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This document is an online supplement for the paper “Endogenous Returns to Scale”. Part A
provides the details of the data exercises of Section 6 along with several robustness checks. Part
B provides additional information about the calibration exercise of Section 7. Part C provides the
proofs of the formal results. Part D contains several extensions of the model along with robustness
exercises.

A Supplement for Section 6
This online supplement contains details about the reduced-form results of Section 6.

A.1 Details of the Spanish Orbis data
Our Spanish firm-level data are drawn from the Orbis Historical Disk. Orbis is commonly

regarded as the most comprehensive cross-country firm database, covering both public and private
firms’ financial statements and measures of real activity (Kalemli-Özcan et al., 2024). We focus on
Spain because firm coverage is close to universal—capturing over 95% of total industry gross output
after 2010—making it well-suited for economy-wide analysis. Our sample spans 1995–2019.38

Sample cleaning Our sample construction closely mirrors the cleaning steps used in our earlier
work (Kopytov et al., 2024). We begin by merging each firm’s descriptive information with its
financial statements using the unique BVD firm identifier (BVDID). We then restrict our analysis to
Spanish firms, defined as firms that satisfy two criteria: 1) their latest address is in Spain and 2)
their BVDID starts with the ISO-2 code ES. In the resulting Orbis Spain sample, we implement the
following standard cleaning procedure:

38Orbis o!ers good coverage of the Spanish economy starting from 1995. Moreover, the most recent
observations in the version of Orbis Historical Disk Product that we use are from 2021. We therefore use
2019 as the last year of the sample since there is usually a two-year reporting lag for some variables (see
Kalemli-Özcan et al. (2024) for details).
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1. We harmonize the calendar year of each firm-year observation using the variable
closing_date: if the closing date is on or after July 1, the current year is assigned as the
calendar year. Otherwise, the previous year is assigned.39

2. In a given year, a firm in the Orbis database might have multiple financial statements from
di!erent sources (local registry, annual report, or others), for consolidated or unconsolidated
accounts. When several source-consolidation combinations exist for a firm, we deduplicate
by selecting the account that, in order of priority, 1) shows the most consistent reporting
frequency (closest to regular annual reporting), 2) o!ers the longest non-missing time series
for key financial variables (fixed assets and/or sales), and 3) is consolidated, if the first two
criteria are tied.

3. We only keep firm-year observations with non-missing and positive sales
(operating_revenue_turnover), fixed assets (fixed_assets), wage bills
(costs_of_employees), and material costs (material_costs). We also harmonize the
units of all monetary values to be in current euros.

4. To prevent outliers from a!ecting the production function estimation, we exclude any firm-
year observation whose average revenue product of any input (fixed assets, wage bills, or
material costs) lies above the 99th percentile or below the 1st percentile of that year’s distri-
bution.40

A.2 Details of the production function and RTS estimation
This online supplement describes in detail how we implement the production-function estimation

procedure that delivers the results used in the main text.41

39This adjustment matters little for the Spanish sample, as 99% of firms close their books on December
31.

40One might worry that trimming on average revenue products of inputs could mechanically remove
observations corresponding to extreme returns to scale, since average revenue products of variable inputs are
inversely related to the chosen ω. In practice, however, the extreme tails in the data are unlikely to reflect
meaningful limits of ω; they typically coincide with implausible or mismeasured inputs and would require
implausibly extreme ω to rationalize.

41Many recent papers have used production-function estimation to recover heterogeneity in returns to
scale at the firm or industry level, including De Loecker et al. (2020), Ruzic and Ho (2023), Chiavari (2024),
McAdam et al. (2024), Savagar and Kariel (2024), Demirer (2025), Hubmer et al. (2025) and Gao and Kehrig
(2025).
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We use the Blundell and Bond (2000) IV-GMM estimator to estimate the production functions
as our benchmark. This estimator is designed for dynamic panel settings with persistent firm-level
variables and, under standard moment conditions, delivers consistent estimates of output elastici-
ties. Our model imposes a competitive output market in a sector. In this setting, the identifying
assumptions are most plausible when there is su"cient persistent variation in predetermined inputs
and in the cost of flexible inputs, so that observed input choices are not collinear with unobserved
productivity. Recent work by De Ridder et al. (2022) further shows, through Monte Carlo simula-
tions, that this approach performs well when such identifying variation is strong.

Our empirical strategy builds on the model’s implication that, within a sector, firms that are
similar in size should operate under similar production technologies and therefore exhibit similar
returns to scale. We use this prediction to estimate returns to scale across the firm-size distribution.
For each sector i and year t, we rank firms by a smoothed measure of size: the 7-year moving average
of firm-level log sales computed over the window from t→ 3 to t+ 3. 42 We then assign firms to 10
deciles, dt = {1, . . . , 10}, based on this sector-year ranking.43 Using a moving average reduces the
influence of short-run fluctuations and measurement error in annual sales, and thus provides a more
stable proxy for the scale of a firm’s production. For each sector-decile-year cell (i, dt, t) (using the
7-year rolling sample around t), we assume firms share a common Cobb-Douglas technology:

qilt = εL

i,dt(l),t lilt + εK

i,dt(l),t kilt + εM

i,dt(l),tmilt + ϑi,dt(l)
t

+ ϖi,dt(l)
il

+ ai,dt(l)
ilt

,

ai,dt(l)
ilt

= ϱi,dt(l) ai,dt(l)
il,t→1 + ei,dt(l)

ilt
, |ϱi,dt(l)| < 1,

ei,dt(l)
ilt

↑ MA(0),

where qilt, lilt, kilt, milt are the logs of output, labor, capital, material inputs for firm l. These

42We use the centered window whenever feasible. Near the sample boundaries and when firm-year obser-
vations are missing, we use the longest available window to preserve coverage.

43We reassign a few small sectors with few firms to closely related sectors that produce similar goods
or services, for the purpose of production function estimation. Specifically, (i) we merge sectors 5, 6, 7,
and 9—Manufacture of food products, beverages and tobacco products; Manufacture of textiles, wearing
apparel and leather products; Manufacture of wood and of products of wood and cork (except furniture);
manufacture of articles of straw and plaiting materials; and Printing and reproduction of recorded media—
into sector 8 (Manufacture of paper and paper products). (ii) We merge sector 12—Manufacture of basic
pharmaceutical products and pharmaceutical preparations—into sector 11 (Manufacture of chemicals and
chemical products). (iii) We merge sector 20—Manufacture of motor vehicles, trailers and semi-trailers—into
sector 19 (Manufacture of machinery and equipment n.e.c.).
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are measured as deflated values of, respectively, sales, wage bills, fixed assets and material costs
using the GDP deflator in the Annual Spanish National Accounts. We assume a firm’s productivity
contains three components: a year-specific component ϑi,dt(l)

t
, a firm-specific e!ect ϖi,dt(l)

il
and an

autoregressive component ai,dt(l)
ilt

with i.i.d. innovation ei,dt(l)
ilt

. The model admits the following
dynamic representation:

qilt = ϱi,dt(l)qil,t→1 + εL

i,dt(l),t lilt → ϱi,dt(l)εL

i,dt(l),t lil,t→1 + εK

i,dt(l),t kilt → ϱi,dt(l)εK

i,dt(l),t kil,t→1

+ εM

i,dt(l),tmilt → ϱi,dt(l)εM

i,dt(l),tmil,t→1 + ϑ↑ i,dt(l)
t

+ ϖ↑ i,dt(l)
il

+ ei,dt(l)
ilt

, (38)

where ϑ↑ i,dt(l)
t

:= ϑi,dt(l)
t

→ϱi,dt(l)ϑi,dt(l)
t→1 and ϖ↑ i,dt(l)

il
:= (1→ϱi,dt(l))ϖi,dt(l)

il
. Therefore, we can estimate

the following dynamic specification with current and lagged variables:

qilt = ςi,dt(l) qil,t→1 + εL0
i,dt(l),t lilt + εL1

i,dt(l),t lil,t→1 + εK0
i,dt(l),t kilt + εK1

i,dt(l),t kil,t→1

+ εM0
i,dt(l),tmilt + εM1

i,dt(l),tmil,t→1 + ϑ↑ i,dt(l)
t

+ ϖ↑ i,dt(l)
il

+ ei,dt(l)
ilt

, (39)

where, under our assumption, the AR(1) productivity structure implies restrictions across coe"-
cients (e.g., ςi,dt(l) = ϱi,dt(l) and εx1

i,dt(l),t
= →ϱi,dt(l)εx0

i,dt(l),t
for x ↓ {L,K,M}).

Blundell-Bond system-GMM moments We now describe the system-GMM moment con-
ditions we exploited to estimate the model in (39). Our choice of moment conditions follows the
exact implementation in Table III, column 5 of Blundell and Bond (2000), where we treat {q, l, k,m}
as potentially endogenous and use two sets of moments:

(i) Di!erence equation (levels dated t→ 2 and earlier):

E
[
xil,t→s !ei,dt(l)

ilt

]
= 0 for x ↓ {q, l, k,m} and s ↔ 2. (40)

(ii) Levels equation (first di!erences dated t→ 1 only):

E
[
!xil,t→1

(
ϖ↑i,dt(l)
il

+ ei,dt(l)
ilt

)]
= 0 for x ↓ {q, l, k,m} . (41)
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Moreover, year dummies are included as controls and treated as exogenous instruments in the
levels equation. We implement this estimation using the xtabond2 command in Stata.

