

41— diag () o)]

i, 1 — diag (7)) a)*.
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Putting the pieces together, we have

N T opa . - [da; (7;) o2 1 1
i \"li i
wi (M) o L(7) 2 (1)) + w; —— + +———— + - log (1 — ¢;) +logk;| =0.

Since Domar weights are positive, we can write that condition as

" " dai AZ‘ 01'2
Fi =l £(7) = (7) + 200 +5

1
i, + 5 log (1 — ¢i) +logk; =0, (68)

(1 —m)?
where we have defined F;.

Second step. The implicit function theorem states that
dy __[0F)7NOF
dp on ou |

First, let us compute the Jacobian matrix 0F/97. Consider an off-diagonal element k # i

8.E 8 T " . T (3£> T < 8Z >
—=— (o, £ z =q —|z+o; £ -
Ok Oy ( () (77)) O, Oy

82k

oy,

= o] L1;1] oLz + o) L1,

Factoring this expression gives

8.Fz ( T |: T 8Zk;:|
— = |, E.k) a,Lz+—| =0,
O ' g O

where the last equality follows since the term in bracket is the first-order condition of the planner.

For a diagonal element,
OF; 0 0z;
= (a;r Lz + Z}) .
on; O o

Through the logic above, the first term is 0, so we need only focus on the second part

oOF; 0 0z  d3q o2 d?a;
= = T~ = = _|._ L = ]_ — i T 69
on; O On;  dn? (1 —n;)? (=) dn? (69

Third step. Next, we can compute the element (i, j) of the matrix %’ which is gi’_’. The FOC

for sector i is F; = ozZ-T Lz + g—%’:. The parameter p; only enters through the vector z, specifically
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through its j-th element. Therefore,
0z
=1;.

oy
Thus,

8}; 8 T T 82 T
=— (o, =, 2 ) =o' L1,
o O (az L‘z) a; L ((9,uj) a; L1;,

which is simply the (i, j)-th element of the matrix a.L. Putting the pieces together,

di (8}‘> -1 (al), d2a;\

— == 5 (af)=——m—=—|(1-wi) 75 | (aL);-
d 0 d2a; g; d 2 v
a 7 ait T Tn i

Fourth step. We now turn to the impact of 0]2-. We use the implicit function theorem once

more. Note that

OF _ 1,05 0 (0n
8(7]2- - 80]2- 00]2 on; )

The vector 0z/ 80?- is zero everywhere except for it j-th element

8z, 0 o3 1— 17 1 1—
A < J - L log(l—cpj)) = + o

doF  0oi \2(1—1%;) 2 2(1—1;) 47 (1—wy)

Similarly, 6%2 (gg?) is zero whenever ¢ # j. We can compute
j 7

d <8zj> d 3 + Dogl— o) 1 1
sl Svell B " 5logll—pj) | = 3 .
002 \00;) 9o \2(1—p;)% 2 ’ 2(1-m;)° 47 (1—¢))
Putting the pieces together, we find the result. O

C.12 Proof of Proposition 5

Proposition 5. The difference in log GDP between the baseline model and the fixed returns-to-scale

economy s given by

> > 0.26
— i

Proof. We first compute GDP in the fixed returns-to-scale economy (denoted by *), in which all

firms in sector ¢ have the same returns to scale n;; = 7;. The free-entry condition is E [l:[il} = miW.
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Using the expression for profit (54), this condition becomes

o] 1 B B
/ exp (1 7 (logB + it + ai (1) — 7i log Hz)> f(ea) dea = ki W.

Solving the integral and following the same aggregation steps as in the baseline model (Proposition
2), but without the endogenous choice of returns to scale, this condition yields a sectoral productivity

of
o2

Zi = pi +a; () + S0 —7) = - (1 — ;) log k.
Because 7;; is fixed, the term related to the choice of scale and the resulting amplified selection (i.e.,
the fourth term on the right-hand side of (16)) is absent. Since the sectoral production function
and cost shares are still governed by 7};, the pricing equation is analogous to the baseline model:

log (P/W) = —L(n) z. Log GDP is therefore given by:

j=lw®)]" z() +log L.