Obtaining the Firm-level Returns-to-Scale Estimates After estimating (39), we then
use the minimum distance estimator by Söderbom (2009) to impose the AR(1)-implied restrictions
and get the restricted parameter estimates

(
ϱ̂i,dt(l), ε̂K

i,dt(l),t
, ε̂L

i,dt(l),t
, ε̂M

i,dt(l),t

)
. The estimated returns

to scale ωilt for a firm l in sector i and year t is therefore given by the sum of these elasticities:

ωilt = ε̂K

i,dt(l),t + ε̂L

i,dt(l),t + ε̂M

i,dt(l),t.

Because 1995 and 1996 contain relatively few firm-year observations for production-function esti-
mation, we report results using only the 1997-2019 estimates matched to the firm-level data for our
analysis.

A.3 Constructing the Törnqvist productivity index
To compare productivity across firms, we rely on the Törnqvist productivity index. We provide

here theoretical results about that index to link our model with our estimation procedure.
Lemma 3 shows that returns to scale are increasing in φil, but we do not observe φil directly in

the data. In addition, comparing measured productivity eωilAi (ωil) ↼ (ωil) across firms with di!erent
technologies faces well-known issues about the choice of units. When going to the data, we rely
instead on a Törnqvist productivity index, which is commonly used to compare productivities across
firms or countries with di!erent production functions (Caves et al., 1982a; Caves et al., 1982b)
and recently in Penn World Table by Feenstra et al. (2015). Specifically, we use the multilateral
Törnqvist productivity index by Caves et al. (1982a) that has been extensively used in the firm
dynamics context (Aw et al., 2001).

Definition 3 (Multilateral Törnqvist productivity index). Consider a sector i in year t. Let Nit be
the number of firms observed in (i, t). Define the sector-year reference firm’s moments as logQit =
1

Nit

∑
l
logQilt, logOit =

1
Nit

∑
l
logOilt, εO,it =

1
Nit

∑
l
εO,ilt where O ↓ {K,L,M} and εO,ilt are

firm-level output elasticity of input O. The multilateral Törnqvist productivity index of firm l is
defined as:

zilt :=
(
logQilt → logQit

)
→

∑

O↓{K,L,M}

1

2

(
εO,ilt + εO,it

) (
logOilt → logOit

)
.
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For any two firms k and l in sector i and year t, we say firm k is more productive than firm l if
zikt > zilt.

Intuitively, the measure zilt compares productivity between firm l and the reference firm by
looking at how much more output one produces relative to the other, adjusting for di!erences in
technology and input use. It is "multilateral" because zilt is defined relative to a common sector-
year reference firm constructed from all firms in (i, t), so productivity comparisons zikt → zilt are
base-firm invariant and can be consistently ranked across all firm pairs. In our benchmark case, we
set all εO,ilt = ε̂O

i,dt(l),t
to obtain the estimated productivity index ẑilt and use it as our measured

productivity in all cross-sectional exercises that involve comparisons between firms within a sector-
year. We find the Törnqvist index to be a good proxy for productivity in model-simulated data. In
our calibrated economy of Section 7, the within-sector correlation between the Törnqvist index and
φil is above 0.99. The same number for φil + ai (ωil) is about 0.92.

However, when analyzing within-firm productivity changes over time, we use a chained (within-
firm) Törnqvist productivity index—i.e., an approximate Divisia index—following the implemen-
tation in Star and Hall (1976). Specifically, to account for the fact that firms may simultaneously
adjust both their technology (and hence elasticities) and their input mix, we define

!ẑwithin

ilt = ! logQilt →
∑

O↓{K,L,M}

εO,ilt! logOilt, where εO,ilt ↗
1

2

(
ε̂O

i,dt(l),t + ε̂O

i,dt→1(l),t→1

)
.

We then normalize each firm’s initial (log) within-firm productivity to zero and construct the level
index ẑwithin

ilt
by accumulating changes over time, i.e.,

ẑwithin

il,t = ẑwithin

il,t→1 +!ẑwithin

ilt , ẑwithin

il,t0
= 0.

This normalization is innocuous because our within-firm analysis in 6.3.2 includes firm fixed e!ects,
so only productivity changes (not the level) are identified.

A.4 Robustness of the production function and RTS estimation
This online supplement shows that the documented positive RTS-size and RTS-productivity

relationships, both across firms in the cross-section (Section 6.3.1) and within a firm over time
(Section 6.3.2), are not driven by a particular estimator, choice of IV-GMM instruments, or grouping
design. We first vary the Blundell and Bond (2000) system-GMM specification by changing the
treatment of year dummies and the internal instrument set, following the implementation in De
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Ridder et al. (2022) (Supplement A.4.1). We then re-estimate production functions using standard
control-function approaches–Olley and Pakes (1996) and Levinsohn and Petrin (2003)–to verify that
our results are not specific to IV-GMM (Supplement A.4.2). Moreover, we account for potential
market power by adding markup controls (proxied by sales shares) within an Ackerberg et al. (2015)
estimator (Supplement A.4.3). Finally, we show that our conclusions are robust to alternative ways
of forming size groups (Supplement A.4.4).

We report coe"cients from simple regressions to summarize the robustness of our empirical
findings both across firms and within firms with these alternative estimates of returns to scale and
productivity. To show robustness for Figure 7, which documents the cross-sectional pattern that
larger and more productive firms have higher returns to scale within a sector-year, we estimate two
simple regressions of returns to scale on log sales and productivity:

ωilt = ε0 log (Salesilt) + ↽it + ⇀ilt, ωilt = ε1ẑilt + ↽it + ⇀ilt, (42)

where ↽it denotes sector-year fixed e!ects. The estimated coe"cients of ε0 and ε1 are displayed in
Table 2 across all specifications.

Similarly, to show robustness for Figure 8 and document our within-firm pattern that firms have
higher returns to scale when they grow larger or become more productive, we estimate:

ωilt = ϑ0 log (Salesilt) + ϖil + ↽it + ⇀ilt, ωilt = ϑ1ẑ
within

ilt + ϖil + ↽it + ⇀ilt, (43)

where ϖil denotes firm fixed e!ects, so identification comes from within-firm variation over time. In
the productivity specification, we use a within-firm Törnqvist productivity index, ẑwithin

ilt
, which is

appropriate for within-firm comparisons.44 The estimated coe"cients of ϑ0 and ϑ1 are presented in
Table 3 across all specifications.

Results using our benchmark estimator are reported in column (1) of Tables 2 and 3. We now
describe the alternative estimators and grouping designs used in the robustness checks.

44Since the within-firm productivity index ẑwithin
ilt is a chained index, it can be constructed only for firm-

years with complete sales and input data from the firm’s first observation onward (so that the chain can be
formed), which reduces the usable sample.
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Table 2: Across-firm variation in returns to scale, productivity, and firm size with alternative
production function estimators

Dependent variable: Firm-level RTS

(1) BB
baseline

(2) BB
alternative

(3) OP (4) LP (5) ACF
market power

(6) Av.-size
percentiles

(7) Cur.-size
deciles

log (Salesilt) 0.023↑↑↑ 0.028↑↑↑ 0.045↑↑↑ 0.037↑↑↑ 0.050↑↑↑ 0.019↑↑↑ 0.007↑↑↑

(0.001) (0.001) (0.001) (0.001) (0.000) (0.001) (0.001)
Sector-Year FE Yes Yes Yes Yes Yes Yes Yes
Observations 9,424,952 9,424,952 9,424,952 9,424,952 9,424,952 9,424,952 9,424,952
R

2 0.688 0.688 0.642 0.806 0.564 0.728 0.655

ẑilt 0.050↑↑↑ 0.058↑↑↑ 0.083↑↑↑ 0.080↑↑↑ 0.091↑↑↑ 0.034↑↑↑ 0.021↑↑↑

(0.002) (0.003) (0.002) (0.003) (0.005) (0.002) (0.002)
Sector-Year FE Yes Yes Yes Yes Yes Yes Yes
Observations 9,424,952 9,424,952 9,424,952 9,424,952 9,424,952 9,424,952 9,424,952
R

2 0.655 0.648 0.567 0.760 0.507 0.684 0.652
Notes: This table reports coe!cients from cross-sectional regressions of firm-level returns to scale (RTS) on (i) log sales and (ii)

firm productivity,ẑilt, each including sector-year fixed e"ects. Column (1) uses our benchmark Blundell–Bond (BB) estimates;

column (2) uses an alternative BB specification as implemented in De Ridder et al. (2022). Columns (3) and (4) use the

Olley–Pakes (OP) and Levinsohn–Petrin (LP) control-function estimators, respectively. Column (5) reports results from the

Ackerberg–Caves–Frazer (ACF) estimator with market power controls (proxied by firms’ sales shares). Columns (6) and (7)

use alternative grouping methods for estimating elasticities: rolling average-size percentiles and contemporaneous size deciles.

The regressions use a sample of Spanish firms from Orbis. See Supplement A.1 for details on variable construction and sample

selection. Standard errors (in parentheses) are two-way clustered at the firm and sector-year level.
↑
,
↑↑

,
↑↑↑

indicate significance

at the 10%, 5%, and 1% levels, respectively.

A.4.1 With alternative Blundell-Bond specifications

Our baseline specification follows Blundell and Bond (2000) and includes year dummies. Includ-
ing year e!ects is recommended in dynamic-panel GMM applications because it absorbs economy-
wide shocks and thereby reduces cross-firm correlation in the regression residuals. At the same
time, once common year shocks are removed, identification of flexible-input elasticities relies on
variation that is not common across firms in a group. In practice, this shifts weight toward per-
sistent within-year di!erences in flexible input costs or wedges across firms. If such variation is
interpreted literally as firm-specific input prices, it can raise concerns about measurement—because
input quantities constructed from expenditures may mechanically inherit noise from unobserved
firm-level prices. 45

As a robustness check, we therefore also implement the Blundell–Bond estimator specification

45However, if the relevant heterogeneity operates through non-monetary wedges—e.g., distortions that
a!ect e!ective input costs without changing the recorded unit prices paid by the firm, in the spirit of Hsieh
and Klenow (2009)—then this concern is mitigated because observed input quantities are not mechanically
distorted by unobserved prices.
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Table 3: Within-firm variation in returns to scale, productivity, and firm size with alternative
production function estimators

Dependent variable: Firm-level RTS

(1) BB
baseline

(2) BB
alternative

(3) OP (4) LP (5) ACF
market power

(6) Av.-size
percentiles

(7) Cur.-size
deciles

log (Salesilt) 0.013↑↑↑ 0.018↑↑↑ 0.022↑↑↑ 0.019↑↑↑ 0.027↑↑↑ 0.010↑↑↑ 0.004↑↑↑

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Firm FE Yes Yes Yes Yes Yes Yes Yes
Sector-Year FE Yes Yes Yes Yes Yes Yes Yes
Observations 9,248,461 9,248,461 9,248,461 9,248,461 9,248,461 9,248,461 9,248,461
R

2 0.799 0.813 0.875 0.927 0.693 0.853 0.739

ẑ
within

ilt
0.008↑↑↑ 0.008↑↑↑ 0.012↑↑↑ 0.014↑↑↑ 0.021↑↑↑ 0.005↑↑↑ 0.004↑↑↑

(0.000) (0.001) (0.000) (0.001) (0.001) (0.000) (0.001)
Firm FE Yes Yes Yes Yes Yes Yes Yes
Sector-Year FE Yes Yes Yes Yes Yes Yes Yes
Observations 5,254,839 5,254,839 5,254,839 5,254,839 5,254,839 5,254,839 5,254,839
R

2 0.829 0.845 0.911 0.947 0.741 0.882 0.768
Notes: This table reports coe!cients from within-firm regressions of firm-level returns to scale (RTS) on (i) log sales and (ii)

within-firm productivity, ẑ
within
ilt , each including firm fixed e"ects and sector-year fixed e"ects. Column (1) uses our benchmark

Blundell–Bond (BB) estimates; column (2) uses an alternative BB specification as implemented in De Ridder et al. (2022).

Columns (3) and (4) use the Olley–Pakes (OP) and Levinsohn–Petrin (LP) control-function estimators, respectively. Column

(5) reports results from the Ackerberg–Caves–Frazer (ACF) estimator with market power controls (proxied by firms’ sales

shares). Columns (6) and (7) use alternative grouping methods for estimating elasticities: rolling average-size percentiles and

contemporaneous size deciles. The regressions use a sample of Spanish firms from Orbis. See Supplement A.1 for details on

variable construction and sample selection. Standard errors (in parentheses) are two-way clustered at the firm and sector-year

level.
↑
,
↑↑

,
↑↑↑

indicate significance at the 10%, 5%, and 1% levels, respectively.

used by De Ridder et al. (2022), which omits year dummies and uses a more conservative internal-
instrument set. Concretely, our baseline estimates a dynamic sales equation with current and one-lag
terms for labor, capital, and materials, includes year fixed e!ects, and instruments the endogenous
variables with lags starting at t→2 (and deeper) in the transformed equation, while treating the year
dummies as standard instruments in the levels equation. In contrast, the De Ridder et al. (2022)
specification removes year dummies and restricts the GMM-style instruments to a single deeper lag
(the third lag) for output and inputs. Relative to our baseline, this alternative places less weight
on within-year cross-sectional price/wedge variation as the driver of instrument relevance and also
reduces instrument proliferation by construction. The results using the alternative Blundell-Bond
estimates are reported in column (2) of Tables 2 and 3.
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A.4.2 With di!erent production function estimators

We also use other commonly used production function estimators as a robustness check. In
particular, we consider the control-function approach and implement the Olley and Pakes (1996)
and Levinsohn and Petrin (2003) estimators.

The Olley–Pakes Estimator We first implement the Olley and Pakes (1996) (OP) estimator
to estimate the production function for each sector–decile–year cell. The Olley and Pakes (1996)
estimator is a semiparametric control-function method that addresses simultaneity bias, since unob-
served productivity a!ects firms’ input choices. It assumes that investment is a function of capital
and productivity and, under a monotonicity condition, can be inverted to express unobserved pro-
ductivity in terms of observed investment and capital. Substituting this inverted control function
into the production function, the method first estimates the elasticities of freely adjustable inputs
(labor and materials in our case) while controlling for productivity, and then uses a Markov assump-
tion on productivity to recover the coe"cient on the quasi-fixed input, capital. To implement this
approach, we measure real investment as the change in the capital stock net of depreciation, and
we recognize that this can generate zero or negative investment values, which reduces the usable
sample for production function estimation.46 The results using the OP estimator are reported in
column (3) of Tables 2 and 3.

The Levinsohn–Petrin Estimator Because investment can be lumpy in practice and the
Olley and Pakes (1996) procedure may force us to drop observations with zero or negative invest-
ment, we also apply the Levinsohn and Petrin (2003) (LP) estimator as an additional robustness
check. Instead of using investment, this method uses intermediate inputs (materials in our case) as
the control variable. It assumes that materials are flexibly chosen after observing productivity, while
capital is still treated as quasi-fixed. Under the assumption that materials demand is a function
of capital and productivity and is monotone in productivity (conditional on capital), the materials
demand function can be inverted to recover unobserved productivity. This control function allows
consistent estimation of the labor elasticity, and additional moment conditions then recover the
elasticities of capital and materials. The results using the LP estimator are reported in column (4)
of Tables 2 and 3.

46This reduces the production function estimation sample within each sector–decile–year cell, but we
apply the resulting coe"cients to the common baseline panel, so the main regression sample is unchanged.
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A.4.3 With controls for market power

Our model abstracts from market power and markups, but these forces could hinder the iden-
tification of output elasticities and obscure the positive RTS–size relationship we identify in the
cross section. When firms have market power, they may charge di!erent output prices, so elas-
ticities estimated using deflated sales can be closer to revenue elasticities than to physical output
elasticities.

That said, we do not expect this channel to explain our results. Under monopolistic competition,
larger firms typically have higher markups. Higher markups mechanically dampen the sensitivity
of revenue to input expansion, implying lower revenue elasticities for larger firms relative to smaller
firms. If anything, this would bias against finding a positive RTS–size relationship. Therefore, the
presence of markups would tend to weaken our estimated positive RTS–size relationship, suggesting
that the underlying relationship could be even stronger.

Nonetheless, we follow common practice and re-estimate the production function with explicit
controls for market power, treating price variation as an additional measurement component to be
partialed out. Specifically, following Baqaee and Farhi (2019) and De Loecker et al. (2020), we
control for markups using firms’ sales shares (measured at the NACE 3-digit and 4-digit levels) and
estimate production functions using the Ackerberg et al. (2015) (ACF) estimator. The results using
the ACF estimator are reported in column (5) of Tables 2 and 3.

A.4.4 With di!erent size-based grouping methods

Grouping firms by 7-year average sales percentiles Our benchmark approach groups
firms in sector i and year t into deciles based on their 7-year average log sales. While straightforward,
this discretization can generate non-smooth variation across firm sizes. As a robustness check, we
therefore implement a rolling-percentile approach based on firms’ 7-year average sales. For each
sector-year, we rank firms into 100 percentiles using their 7-year average (log) sales. In each sector
i, for each percentile pt, we construct a local sample consisting of firms whose percentile rank lies
between pt → 15 and pt + 15 in year t. We then estimate output elasticities for each cell (i, t, pt)
using the Blundell–Bond estimator on the corresponding 7-year rolling-window sample. The results
using the rolling-percentile grouping approach are reported in column (6) of Tables 2 and 3.

Grouping firms by contemporaneous sales deciles Alternatively, we group firms into
deciles based on contemporaneous firm-level (log) sales in year t, rather than the 7-year average.
We then estimate output elasticities for each cell (i, t, dt) using the same Blundell–Bond estimator
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on a 7-year rolling-window sample. The results using the contemporaneous sales-decile grouping
approach are reported in column (7) of Tables 2 and 3.

A.4.5 Summary

Overall, the main empirical patterns are robust. Across all alternative production-function
estimators (alternative Blundell-Bond specifications, Olley-Pakes, Levinsohn-Petrin, and ACF with
market-power controls) and alternative grouping methods (rolling percentiles and contemporaneous
deciles), we continue to find a positive relationship between firm-level returns to scale and firm size,
as well as between returns to scale and productivity, both in the cross section (within sector-years)
and within firms over time. While magnitudes vary across specifications, the sign and statistical
significance of these relationships are stable (see Tables 2 and 3).

A.5 Estimation of the tail index
This online supplement describes how we estimate the tail index of the firm-size distribution in

each sector-year using the log-rank estimator of Gabaix and Ibragimov (2011). For each sector i and
year t, let Silt denote firm l’s sales, and let Nit be the number of firms observed in (i, t). We assign
ranks r = 1, . . . , Nit according to their sales, where r = 1 corresponds to the firm with the largest
sales. Let Si(1)t ↔ Si(2)t ↔ · · · ↔ Si(Nit)t denote sales sorted in descending order within sector-year
(i, t).