Note that the Domar weights w (7}) are identical to the baseline model because the sectoral input
shares are the same in both economies.
Recall from 16 and 20 that in the baseline model

y=[w ()] z () +log L,

where )
o; .
o= as () + G (= aog (1) (1= ) o
As a result,
y—g=m (@) —2®) (70)

The difference in the sectoral productivity vectors, z — Z, is a vector where the i-th element is

. - 1 . 1
)~ 5 () = 5 (- og ().
Substituting in (70) yields (26). The inequality y — g > 0 holds since 0 < ¢; < 1 for all 7. O
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C.13 Proof of Proposition 7
Proposition 7. The response of log GDP y to a shock Ap; is given by

Ay = wiAp; +

1 dwz 2 2

~ % A (A ; )

5 () 4o (B (30)
Furthermore, the second-order term is non-negative,

N

dw; dny,

= - Kii >0

Proof. The second-order expansion of y with respect to productivity shocks is

Y dy A Yy
Z;d : Zd o -ApiApj+ o (A%p) .

By Proposition 6, dy/dpu; = w; which yields (30) when Ap; = 0 for all j # i. Next, Corollary 7
implies that

dwi N
Yk
k=1

dpi

where the inequality follows since dfj/du; > 0 from Corollary 6. O

C.14 Proof of Lemma 8

Lemma 8. An increase in T]'-S decreases the returns to scale in all downstream sectors:

d; 1

=— UK, <0. 32
deS 1-— T]S = (32)
Proof. See proof of Proposition 10 in Supplement D.5. O

C.15 Proof of Proposition 8

Proposition 8. In the presence of sales wedges, the impact of a parameter x € {,uj, O'JQ-, /{j,vj} on
GDP is given by

dy Oy dn;
dx ; i dx’
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6910where Oy/0x is given by Proposition 6, dn;/0x is given by Corollaries 6 to 10, and dy/0mn; > 0.

Proof. See proof of Proposition 12 in Supplement D.5.

C.16 Proof of Corollary 1

Corollary 1. The growth of effective returns to scale 7 is given by

iy _

=yt .
7t Kgu >0

Furthermore, as t — oo, effective returns to scale ) converges to 1.

O

(34)

Proof. The first equation follows directly from (22). Note that the right-hand side is strictly positive

for 0 < /) < 1 and converges to 0 as 7 — 1. The second result follows.

C.17 Proof of Proposition 9
Proposition 9. The growth rate of GDP is given by

d 1
W_ I 1= > 0,

dt  1—a \/ll;agiutJrK

v oa 1l-¢
where K > 0 is a time-invariant term given in the proof of the proposition.

Proof. The envelope theorem implies that

dy .
%2(1—7704) 19u~

Therefore, to characterize dy/dt, we need to solve for 7 (¢). Equation (34) can be written as

iy 1 a(l-p)?
dt  2vy—02 1—1a I

and reorganized as

l—« « N
(o) <(1ﬁ)3 ! <1ﬁ>2>d”'
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Integrating on both sides yields

1—
agy f 4 R— @ «

Gog)e 20—t T ™

where R is a constant that can be pinned down using an initial condition. Suppose that at t = 0,

the equilibrium is such that 7 = 7). Then,
11—« o}

R= + — > 0.
2(1—7p)* (1 —10)

Equation (72) provides the evolution of 7 over time. Since v > 02/2 by assumption, it shows that

77 — 1 as ¢ — oco. Combining (72) with 71 yields

d 1
Yo I 1 > 0.
dt -« l1l—a 9u l—a 7 (5 ~
L (@t + —3%a (7o) — 2a ("70))
This expression can be written as (35). O

C.18 Proof of Corollary 2

Corollary 2. For anyt > 0, GDP grows faster in the economy with endogenous returns to scale.