We focus on the right tail of the sales distribution and select the tail sample as follows: If
Nit > 5000, we use firms in the top 1% of the sales distribution in (i, t). If Nit ↘ 5000, we use
the 50 firms with the largest sales in (i, t).47 For each sector-year (i, t), we estimate the Pareto
tail index ↼it within the tail sample using the Gabaix and Ibragimov (2011) bias-corrected log-rank
regression:

log

(
r → 1

2

)
= ait → ↼it logSi(r)t + uirt. (44)

This regression relates the log bias-corrected rank log
(
r → 1

2

)
to log sales. We recover ↼̂it as the

negative of the OLS slope coe"cient on logSi(r)t and use it as the tail index of sales in Figure 9.

A.6 Details of the imported-input tari! shock exercise
This online supplement provides additional details on the imported-input tari! shock used in

Section 6.3.2. Our goal is to measure changes in input costs driven by changes in import tari!s.

47If fewer than 50 firms are observed, we use all available firms.
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To isolate variation that di!ers across downstream sectors and over time, we construct a shift-share
exposure measure that combines (i) predetermined import input shares from the OECD multi-
country input–output tables and (ii) tari! changes from the Global Tari! Project (Teti, 2024).

Let downstream sectors in Spain be indexed by i. Index a foreign exporter-sector pair by
n = (c, s), where c denotes the exporting country and s the exporting sector. For each Spanish
downstream sector i and year t, we define the tari!-based input cost shifter as

log Tit =
∑

c,s

(
ImportShareIntermediate

(Spain,i)↔(c,s),t→1 · log
(
1 + Tari”RateSpain(c,s),t

))
, (45)

where ImportShareIntermediate
(Spain,i)↔(c,s),t→1 is the share of sector i’s total intermediate inputs imported from

exporter-sector n = (c, s), measured in year t→1 using the OECD multi-country input-output tables.
Tari”RateSpain(c,s),t is the ad valorem tari! rate applied by Spain to imports from exporter-sector (c, s)

in year t, taken from the Global Tari! Project. Sector i and foreign sectors s are defined according
to the OECD input–output classification, which is slightly more aggregated than the NACE 2-digit
level. When tari! data are available at a more disaggregated level in Teti (2024), we aggregate to
(c, s) using a simple (unweighted) mean across subsectors. Note that log Tit is essentially a weighted
average of log tari! factors across upstream foreign inputs, with weights given by the downstream
sector’s lagged import input structure. It rises when tari!s increase on inputs that the sector i relies
on more intensively. The shift-share structure uses lagged import shares to reduce concerns that
contemporaneous changes in sourcing respond mechanically to tari! changes.

We then estimate the dynamic impact of these shocks on returns to scale using panel local
projections for horizon years h = →2, . . . , 5:

ωil,t+h → ωil,t→1 = εh log Tit + ϑlh + ϑth + φilth,

controlling for firm (ϑlh) and year (ϑth) fixed e!ects. Under the assumption that tari! changes for
a given exporter-sector pair (c, s) are not systematically correlated with unobserved, time-varying
shocks to Spanish downstream sector i (conditional on these fixed e!ects), variation in log Tit pro-
vides plausibly exogenous movements in input costs across sectors and over time.

A.7 Details of the cross-country firm-level data
This online supplement describes the firm-level data sources and sample construction for our

cross-country analysis. We augment the analysis with firm-level data from a total of 24 countries
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(including Spain). For 22 European countries, we use Orbis and restrict attention to countries
with good coverage of the variables required for production-function estimation. For developing
countries, we use China’s National Bureau of Statistics (NBS) manufacturing firm database and
India’s Annual Survey of Industries (ASI). Both the NBS and ASI datasets are censuses of above-
scale manufacturing firms.48 To ensure comparability across countries, we restrict all datasets to
manufacturing firms. For each country, we select a seven-year window that maximizes the number
of firm-year observations. We briefly discuss the data cleaning below.

Orbis For Orbis, we start from the raw firm-year panel for each country and apply the same
four-step cleaning procedure used in Supplement A.1 for Spain. We then (i) restrict the sample
to manufacturing firms (corresponding to USSIC codes 2000-3999) and (ii) deflate all nominal
financial variables using the country-specific GDP deflator from the World Bank. After cleaning
and deflation, we implement the seven-year window selection described above and keep the window
with the largest number of firm-year observations for each country.

India ASI Our Indian data come from the Annual Survey of Industries (ASI) for 1998–2018. We
harmonize industry codes to NIC-2004 and then map them to the USSIC division level, retaining
only manufacturing divisions. We measure sales using the gross sale value of all products. We
measure capital using the average of the opening and closing gross book value of total capital.
We measure labor using total wage bills. All variables are deflated using India’s GDP deflator
from the World Bank. We then select the seven-year window with the largest number of firm-year
observations (2012–2018).

China NBS The China data are annual firm-level surveys collected by the National Bureau
of Statistics (NBS). We use the 1998–2007 sample period. We measure sales using product sales
revenue, capital using total fixed assets, and labor using total annual wages payable. Firms are
classified by a four-digit Chinese Industry Classification (CIC) code, which we harmonize to the
USSIC division level. We retain manufacturing divisions only. All nominal variables are deflated
using China’s GDP deflator from the World Bank. We then select the seven-year window with the
largest number of firm-year observations within the available sample period (2001–2007).

48For China, the NBS data also include state-owned enterprises below these thresholds. For India, the
ASI includes a representative sample of small firms below the census cuto!.
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Production function and RTS estimation We estimate production functions using the
Blundell-Bond approach, following our baseline estimation strategy. We treat manufacturing as a
single sector within each country. For each country c, let [tm(c)→ 3, tm(c) + 3] denote the selected
seven-year window and tm(c) is the median year of that window. We only estimate production
functions for firms existing in the median year tm(c). We group firms into deciles for year tm(c) based
on their seven-year average log sales. We then estimate a decile-specific Cobb-Douglas production
function using the full seven-year panel.

Let ε̂O

c,d(l),tm(c) denote the estimated output elasticity of input O ↓ {K,L,M} for country c and
sales decile d. The returns to scale assigned to firm l in country c at year tm(c) is computed as the
sum of the estimated input elasticities:

ωcltm(c) = ε̂K

c,d(l),tm(c) + ε̂L

c,d(l),tm(c) + ε̂M

c,d(l),tm(c).

We then construct the Törnqvist productivity index ẑcltm(c) using these estimates and compute
the covariance between returns to scale and log sales, as well as between returns to scale and
productivity ẑcltm(c) used in Figure 10 panel (a). In panel (b), we plot the seven-year average
(tm(c)→3 to tm(c)+3) of log GDP per capita obtained from Penn World Table version 11.0 against
the covariance between returns to scale and productivity ẑcltm(c).

B Supplement for Section 7
This section contains details about the calibration of Section 7.

B.1 Calibration data
This section describes the datasets used in the calibration and how the associated sectoral

moments are computed.

1. We calibrate the sectoral parameters using the 2010 input-output table from the Spanish Na-
tional Accounts. This table partitions the Spanish economy into 62 sectors which are usually
defined at the 2-digit NACE industry level.49 Conforming to the accounting conventions in

49Sector 63 (household-related production activities) and sector 64 (services by extraterritorial organiza-
tions and bodies) are also present in the 2010 input-output table, but their input-output data is missing.
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the data, we calibrate the input elasticities of good s↗ in the production of sector s as

ς̂ss↓ =
Input from s↗ at basic pricess
Total input at basic pricess

≃

Intermediate consumption at purchaser’s pricess
Intermediate consumption at purchaser’s pricess + total labor expenditures

and the labor elasticity as

1→
∑

s↓

ς̂ss↓ =
total labor expenditures

Intermediate consumption at purchaser’s pricess + total labor expenditures
,

which corresponds to the labor share of total cost in the data.50,51 We calibrate the con-
sumption share εs to be the share of final consumption expenditure of good s in the sum of
consumption expenditure spent on the 62 sectors.

2. We compute cross-sectional moments from the Orbis sample. After steps 1-4 in Supplement
A.1 and the production function estimation in Supplement A.4.1, we perform a few additional
steps:

(a) We winsorize the estimated returns to scale ωilt at the top or bottom 0.5% of the firm-
year distribution. In addition, we cap values above 0.99 at 0.99. Using firm-level returns
to scale ωilt, we compute each sector’s e!ective returns to scale ω̂it as the sales-weighted
average of these firm-level estimates.

(b) We compute profits as #ilt = (1→ ωilt)PitQilt and winsorize it at the top or bottom
0.5% within each sector–year.

(c) We then compute the interquartile ranges of #ilt and ωilt at the sector-year level.

(d) Finally, we average these sector–year moments over time to obtain sector-level moments
used in our static model.

50Because sector-to-sector data at purchasers’ prices (i.e., adjusted for taxes less subsidies on products)
are unavailable, we calibrate the intermediate-input expenditure share of inputs from sector s→ used by sector
s with the share computed in basic prices, Input from s→ at basic pricess

Total input at basic pricess
.