In the limit as t — oo, the long-run growth rates satisfy

dy 1 S 1 . dy
= = 1m
e dt  1—alt T 1o ﬁoagu

t—o00 %’

where § is log GDP in the fived returns-to-scale economy, and where 7y is effective returns to scale

in the baseline economy at t = 0.

Proof. In the economy with exogenous returns to scale, (20) implies that % = 1—737709#' In the

economy with endogenous returns to scale, the envelope theorem implies at, at any point in time

we have ‘% = gu- This implies that the two economies have the same growth rate at ¢ = 0

1
1—an(t)
since 7 (t) = np by definition. But since dn/dt > 0 by Corollary 1, the growth rate of the economy
with endogenous returns to scale is larger for any ¢t > 0. The second part of the result follows from

taking the limit ¢ — oo in (35). O
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D Robustness, extensions, and additional analysis

In this online supplement, we provide additional analysis of the benchmark model presented in

the main text. We also show that that model can be extended in different ways.

D.1 Truncated normal shocks

In the baseline model, we assume that productivity shocks €;; follow a normal distribution. While
this allows for a tractable analytical solution, it theoretically permits firms to draw arbitrarily low
productivity shocks, which could imply returns to scale n; ¢ (0,1). In this online supplement, we
solve the model assuming that productivity follows a Truncated Normal distribution. We show that
the equilibrium conditions converge to those of the baseline model as the truncation point goes to
negative infinity.

Specifically, productivity shocks of firms in industry ¢ follow truncated normal distribution with

support [g;,00). We assume that g; is sufficiently high such that
g > 27 — s,

where s; is given in (62). Under this restriction, all firms choose 7; € (0,1), as is evident from (62).

The analogue of the free-entry condition, given by (8) in the main text, is

o0 g2 — g2 52—1—8‘18' (E‘l—,u')2 1 w
exp (—s; ex i iy T G } exp | —— ! de;; = ki—.
p( Z) /61 P { 4’}/1 2’%' P 20’12 1— <I> (&—M) ¢ ! )\z

oF)

Simplifying this expression, we get

1— - QUG N Qg
KH. _ w2, @i 1, P 1 exp 1 (si+ 1) - 73)
i Ai V1-¢ 22y (1—i) ) "

2
fomn
where, as above, p; = 5%, and

27%.7
1@ (—Vﬂ,‘“@ (g — i — 725 (ki + 81‘)))
1-@ (Uj(éi—#z'))
In the baseline model, ; = —oo, and T7; = 1.
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Next, following the same steps as in Supplement C.8, we can compute 7);:

o _ JimaPiQudl 1— ¢ o (=) (A —mi ()

i - S5 ; ’
Ji PiQudl S (1) T 1+ (1= i) (1= n; (3)) T

where

2
1—p; 4
s (-4 (45 (s e 0)))
[ ()

Clearly, if e; = —o0, then Ty; = 0, and we are back to the baseline model (see Equation (64)).

Finally, we can derive the analogue of (19). Following the same steps as in Supplement C.8, we

get

log % = — (I - [diag () + (I — diag (9)) diag (1 (11))] ) ™" x

p+a(n(p) — (I —diag(p)) (I — diag(n(n))) (; log (1 - ¢) + log k — log T1>] :

Again, if ¢; = —00, we are back to the baseline model.

Clearly, if firms with €;; = p; choose n;; € (0,1), g; can be chosen such that &; < p;. Furthermore,
if o; is sufficiently small, T7; is arbitrarily close to one and T5; is arbitrarily close to zero. In that
case, the mass of firms choosing 7; ¢ (0,1) in our baseline model is negligible, and the baseline

economy is almost equivalent to the model with truncated normal shocks.

D.2 The impact of v and s on returns to scale

In this online supplement, we characterize how entry costs k and the cost of scalability ~ affect

returns to scale.