51We deliberately omit capital in this calibration because the Spanish input–output table does not dis-
tinguish the user cost of capital from profits.
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B.2 Interquartile ranges for returns to scale and profits
From (12), we have

ωil = 1→ 1
1→εi
1→ϑ̂i

+ ωil→µi
2ϖi

,

which implies52

IQR (ωil) =
1

1→εi
1→ϑ̂i

+ ϱi
2ϖi

$→1 (0.25)
→ 1

1→εi
1→ϑ̂i

+ ϱi
2ϖi

$→1 (0.75)
, (46)

where $ (·) is the cumulative distribution function of the standard normal random variable.
Profit of firm l in sector i is given by (54). Plugging (10) and (12) in this expression, we get

log#il =
1

4ϑi

(
2ϑi

1→ ⇁i

1→ ω̂i
→ µi + φil

)2

+ logHi, (47)

which implies53

IQR (log#il) =
σ2
i

4ϑi



F→1

ς2
1

(
2ωi(1→εi)
ϑi(1→ϖ̂i)

) (0.75)→ F→1

ς2
1

(
2ωi(1→εi)
ϑi(1→ϖ̂i)

) (0.25)



 , (48)

where F
ς2
1(x)

(·) is the cumulative distribution function of noncentral χ2 distribution with one degree

of freedom and the non-centrality parameter x, and ⇁i =
ϱ
2
i

2ϖi
.

Equations (46) and (48) make clear that IQRs of returns to scale and log profits are functions
of σi, ϑi, and ω̂i. We can, therefore, use them to identify σi and ϑi. We choose σi and ϑi to minimize
the distance between model-implied and empirical IQRs, with a constraint ⇁i ↓ [0, 1] ⇐i. Figure 13
shows that the calibrated model matches the targeted IQRs well.

Figure 14 shows calibrated values of σi and ϑi for all sectors. The sector with most volatile
productivity is “Petroleum”, with σi = 3.09. At the same time, this sector has a high cost of
adjusting returns to scale, ϑi = 7.24, meaning that its e!ective productivity dispersion is not too
large, ⇁i = 0.66.

52For all firms with ωil ↓ (0, 1), ωil is strictly increasing in φil. In the calibrated economy, the fraction of
firms with ωil /↓ (0, 1) is very small.

53From (10) and (12) , 2ϑi 1↑ωi

1↑ε̂i
→ µi + φil > 0 for all firms with ωil ↓ (0, 1). For these firms, log#il is

strictly increasing in φil. In the calibrated economy, the fraction of firms with ωil /↓ (0, 1) is very small.
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Figure 13: Interquartile ranges in returns to scale and profits
(a) Returns to scale (b) Log profits

Notes: Panels (a) and (b) report sectoral interquartile ranges in returns to scale and log profits in the calibrated model and in

the data.

B.3 Calibration details for Section 7.3
We analyze the model with sales tax in Supplement D.6. In that supplement, we show that the

model with sales taxes can be analyzed analogously to the main model if we properly redefine the
mean and the variance of sectoral shocks:

µ̃i = µi + log
(
1→ ▷Si

)
and σ̃i = (1→ bi)σi.

We can identify σ̃i and ϑi in the same way as described in Supplement B.2. The only di!erence is
that we need to use after-tax profits in (48).

To pin down the parameters of the tax process (37), we proceed as follows. In the data, we
compute the covariance of pre-tax profits with log

(
1→ ▷S

il

)
for each sector. Using (47), we can

compute the model analogue of this quantity as

Cov
(
log#il, log

(
1→ ▷Sil

))
= Cov


1

4ϑi

(
2ϑi

1→ ⇁̃i

1→ ω̂i
→ µ̃i + φ̃il

)2

→ log
(
1→ ▷Sil

)
, log

(
1→ ▷Sil

)


=

= → bi
1→ bi

σ̃2
i

(
1→ ⇁̃i

1→ ω̂i
+

bi
1→ bi

)
.

We can identify bi from this equation.
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Figure 14: Calibrated ωi and εi

(a) Calibrated ϑi

(b) Calibrated σi

To compute ▷S
i
,we rely on equation (87), derived in Supplement D.6, which we reproduce below:

1

1→ ▷̂S
i

=
1

1→ ▷S
i


1 +

⇁̃i

1→ε̃i
1→ϑ̂i

bi
1→ bi


exp


→ bi
1→ bi

4⇁̃iϑi
1→ε̃i
1→ϑ̂i

+ σ̃2
i

bi
1→bi

2

1

1→ ⇁̃i


. (88)

In the data, we can observe ▷̂S
i

as the sales-weighted average tax rate in sector i. Then, (87) can
be used to identify ▷S

i
.

Finally, equation (86) makes clear that the proper measure of sectoral returns to scale ω̂i uses
after-tax sales as weights.

64



B.4 Additional quantitative results
Figure (15) shows e!ective sectoral returns to scale ω̂i for all sectors. In our data, the sector

with lowest returns to scale is “Water transport” with ω̂i = 0.54, and the sector with the highest
returns to scale is “Retail trade” with ω̂i = 0.98. The mean and median returns to scale are both
0.83 and 0.82, respectively.

Figure 15: E!ective returns to scale ϑ̂i across sectors

Figure 16 decomposes the gap in GDP between our baseline model and the fixed returns-to-scale
economy in its sectoral components. It reports the two terms in (26) that captures a sector’s impor-
tance: 1) its Domar weight ◁i and 2) the flexibility of its sectoral productivity 1

2 (1→ ω̂i) log
1

1→εi
.

We see that the “Water transport” sector is the most flexible one. However, since its Domar weight
is only 0.0021, its importance for the economy is small. High-Domar-weights sectors like “Finance”,
“Real estate”, and “Electricity and gas” that are also flexible are where the endogenous returns-to-
scale mechanism has the most impact on GDP.

B.5 Sensitivity analysis for Section 7.3
In Section 7.3, we experiment with removing wedges that are correlated with firm productivity.

As we discuss there, removing these wedges leads to higher productivity dispersion. For some
sectors, removing wedges would imply that ⇁i =

ϱ
2
i

2ϖi
> 1, which is not allowed by our model. For

these sectors, we set ⇁i = 0.99. In this online supplement, we explore how sensitive our results are to
this threshold. Table 4 shows log GDP gains due to removal of sales wedges if we set ⇁max = 0.985,
0.99 (main text), and 0.995. We see that the GDP gains become larger as ⇁max increases. In the
model, having sectors with ⇁i ⇒ 1 is particularly valuable because they feature a larger mass of
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Figure 16: Domar weights, ϖi, and productivity gain due to endogenous returns to scale,
1
2 (1→ ϑ̂i) log

1
1→εi

, across sectors
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firms with very high productivity draws operating at nearly constant returns to scale, which makes
these sectors especially productive.

Table 4: Log GDP change after removal of sales wedges: Sensitivity analysis
ϱmax = 0.985 ϱmax = 0.99 ϱmax = 0.995

Baseline economy 160% 167% 177%
Dispersed RTS 134% 138% 142%
Fixed RTS 69% 70% 70%

Notes: Increases in log GDP due to removal of sales wedges in the baseline economy, and in the economies with fixed and

dispersed returns to scale, for three values of maximum e"ective productivity dispersion ε.

C Proofs

C.1 Sectoral Domar weights
Multiplying the resource constraint for good i, given by (9), by Pi we get

PiQi = PiCi +
∑

j

Pi


Mi

0
Xji,ldl.
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From the problem of the household we know that PiCi = εiP̄ Y . It follows that

PiQi

P̄ Y
= εi +

∑

j

Pi

P̄ Y


Mi

0
Xji,ldl,

where we have divided by nominal GDP P̄ Y . Next, from the problem of firm l in sector j we know
that

PiXji,l = ςjiωjlPjQjl.

Combining with the previous expression yields

PiQi

P̄ Y
= εi +

∑

j


Mi

0
ςjiωjl

PjQjl

P̄ Y
dl,

or
◁i = εi +

∑

j

ςji◁j ω̂j .

Solving this linear system leads to (18).

C.2 Proof of Lemma 1
Lemma 1. The firm’s marginal cost of production 0il is given by

0il =
1

eωilAi (ωil)
Hϑil

i
#1→ϑil

il
, (3)

where Hi := W 1→
∑N

j=1 φij


N

j=1 P
φij

j
is the price of the variable input bundle in sector i, and #il is

profits,

#il = (1→ ωil)0ilQil. (4)

Proof. We tackle problem (2) through its cost minimization dual:

min
ϑil,Lil;,Xij,l

WLil +
N∑

j=1

PjXij,l, subject to Fi (Lil, Xil, ωil) ↔ Qil. (49)
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The Lagrangian is

L = WLil +
N∑

j=1

PjXij,l → 0il



eωilAi (ωil) ↼ (ωil)



L
1→

∑N
j=1 φij

il

N

j=1

X
φij

ij,l




ϑil

→Qil



 ,

and the first-order conditions with respect to Lil and Xij,l are

ωil



1→
N∑

j=1

ςij



0ilQil = WLil, (50)

ωilςij0ilQil = PjXij,l. (51)

Plugging back into the constraint, we find

0il =
1

(eωilAi (ωil))
1
ϖil

Hi ((1→ ωil)Qil)
1→ϖil
ϖil . (52)

Using the definition of #il from (4) yields the result.
Note also that the envelope theorem implies that 0il is the marginal production cost of the firm.

Notice that 0il is increasing in Qil for ωil < 1. As usual, we can then write the profit maximization
problem of the firm as

max
Qil

PiQil →


Qil

0
0il (x) dx,

where the notation makes clear the dependence of 0il (Qil) on the size of the firm. This problem’s
first-order condition implies that Pi = 0il (Qil), so that the firm sets Qil to equalize its marginal
cost to the price of its good.