D.3 Entry cost

We examine the impact of entry costs on returns-to-scale decisions.
Lemma 9. The impact of the entry cost k; on the effective returns to scale 1); is given by

/I
dlog Kj - \Ilz [ ICZ] (1 77]) ]I{zZJ}] . (74)

In particular, di;/dlog kj <0 fori# j.
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Proof. Applying the implicit function theorem to (68), we get

dn [oF]Tt oF
dlog k;

- | dlogk;

We have already computed the first term in the proof of Lemma 6, so consider the second one. We

have OF, 0z (1) 0l
i T ray 027 0g Ki Tpr(n - P
=a; L =—o, LML (1—n)+1(E=7j).
a log Kj o2 (77) 8 lOg Kj a log K:j a; (77) J ( TI]) + (7’ ])
Putting the pieces together we find the result. O

An increase in the entry cost in sector j always reduces the effective returns to scale of any
other sector ¢ # j. The mechanism is similar to that of a shock to u;. Increasing x; decreases j’s
productivity z;, which increases the price of the input bundle of any sector that relies on j. Firms
in those sectors then reduce their returns to scale to rely less on expensive intermediate inputs. At
the same time, the effective returns to scale 7); of sector j itself typically increases with x;. This
is because, when entry costs are large, there is more pressure to have fewer but larger firms, which

requires large 7);.

D.4 Cost of adjusting returns to scale

The productivity cost «y; of adjusting returns to scale also affects firms’ scalability decisions.

Lemma 10. The impact of the productivity cost of higher returns to scale y; on the effective returns

o . 2.,
i _ -1 (/c 0%y 62) (75)

to scale 1); is given by

dy, — 0 Moy U oy,
0zj _ 1 1 ¢ 5 %z _ 1 1w : N
where it v il v (1 —=17;) <0 and 576 = — it 1f%. In particular, di;/dy; <

Proof. Applying the implicit function theorem to (68), we get

iy _ m - {ﬂ
dv; onj lovl
We have already computed the first term in the proof of Lemma 6, so consider the second one. We
have

OFi T 9z (i)  D%ai(h) 10

=oy; L(N) + — 4+ ——log (1 — ;).
o, ) 5+ Byan, T 20y, 81— #)
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If i 7 j,

OFi _ y. %%
8’}/j T K a’y]‘,
where 3 . .
i ¥j (11
= =- — — —175) < 0.
Oy 1=1y 2yl—-w; ’
For ¢ = j, we have an extra term,
OF; ‘: _K”&zi (1) B 1 n 1
i "oy (1—)?  2%l—

O

Consider first the impact of a higher v; on the effective returns to scale of another sector 7 # j.
Unsurprisingly, a higher productivity cost of adjusting returns to scale leads to a lower productivity
in sector j. Through input-output linkages, that lower productivity increases the price of the
intermediate input bundles of firms that rely, directly or indirectly, on j as an input (£;; > 0).
Those firms, to limit the negative impact of higher inputs, lower their returns to scale. A similar
impact is at work when considering the impact of a higher ~; on j itself, but in addition, j is also
affected more directly by the increase in ;. Indeed, a larger v; mechanically makes a high 7); more
expensive, which amplifies the negative movement in 7);. In general, these forces combine to create

a stronger negative impact of v; on 7);.

D.5 Wedges

In this online supplement, we consider an economy with wedges. In the presence of wedges, the

firm’s problem (2) becomes

N
Wy:= max (1=7%) PF (La, Xaona) = (L 70) Wha =3 (L4+737) PiXie. - (76)
il il Al .
7j=1
Firms in sector i have to pay (1 —1—7'5-() P; for each unit of good j, Ti‘;{ > —1, and (1 +TiL) w
for each unit of labor, T,L-L > —1. Firms face an effective sales tax TZ-S < 1. Finally, we introduce

a corporate tax rate 7;1. This tax does not directly affect the profit-maximization problem (76).

However, it affects the free-entry condition (8):
E; [(1 = 7)) IL (g, P*,W™)] = kW,
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As we can see, the profit tax effectively increases the entry cost.

Wedges {TX 78 TS5, TH} can capture a variety of economic factors, such as tariffs, transportation
costs, taxes, markups, etc. Some of those wedges can be associated with loss of resources, while
others only lead to resource redistribution. To capture this, we assume that a fraction of wedge

income is rebated to the household, such that its budget constraint (7) becomes

N
ZPiCi <WL+T,

i=1

where

N
T = Zes SPQ; + ZHL LWL, + ZZ@X T PiXij+ Y 00 L.
i=1 j=1 =1
Here 607, 0F, 95](, 0l € [0,1]. Note that wedges {TX,TL,TS,TH} can be both positive or negative.
X
Tij

rebated to the household, and «9;-)](» = 0. Tariffs would also correspond to a positive Tff Different

from transportation costs, tariff income is likely partially rebated to the household, in which case

For example, 777 is positive in case of transportation costs. If those are iceberg costs, nothing is

H-X is positive. On the other hand, X would be negative in case of government subsidies. Such
subsidies are financed by lump-sum taxatlon of the household, such that 9X =1.58
The model can be analyzed analogously to our baseline model. In particular, we can derive that

the equilibrium price vector is given by

log - = —£ () = () ()

where, as in the baseline model, 7 is a vector of sales-weighted average returns to scale, £ (1) =
(I —diag (7)) @)™, and

1 . i
o L P T
The productivity shifter 7T; is

1S oy i Qi
(1470 Xi00) TN (1+rff> ’

S

T, =1, (TL o TlX,ﬁZ) = log
1—7

(79)

¥Deadweight, losses of subsidies can be captured by setting 6% > 1.
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Introducing wedges {TX,TL T } is, therefore, equivalent to a change in sectoral total factor pro-

ductivities. An increase in wedges TiL, Tis or Té(

resulting in a reduction in the returns to scale in all sectors. This result is analogous to the effect

reduces the effective productivity of sector i,

of a reduction in pu;, described in Corollary 6. At the same time, an increase in the corporate tax
711 effectively increases the entry cost, and so its impact on returns to scale is analogous to that of

log k;, described in Corollary 9.

Proposition 10. An increase in wedges {TX,TL,TS} reduces returns to scale in all sectors. An

increase in the profit tax TiH reduces returns to scale in other sectors but can increase returns to

scale in sector .57

The market-clearing conditions (9) also change. Specifically, for good ¢, the resource constraint

becomes N
A-(1=0)r ) Qi=Ci+ > (1+(1-0%) 7)) X
j=1
Then the Domar weight of sector i is

Y (7
W = —=
PY

=1, (I — diag [(1 - 6%) 0 7%] — &' diag (ﬁ))_l B,

where o denotes element-wise product of two vectors, and

X X

Gji = agi (1—75) tt (1_99‘1)%
It I J 1+7%
7t

Clearly, if T]S >0 and Tff > 0, then aj; < ay.

Using these results, we can derive how wedges affect the expression for the aggregate output.

Proposition 11. Equilibrium log GDP y :=logY is given by

y(@) = g'Lm=m + logL - logl; (80)
— S—~— S——

Contribution of productivity = Labor endowment  Wedges income

59We provide expressions for derivatives of returns to scale with respect to wedges in the proof of this
proposition.