C.3 Proof of Lemma 2
Lemma 2. At an interior solution, the firm chooses its returns to scale ωil ↓ (0, 1) according to

dai (ωil)

dωil
= logHi → log#il, (5)

where ai (ωil) := logAi (ωil).

.
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Proof. The first-order condition for ωil in the cost-minimization problem (49) is

dAi (ωil)

dωil
↼ (ωil)



L
1→

∑N
j=1 φij

il

N

j=1

X
φij

ij,l




ϑil

+Ai (ωil)
d↼ (ωil)

dωil



L
1→

∑N
j=1 φij

il

N

j=1

X
φij

ij,l




ϑil

(53)

+Ai (ωil) ↼ (ωil)
d

dωil



L
1→

∑N
j=1 φij

il

N

j=1

X
φij

ij,l




ϑil

= 0.

Note that we do not include Lagrange multipliers for the constraints 0 ↘ ωil ↘ 1 since we focus on
interior solutions. Dividing by Qil yields

d logAi (ωil)

dωil
+

d log ↼ (ωil)

dωil
+

d

dωil
log



L
1→

∑N
j=1 φij

il

N

j=1

X
φij

ij,l




ϑil

= 0.

Combining this with (50) and (51) yields (5).

C.4 Proof of Lemma 3
Lemma 3. At an interior solution, the returns-to-scale parameter ωil satisfies

54

dωil
dφil

=
dωil

d logPi

= →

(1→ ωil)

d2ai
dω2

il

→1

> 0, and
dωil

d logHi

=


(1→ ωil)

d2ai
dω2

il

→1

< 0.

Proof. We can combine (3) with the firm’s optimality condition 0i = Pi to write

log#il =
1

1→ ωil
(logPi + φil + ai (ωil)→ ωil logHi) . (54)

Together with (5), we can write the first-order condition with respect to ωil as

logHi → logPi → φil  
K

= (1→ ωil)
d logAi (ωil)

dωil
+ logAi (ωil) , (55)

where we use K as a temporary variable to denote the left-hand side of (55). Full di!erentiation

54When increasing Pi, we keep the price of the variable input bundle constant to distinguish the two
channels that a!ect ωil.
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yields

1 = →dωil
dK

d logAi (ωil)

dωil
+ (1→ ωil)

d2 logAi (ωil)

dω2
il

dωil
dK

+
d logAi (ωil)

dωil

dωil
dK

.

Simplifying we find
dωil
dK

=
1

(1→ ωil)
d2 logAi(ϑil)

dϑ2il

,

and the result follows.

C.5 Proof of Lemma 4
Lemma 4. At an interior solution, the elasticity of output Qil with respect to productivity φil is

given by

d logQil

dφil
=

1

1→ ωil  
Fixed ϑ e!ect

+
1

1→ ωil

dωil
dφil  

Flexible ϑ e!ect

> 0.

In addition, the elasticities of output Qil with respect to prices are given by

d logQil

d logPi

=
ωil

1→ ωil  
Fixed ϑ e!ect

+
1

1→ ωil

dωil
d logPi  

Flexible ϑ e!ect

> 0, and
d logQil

d logHi

= → ωil
1→ ωil  

Fixed ϑ e!ect

+
1

1→ ωil

dωil
d logHi  

Flexible ϑ e!ect

< 0.

Proof. Profit maximization implies that the firm’s marginal cost of production 0i is equal to the
price Pi, and so we can invert (3) and (4) to write

Qil =
1

1→ ωil
(eωilAi (ωil))

1
1→ϖil

(
Pi

Hi

) ϖil
1→ϖil

,

or, in log form, as

logQil = → log (1→ ωil) +
1

1→ ωil
φil +

1

1→ ωil
ai (ωil) +

ωil
1→ ωil

(logPi → logHi) . (56)

Without endogenous returns to scale, it is immediate that

1 logQil

1φil
=

1

1→ ωil
and

1 logQil

1 logPi

= →1 logQil

1 logHi

=
ωil

1→ ωil
.
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With endogenous returns to scale, we can combine (5) and (54) to find

→ (1→ ωil)
dai (ωil)

dωil
= logPi + φil + ai (ωil)→ logHi. (57)

Combining (56) and (57), we get

logQil = → log (1→ ωil)→
dai (ωil)

dωil
→ (logPi → logHi) . (58)

Di!erentiating with respect to φil, we find

d logQil

dφil
=

1

1→ ωil

dωil
dφil

→ d2ai (ωil)

dω2
il

dωil
dφil

.

Combining with Lemma 3 yields the result. The derivatives with respect to logPi and logHi can
be computed in a similar way. The last part of the result follows from the signs of the derivatives
in Lemma 3.

C.6 Proof of Proposition 1
Proposition 1. Suppose that Assumption 1 holds. Without endogenous returns to scale, the dis-

tribution of Qil in sector i is log-normal. With endogenous returns to scale, the right tail of the

distribution of Qil behaves like a Pareto distribution with tail index 1/⇁i, in the sense that

log (P (Qil > q)) ↑ → 1

⇁i

log q, as q ⇒ ⇑.

Proof. Without endogenous returns to scale, the log of Qil is given by (56). The only random term
is φil and so Qil is log-normal. We now turn to the case with endogenous returns to scale. Under
Assumption 1, we can write (57) as

1

1→ ωil
=

φil +Bi

2ϑi
,

where we define Bi := logPi → logHi as a temporary variable to simplify the notation. Combining
with (58), we can write

logQil = log

(
φil +Bi

2ϑi

)
+ ϑi

(
φil +Bi

2ϑi

)2

→Bi.
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We want to characterize the right tail of Qil. Because of the logarithm, we need to be careful
about eventual bounds on φil. We impose here that φil ↑ N

(
µi,σ2

i

)
is normally distributed with a

truncation such that φil > →Bi. We provide a full treatment of the model with truncated normal
distribution in Supplement D.1. To simplify the notation, we drop the subscripts i and l from now
on.

Step 1. We want to characterize the Complementary CDF (CCDF) SQ (q) = P (Q > q) as
q ⇒ ⇑. Let us define g : (→B,⇑) ⇒ R as the function that maps φ to logQ:

g (x) = log

(
x+B

2ϑ

)
+ ϑ

(
x+B

2ϑ

)2

→B.

One can show that g is a strictly increasing function. It is therefore invertible, and we can write

SQ (q) = P (logQ > log q) = P (g (φ) > log q) = P
(
φ > g→1 (log q)

)
.

Given the properties of g, the right tail of Q corresponds to the right tail of φ.
Step 2. Let y = g (x). We need to characterize the asymptotic behavior of x = g→1 (y) as

y ⇒ ⇑. Letting X = x+B

2ϖ , the equation y = g (x) can be rewritten as

y +B = logX + ϑX2.

As y ⇒ ⇑, it must be that X ⇒ ⇑. In this limit, the quadratic term ϑX2 dominates logX and
we can write55

y +B ↑ ϑX2, as y ⇒ ⇑.

This implies that X ↑


y/ϑ for large y.
Now, we relate this to x = g→1 (y). Since x = 2ϑX →B, we have

g→1 (y) = x = 2ϑX →B ↑ 2
⇓
ϑy.

since the constant B is negligible as y ⇒ ⇑. We will come back to this expression momentarily.
Step 3. The CCDF of the truncated normal φ is given by

Sω (x) =
1

K1
Sω̄ (x)

55As usual, we write “f (x) ↑ g (x) as x ⇒ ⇑” if and only if limx↓↔ f (x) /g (x) = 1.
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where φ̄ is the untruncated normal with the same mean and variance, and where K1 is a constant.
It is well-known that approximating the Mills ratio implies that

Sω̄ (x) ↑
σ

(x→ µ)
⇓
22

exp


→(x→ µ)2

2σ2


, as x ⇒ ⇑.

We can therefore write

logSω (x) ↑ log

(
1

K1

)
→ (x→ µ)2

2σ2
+ log

(
σ

(x→ µ)
⇓
22

)
.

As x ⇒ ⇑, the quadratic term dominates the others and thus

logSω (x) ↑ → x2

2σ2
, as x ⇒ ⇑.

Step 4. We now combine the results. Let xq = g→1 (log q). From Step 1, SQ (q) = Sω (xq).
From Step 3, for large q, and consequently large xq,

logSQ (q) ↑ →
x2q
2σ2

.

We can now substitute the asymptotic form for xq from Step 2. Let y = log q. As q ⇒ ⇑, y ⇒ ⇑
and

xq = g→1 (log q) ↑ 2

ϑ log q.

It is well-known that if f ↑ g then f r ↑ gr for r real. Therefore,

x2q ↑ 4ϑ log q.

Since ↑ is transitive, we can substitute in the expression for logSQ to find

logSQ (q) ↑ →2ϑ

σ2
log q, as q ⇒ ⇑,

which is the result.
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C.7 Proof of Lemma 5
Lemma 5. The returns to scale ωil of firm l in sector i is given by

1

1→ ωil
=

1→ ⇁i

1→ ω̂i
+

φil → µi

2ϑi
. (12)

Furthermore, the moments of the firm-level returns-to-scale distribution are given by

Ei


1

1→ ωil


=

1→ ⇁i

1→ ω̂i
, Vi


1

1→ ωil


=

⇁i

2ϑi
, and Covi


1

1→ ωil
, φil


= ⇁i > 0. (13)

Proof. Given Assumption 1, we can write the returns to scale first-order condition (55) as

logPi → logHi + φil =
2ϑi

1→ ωil
,

Combining that expression with itself when φil = µi yields

1

1→ ωil
=

1

1→ ωi (µi)
+

φil → µi

2ϑi
,

and the result follows from combining with (64), derived below, and taking the moments.