94



T, =
N N 9X X

1—2@» (1—7%) i Z ”1+ X Zaw TL + 077+ o (1 - 7Y (1 — i)
i=1 j=1 i

As discussed above, some wedges can lead to a destruction of resources while others may lead
to redistribution of resources. In the latter case, aggregate output needs to be adjusted for wedges
income. This is the last term in expression (80). Naturally, if ij{ = 0F = 9;9 =61 =0 for all i
and j, then nothing is rebated to the household, and logI'; = 0. If all the wedges are nonnegative,
and some of the wedge income is rebated back to the household, then logl'; < 0, which leads to a
higher 3.5

The presence of wedges distorts the economy. Intuitively, firms do not internalize that part of
the wedge income is rebated to the household, and their decisions are inefficient as a result. If none
of the wedge income is rebated to the household, then logI'; = 0, and the economy is efficient. In
that case, firms correctly perceive wedges as resource-destructive. In the inefficient economy, the
equilibrium returns to scale do not maximize GDP, and any marginal change in returns to scale can
have a nontrivial impact on GDP. Specifically, a change in the underlying parameter x leads to the

following response of GDP:

y 0y dnj
dx jz: on; dx

In general, the sign of the response of GDP to a marginal change in returns to scale, g—%, depends
on the sign of wedges. However, we can provide a sharp characterization in a few important special

cases.

Proposition 12. Suppose that there are no profit taxes, 7' =0, and all other wedges are positive,
le > 0, TZ- > 0, and TZ- > 0 for all i,j, and suppose that some of the wedge income is rebated to

the household logT'; < 0. Then any marginal increase in the returns to scale leads to an increase

Consider first the case with no profit taxes. If other wedges are positive, the equilibrium returns

to scale are too low (Proposition 10) as the firms do not internalize that part of the wedge income is

500f course, in that case, sectoral productivities (78) are also lower than in the no-wedges economy.
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rebated to the household. Then, any change in the parameter that leads to an increase in returns to
scale is beneficial for GDP. For example, if the economy becomes more productive, as captured by
a higher (15, the equilibrium returns to scale increase (Corollary 6).61 Such a change has a positive
impact on GDP because the equilibrium returns to scale were inefficiently low before the change.
Profit taxes affect the equilibrium returns to scale differently. As Proposition 10 suggests, an
increase in the profit tax Tl-H is equivalent, from the firms’ perspective, to an increase in the entry
cost k;. Such an increase typically leads to a higher 7; (see our discussion following Corollary
9). Therefore, if profit taxes are rebated to the household, equilibrium returns to scale tend to be
inefficiently high as firms incorrectly perceive entry costs as being too high. In that case, any change
in the parameter that leads to a further increase in returns to scale is harmful for GDP. Expression

(85) in the proof of Proposition 12 provides an exact expression for g gj in that case.

D.5.1 Proof of Proposition 10

L

Proposition 10. An increase in wedges {TX,T ,7‘5} reduces returns to scale in all sectors. An

increase in the profit tax TiH reduces returns to scale in other sectors but can increase returns to

scale in sector 1.

Proof. Taking first-order conditions of (76) with respect to L; and Xj;;, we can derive the following

expression for log profit of firm [ in sector i:

a; (nir) + nit <1Og % - j»vzl a;jlog WJ)
L —mi
Lir B SN @i TN (X )
Eil — Mil (10g (14rf) = [, (1) )

log I1;; = log P; + log (1 - TZ-S) +

(1—7'1-5)

+
1 —mny

Then the first-order condition with respect to n; yields

d log Hil

=0& 81
dniy (81)
(1 + TiL)l_Zj:l I vaz1 (1 + T@%()a ’ P, N P; da;

gil — log 1= +log 77 — jz::laz‘j log w7 + ai (ma) + (1 = ) -

6If y € { s 0]2, Kj, ’yj} , it is straightforward to show that g—i and dd—'zz are given by the same expressions
as in the baseline model.

96



Following the same steps as in the proof of Proposition 2, we can derive that the equilibrium
price vector is given by (77), and the sales-weighted average of firm-level returns to scale 7); satisfies
I 1—wyi | ei— [

= — 4 , 82
L—mg 1= 2%i (82)

LY 1=E50 ey v X\
where fi; = p; — log () ™ (1J7g]:1(1+TZJ) ‘1. Plugging (77) and (82) into (81), we get the

following equation for 7:

da; (0;) o2 T . 1 Ki
F = AT o L(P) 2 4+ —log (1 — ;) + lo 83
= 20 a (1) 2 () + 5 log (1 — i) g (83)
1_21\’ . N -
—log | (L+7f) =[] (1+75)™ | =o0.
j=1
Denote by x; any of Ti)j( , TZ-L or TZ»S. Then, by the implicit function theorem,

dy  [oF) 7 [oF
dxi  |Lon oxil

As in the baseline model, we have

o)

and 6171; = 0 if ¢ # j. Furthermore,

0Fi
OXk

N (o777
ool | ) LY, (14 1)
= ol () 20 )

OXk Oxk

From (78), it is clear that % < 0. Therefore, dd—)? < 0. In particular, we have

~1
= == 1 — A} Kij.
dTJS 1-— T]S dlog (1 _ T]$> 1-— TJS I:( ) dng J
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D.5.2 Proof of Proposition 11
Proposition 11. FEquilibrium log GDP y :=logY is given by

y(h)= B L@H=zmH  + logL - logl,
—_— —— N

Contribution of productivity — Labor endowment  Wedges income

where

r,=
NooopXeX N gL L

1—2% 1—7‘ 77 Z Zjlj_zj)(+ 1—20@ 1:_1L +HSTS+6HH(1—T)(1—7]Z)
=1 ij j=1 Ti

Proof. From the household’s budget constraint, we have
Y=WL+T, (84)

where

N
S S
T=>Y Zex NP X + 0L TEW L + 0775 PiQ; + 0171,
1=1

60X X HLL

N N
= Z analj 1 Zj_ ”X (1 - Tzs) PQi + 1 Zam
i=1

Jj=1 i

(1—7’ )PQZ

PPQ; + 00 (1 -1 )(1—77,)13@))

N 1SN o) 0EE
. awﬂ (X ( j=1 zJ) i Ti S g g R
Z (1—7) 7 Z H”Tfﬁt e + 0778 0T (1 — 7Y (1 — i)
=1 j:1 1] 7
Plugging this into (84) gives the result. O

D.5.3 Proof of Proposition

Proposition 10. Suppose that there are no corporate tazes, TZH

= 0, and all other wedges are
positive, Ti)j( > 0, TZ»L > 0, and TZ-S > 0 for all i,7, and suppose that some of the wedge income is

rebated to the household, log'; < 0. Then any marginal increase in the returns to scale leads to an
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increase in GDP, gTy > 0.
J

Proof. Differentiating y, given by (80), with respect to 7; and using the first-order condition (83),

we get
oy _8logFT ~ Num;
on; on; r, ’
where the numerator is
N X X N
s QLT
Num; = @, (1 — 75 PEC A N (N e i q I _11
4 Z( 7/) ZZ]I_“T{JX 2::7’.7 1+7-,LL 11
N - N X X N L_L
dwy, . 0iThy 0y, .
D o | =) i | Do e [T Doy | i | O O (1 0) (=)
— diy; — + 7 o + 7

The derivative of the Domar weights is given by

ddp
dn);

N
="y (I — diag [(1 - 6°) o 75] — diag () &), @ > 0.
j=1

Therefore, if taxes are positive (7%, 7% 79 > 0) but there is no profit tax (7' = 0), all terms in the

numerator are positive (assuming some rebates 6 > 0), implying gTy > 0. O

In contrast, if 7% = 78 = 79 = 0 and 77 > 0 with " = 1, then & = w, and we get

N N ~
oy —7 + Y (ijl O‘ijﬁjk) 7o (1= i)
on, Wi ~ o - . (85)
i 1= wimy (L—1)
As Ay — 1 for all k, the term (1 — 7j;,) vanishes, leaving only the negative term —w;7!'. Thus, g—%

becomes negative.