C.8 Proof of Proposition 2
Proposition 2. The marginal cost of sector i is given by

0i =
1

Zi (ω̂i)
W 1→ϑ̂i

∑N
j=1 φij

N

j=1

P
ϑ̂iφij

j
, (15)

where sectoral total factor productivity Zi (ω̂i) is defined as

logZi (ω̂i) := µi + ai (ω̂i) +
σ2
i

2

1

1→ ω̂i  
Exogenous returns to scale

+
1

2
(1→ ω̂i) log

(
1

1→ ⇁i

)

  
Superstar e!ect

→ (1→ ω̂i) log ϖi
  

Entry cost

. (16)

Furthermore, the e!ective returns to scale ω̂i is given by

1

1→ ω̂i
=

1

2ϑi (1→ ⇁i)
(µi + logPi → logHi) . (17)
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Proof. Since firms in a sector all face the same sales price, they have the same marginal cost through
profit maximization. We therefore define the marginal cost 0i of a sector i as the marginal cost of
any firm in that sector, such that 0i := 0il for any l.

Together with (54), the free-entry condition (8) imposes that

 ↘

→↘

(
0i

eωilAi (ωil)

Hϑil
i

) 1
1→ϖil

  
!il

fi (φil) dφil = ϖiW, (59)

where fi is the probability density function of a normal distribution N
(
µi,σ2

i

)
. Multiplying the

term inside the parentheses by one, we find

 ↘

→↘




0i

Hϑil
i

H
(1→ϑil)

ϖ̂i
1→ϖ̂i

i

H
(1→ϑil)

ϖ̂i
1→ϖ̂i

i

0
1→ϖil
1→ϖ̂i
i

0
1→ϖil
1→ϖ̂i
i

eωilAi (ωil)





1
1→ϖil

fi (φil) dφil = ϖiW,

which can be reorganized as

0i =
1

Z̃i

(ϖiW )1→ϑ̂i



W 1→
∑

j φij

N

j=1

P
φij

j




ϑ̂i

, (60)

where Z̃i is defined as

Z̃i :=




 ↘

→↘




(
0i

Hi

) ϖil→ϖ̂i
1→ϖ̂i

eωilAi (ωil)





1
1→ϖil

fi (φil) dφil





1→ϑ̂i

.

To simplify the notation, define si := log 0i→ logHi. Using the definition of si and Ai, we can write

Z̃i =

[ ↘

→↘

(
e
si

ϖil→ϖ̂i
1→ϖ̂i

+ωil→
ωi

1→ϖil

) 1
1→ϖil

fi (φil) dφil

]1→ϑ̂i

. (61)

For an arbitrary set of firm-level returns to scale {ωil} this integral cannot be computed analytically,
but we can do so here, given the relationship between φil and ωil implied by the model. Using
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Assumption 1, we can write the returns to scale first-order condition (55) as56

log 0i → logHi  
:=si

+φil =
2ϑi

1→ ωil
= →2ai (ωil) , (62)

which implies that
1

1→ ωil
=

si + φil
2ϑi

, and
ωil

1→ ωil
=

si + φil → 2ϑi
2ϑi

.

Combining with Z̃i, we find

Z̃i =

[ ↘

→↘
e
(si+ϱil)

2

4ωi
→ si

1→ϖ̂i fi (φil) dφil

]1→ϑ̂i

.

Given the structure of the normal distribution fi, this integral can be computed when 2ϑi > σ2
i

and
yields

Z̃i =

[√
2ϑi

2ϑi → σ2
i

exp


(si + µi)

2

2
(
2ϑi → σ2

i

) → si
1→ ω̂i

]1→ϑ̂i

.

We will rewrite this expression using ω̂i. To do so, notice that we can write

ω̂i =

∫
l
ωilPiQildl∫
l
PiQildl

= 1→
∫
l
(1→ ωil)PiQildl∫

l
PiQildl

= 1→
∫
l
#ildl∫

l

1
1→ϑil

#ildl
. (63)

Using the profit expression (54), we can compute these integrals and find

1→ ω̂i = 2ϑi
1→ ⇁i

si + µi

= (1→ ⇁i) (1→ ωi (µi)) , (64)

where ωi (µi) is the returns to scale chosen by the firm with φil = µi (computed from (62)). Notice
that (64) implies (17) because si is given by (62).

Combining (64) with our expression for Z̃i, we find

Z̃i =

√
1

1→ ⇁i

exp

(
1→ ⇁i

1→ ω̂i
ai (ω̂i) +

µi

1→ ω̂i

)1→ϑ̂i

.

56In equilibrium, the price charged by firms in sector i must be equal to their marginal costs, so that
0i = Pi.
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Taking the log yields

log Z̃i (ω̂i) := µi + ai (ω̂i) +
σ2
i

2

1

1→ ω̂i
→ (1→ ω̂i) log

(
1→ ⇁i

)
,

where we have used the definition of ⇁i and Assumption 1. The quantity Z̃i corresponds to the
total factor productivity of sector i if we treat the mass of firms in that sector as an independent
factor. But it will be often convenient to lump that input together with labor. In that case, we can
rewrite (60) as

0i =
1

Zi (ω̂i)
W 1→ϑ̂i

∑N
j=1 φij




N

j=1

P
φij

j




ϑ̂i

,

where Zi := Z̃i (ω̂i) /ϖ
1→ϑ̂i
i

, which completes the proof.

C.9 Proof of Proposition 3
Proposition 3. The equilibrium price vector P = (P1, . . . , PN ) satisfies

log
P

W
= →L (ω̂) z (ω̂) , (19)

where z (ω̂) = (logZ1 (ω̂1) , . . . , logZN (ω̂N )) is the vector of log sectoral productivities (16). Further-

more, equilibrium log GDP y := log Y is given by

y (ω̂) = [◁ (ω̂)]≃ z (ω̂)  
Aggregate productivity

+ log L̄  
Labor endowment

. (20)

Proof. Since in equilibrium prices must be equal to marginal costs, we can use (15) to write

Pi

W
=

1

Zi (ω̂i)

N

j=1

(
Pj

W

)ϑ̂iφij

.

Taking the log of this equation leads to

log
Pi

W
= → logZi (ω̂i) + ω̂i

N∑

j=1

ςij log
Pj

W
.

In vector notation, this becomes log (P/W ) = →z (ω̂) + diag (ω̂)ς log (P/W ). Solving it for
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log (P/W ) yields (19).
We now turn to the GDP equation. The budget constraint of the household is P̄ Y = WL̄.

Together with the definition of the price index, P̄ =


N

i=1 P
↼i
i

= 1, we can therefore write

y = →
N∑

i=1

εi log
Pi

W
+ log L̄,

and the result follows from combining this expression with (18) and (19).

C.10 Proof of Proposition 4
Proposition 3. There exists a unique equilibrium, and it is e"cient. Furthermore, the equilibrium

vector of e!ective returns to scale ω̂ maximizes GDP y (ω̂).

Proof. This proof proceeds in two steps. First, we write down the maximization problem of the
social planner and show that its first-order conditions coincide with the equilibrium conditions.
Since there exists at least one maximizer to the planner’s problem, there is at least one solution to
the planner’s first-order conditions and so at least one e"cient equilibrium exists. Second, we show
that the equilibrium conditions imply that there can be at most one equilibrium.

Step 1. The planner maximizes

max
C,X,L,M,ϑ

N∑

i=1

εi log (Ci)

subject to the goods resource constraint

Ci +
N∑

j=1

Mj


Xji(φ)fj(φ)dφ ↘ Mi


Qi(φ)fi(φ)dφ ⇐i ↓ {1, ..., N} (multiplier 0i),

and the labor resource constraint

N∑

i=1

Mi


Li(φ)fi(φ)dφ+

N∑

i=1

Miϖi ↘ L̄ (multiplier µ).
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The first-order necessary conditions are as follows:

1L
1Ci

: 0i =
εi
Ci

,

1L
1Li(φ)

: 0i

1Qi(φ)

1Li(φ)
→ µ = 0,

1L
1Xij(φ)

: 0i

1Qi(φ)

1Xij(φ)
→ 0j = 0,

1L
1ωi(φ)

:
1Qi(φ)

1ωi(φ)
= 0,

1L
1Mi

:

 

0iQi(φ)→
N∑

j=1

0jXij(φ)→ µLi(φ)



 fi(φ)dφ = µϖi.

Now, we demonstrate that the competitive equilibrium allocation satisfies the planner’s optimality
conditions. To do this, we identify the planner’s shadow prices with the equilibrium market prices.
Set µ = W . Consequently, the planner’s shadow price for good i, 0i, corresponds to the market
price Pi. The first condition corresponds to the household’s optimality condition (Section 2.4). The
second and third optimality conditions correspond to the standard firm equilibrium optimality con-
ditions (50) and (51). The planner’s fourth optimality condition coincides with the firm equilibrium
condition (53). Finally, the last optimality condition of the planner coincide with the free entry con-
dition (8). Since the resource constraints are the same in the planner’s problem and the equilibrium
definition, we have shown that the planner’s first-order conditions coincides with the equilibrium
conditions. Since the planner’s constraint set is closed and bounded, and that the objective function
is continuous, the Extreme Value Theorem implies that there exists a maximizer to the planner’s
problem. This maximizer must satisfy the first-order necessary conditions. Therefore, there exists
an equilibrium and that equilibrium is e"cient.