D.6 Sales wedge correlated with productivity

In this online supplement, we consider an economy in which firms face sales tax (37). The firm’s

problem (2) becomes

N
O = max (1—77) BF (L, Xi,na) — WLy — Y PiXiju,

Mit, Lir, Xt -
J=1
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where F; (L;;, Xy, mq) is given by (1). Clearly, this problem is equivalent to the one in the main text

if we redefine the productivity as
Eu=cq+log(1—75) = (1—b) (e — pi) + pi +log (1 — 7Y,
such that &; ~ iid N/ (/li, &?), where
i = p; + log (1 - TZ-S) and 6; = (1 —b;) 0.
Similar to the baseline model, define
Mi = /OMi %mzdl, (86)

with @ := (1 — 75) wy and @; := (1 — ?is) w;, where

s Mowy g
0 Wi
As in the baseline model, we get ~
I pai+s

L—i 2% (1= &)
where s; = log P; — log H;. Integrating (87), we get

By S 1@ | =2 b,

1 1 b b, APt 4672 1

= 1+ (’Dl, : exp [ ——— LRE? L1b — | . (88)
1—45 1—75 71_5921—[)1' 1-—b; 2 (1—(,01')

v v 1-m;

Then, following the same steps as in the main model, we can derive
logW = 57 (I — diag () a) " 2 () ,

where

and (;brb = 27’;2

We assume that all tax proceeds are rebated to the household. Therefore, using the market
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clearing condition (9), we get

RO

wi =g = BT (I - diag (1 — #°) diag () ) 1;.

The rebate amount is
N M; N ~
T=Y / T PQudl = 7w PY.
i=1 70 i—1
GDP is then

N
C=WL+T < logC =logW + log L — log (1—2%{9%-) .
i=1

D.7 Dispersed returns-to-scale economy

In this online supplement, we consider the dispersed returns-to-scale economy. Specifically,
consider the initial economy (we will use subscripts b to mark any quantities in that economy).

From (10), firm { in sector i chooses the following returns to scale:

1 1 b b
—_— = — | & +S~>7 89
17773 2'71' ( il % ( )

where s? = log P? — log H? in the initial economy. Furthermore, from (17), we know that
(] g K3 g K3 y Y

1 1 ( b b
N ,U’ +S')7 (90)
L—qb 2y (L—b) 70 7

(1)’
2y
Suppose now that there is a change in the distribution of €

where ¢! =

b

5> such that the mean changes from

uf to ui, and the standard deviation changes from Uf to g;. Such a change can reflect an increase
in u for all sectors (Section 7.2) or removal of sales tax (Section 7.3). Then, productivity % shifts
to g;;, where
e’ — _ Cil = M
7 .

g, o;

In the dispersed economy, firms can adjust all their choices except returns to scale. The free-entry
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condition (8)

o° e+ a; (nh) +nfsi
/ exp (log P+ - (ml)b i) g, (eir) dei = KiW,
e’} 1- UH]

=T (earmfy)

where s; = log P; — log H;, and 775-’1 is given by (89). Taking this integral, we get

, 2 2
[+ 1) (1= 042) + b i+ 50)] —A—— = (u + 1)
i 1—b (2:;—1)
exp 5 ! X (91)
2(07)
N
P; 1
exp JZ_; ajjlog W] = K;.

\/1—¢§’(zgg—1)

A e N M. .
Next, we can define 7); in the same way as usual, 7; = fo i Wit pb

o Npdl, where again nfl is given by
(89). Omitting tedious yet straightforward calculations, we get

1

1 o
- () rt (s - () Z)] o
—i 9y, (1 — b (2% - 1)) o

Combining (90), (91), and (92), we get

log W = 8" (I — diag (7) @) " 2,

where

1—<p§<2£;;—1) Lo A o 2]
oY _SO bUz ~ 1_(/0 ’Y’l
2i =i — = -2 B\l |+~ ( AZ) b
i =i 1— 7, 1_175?< szo_g,) ( i) b

1 .
— (1 =) [2log (1 — (202 — 1)) —Hogn] .
g

GDP is then Y = WL.
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