Step 2. We now show that there can be at most one equilibrium. The equilibrium of the model
boils down to equations (17) and (19). Indeed, if we let p := log (P/W ) we can write these equations
as

p = →L (ω̂) z (ω̂) , (65)

where
zi (ω̂) := µi + ai (ω̂i) +

σ2
i

2

1

1→ ω̂i
+ (1→ ω̂i) log

(
1⇓

1→ ⇁i

)
→ (1→ ω̂i) log ϖi, (66)
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and
1

1→ ω̂i
=

1

2ϑi (1→ ⇁i)



µi + pi →
N∑

j=1

ςijpj



 . (67)

There is a unique equilibrium if there are unique vectors ω̂ and p that solve these equations. We
can combine these equations into a single one. Let us introduce the variable v := (I → ς) p and a
constant Ci = 2ϑi (1→ ⇁i) > 0. We can then rewrite (67) as

1→ ω̂i =
Ci

µi + vi
⇔ ω̂i = 1→ Ci

µi + vi
.

We are interested in equilibrium of the firm 0 < ω̂i < 1 for all i.57 This implies that we can restrict
the relevant domain of v to be

µi + vi > Ci.

Using that notation, we can simplify the equation (66) for zi as

zi =
µi → vi

2
+

Ci

µi + vi
log (Ki/ϖi) ,

where Ki := 1/
⇓
1→ ⇁i. Next, we can premultiply (65) by L (ω̂)→1 = (I → diag (ω̂)ς) to find

(I → diag (ω̂)ς) (I → ς)→1 v = →z

or (
I + diag (1→ ω̂)ς (I → ς)→1

)
v = →z.

Substituting the expression for z and 1→ ω̂, we find

Fi (v) :=
1

2
(µi + vi)

2 + Ci

((
ς (I → ς)→1 v

)

i

+ log (Ki/ϖi)
)
= 0.

There is a unique equilibrium if there is a unique solution v to the equation F (v) = 0. Recall that
p = (I → ς)→1 v. Then

F̂i (p) := Fi (v (p)) =
1

2
(µi + ((I → ς) p)

i
)2 + Ci ((ςp)i + log (Ki/ϖi)) .

57It is straightforward to write su"cient conditions on the parameters so that the equilibrium is of that
form. In particular, large µ lead to higher equilibrium ω̂.
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The Jacobian of F̂ is
Mik (p) = (µi + ((I → ς) p)

i
) (I → ς)

ik
+ Ciςik.

In matrix form,
M (p) = diag (µ+ v (p)) (I → ς) + diag (C)ς.

The diagonal elements of M are

Mii = (µi + vi) (1→ ςii) + Ciςii > 0,

which is positive given our domain restriction that µi + vi > Ci. For o!-diagonal terms i ↖= k,

Mik = → (µi + vi)ςik + Ciςik = ςik (Ci → (µi + vi)) < 0,

such that M is a Z-matrix. Further notice that

∑

k ⇐=i

|Mik| = ((µi + vi)→ Ci)
∑

k ⇐=i

ςik.

For M to be strictly diagonally dominant, it must be that

(µi + vi) (1→ ςii) + Ciςii > ((µi + vi)→ Ci)
∑

k ⇐=i

ςik,

which we can reorganize as

µi + vi > →Ci

∑
k
ςik

1→
∑

k
ςik

.

This condition is true since Ci > 0 and µi+vi > Ci. Therefore, M is diagonally dominant. It follows
that M (p) is a non-singular M -matrix for every p. Since nonsingular M -matrices are a subset of
P -matrices, M (p) is also a P -matrix for every p. By the Gale and Nikaido (1965) theorem, F̂ (p)

is therefore injective and can have at most one solution F̂ (p) = 0. There is therefore a unique p

that solves our original system of equations. From the vector p, it is straightforward to recover all
other equilibrium quantities in a unique fashion. There is therefore a unique equilibrium and it is
e"cient.
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C.11 Proof of Lemma 6
Lemma 6. An increase in average productivity µj increases returns to scale in all other sectors,

such that

dω̂i
dµj

= %→1
i

Kij ↔ 0. (22)

Furthermore, the impact of productivity dispersion σ2
j

on ω̂i is given by

dω̂i
dσ2

j

= %→1
i


Kij

1zj
1σ2

j

→ 1 (i = j)
12zi

1σ2
i
1ω̂i


, (23)

where

1zj
1σ2

j

=
1

2 (1→ ω̂j)
+

1→ ω̂j
4ϑj (1→ ⇁j)

> 0, and
1

1σ2
i

(
1zi
1ω̂i

)
=

1

2 (1→ ω̂i)
2 → 1

4ϑi (1→ ⇁i)
.

In particular, dω̂i/dσ2
j
↔ 0 for i ↖= j.

Proof. This proof proceeds as follows. First we derive the first-order conditions of the social planner.
Second, we write down the derivative of the first-order conditions with respect to ω̂i. Third, we use
this expression together with the implicit function theorem to derive the impact of µj and σ2

j
on ω̂i.

First step. Let us first compute the first-order conditions of the planner’s problem. Di!eren-
tiating (20) with respect to ω̂i and setting that expression to zero implies that

dy

dω̂i
= ε≃ dL

dω̂i
z (ω̂) + [◁ (ω̂)]≃

dz (ω̂)

dω̂i
= 0.

Computing the derivative of z (ω̂), we find

(
dz (ω̂)

dω̂i

)

j

=






dai(ϑ̂i)
dϑ̂i

+
ϱ
2
i
2

1
(1→ϑ̂i)

2 + 1
2 log (1→ ⇁i) + log ϖi if j = i

0 if j ↖= i

Next, the derivative of the Leontief inverse yields

dL
dω̂i

=
d (1→ diag (ω̂)ς)→1

dω̂i
= → (1→ diag (ω̂)ς)→1


d (1→ diag (ω̂)ς)

dω̂i


(1→ diag (ω̂)ς)→1 .

= L
[
1i1

≃
i ς

]
L = L·iς

≃
i L.
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Putting the pieces together, we have

◁i (ω̂)ς
≃
i L (ω̂) z (ω̂) + ◁i (ω̂)


dai (ω̂i)

dω̂i
+

σ2
i

2

1

(1→ ω̂i)
2 +

1

2
log (1→ ⇁i) + log ϖi


= 0.

Since Domar weights are positive, we can write that condition as

Fi := ς≃
i L (ω̂) z (ω̂) +

dai (ω̂i)

dω̂i
+

σ2
i

2

1

(1→ ω̂i)
2 +

1

2
log (1→ ⇁i) + log ϖi = 0, (68)

where we have defined Fi.
Second step. The implicit function theorem states that

dω̂

dµ
= →


1F
1ω̂

→1 1F
1µ


.

First, let us compute the Jacobian matrix 1F/1ω̂. Consider an o!-diagonal element k ↖= i

1Fi

1ω̂k
=

1

1ω̂k

(
ς≃
i L (ω̂) z (ω̂)

)
= ς≃

i

(
1L
1ω̂k

)
z + ς≃

i L
(

1z

1ω̂k

)

= ς≃
i L1k1≃k ςLz + ς≃

i L1k
1zk
1ω̂k

.

Factoring this expression gives

1Fi

1ω̂k
=

(
ς≃
i L·k

)
ς≃
k Lz +

1zk
1ω̂k


= 0,

where the last equality follows since the term in bracket is the first-order condition of the planner.
For a diagonal element,

1Fi

1ω̂i
=

1

1ω̂i

(
ς≃
i Lz +

1zi
1ω̂i

)
.

Through the logic above, the first term is 0, so we need only focus on the second part

1Fi

1ω̂i
=

1

1ω̂i

1zi
1ω̂i

=
d2ai
dω̂2

i

+
σ2
i

(1→ ω̂i)
3 = (1→ ⇁i)

d2ai
dω̂2

i

. (69)

Third step. Next, we can compute the element (i, j) of the matrix ↽F
↽µ

, which is ↽Fi
↽µj

. The FOC
for sector i is Fi = ς≃

i
Lz + ↽zi

↽ϑ̂i
. The parameter µj only enters through the vector z, specifically
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through its j-th element. Therefore,
1z

1µj

= 1j .

Thus,
1Fi

1µj

=
1

1µj

(
ς≃
i Lz

)
= ς≃

i L
(

1z

1µj

)
= ς≃

i L1j ,

which is simply the (i, j)-th element of the matrix ςL. Putting the pieces together,

dω̂

dµ
= →

(
1F
1ω̂

)→1

(ςL) = →
(ςL)

ij

d2ai
dϑ̂2i

+
ϱ2
i

(1→ϑ̂i)3

= →
(
(1→ ⇁i)

d2ai
dω̂2

i

)→1

(ςL)
ij
.

Fourth step. We now turn to the impact of σ2
j
. We use the implicit function theorem once

more. Note that
1Fi

1σ2
j

= ς≃
i L

1z

1σ2
j

+
1

1σ2
j

(
1zi
1ω̂i

)
.

The vector 1z/1σ2
j

is zero everywhere except for it j-th element

1zj
1σ2

j

=
1

1σ2
j


σ2
j

2 (1→ ω̂j)
→ 1→ ω̂j

2
log(1→ ⇁j)


=

1

2 (1→ ω̂j)
+

1→ ω̂j
4ϑj (1→ ⇁j)

> 0.

Similarly, ↽

↽ϱ2
j

(
↽zi
↽ϑ̂i

)
is zero whenever i ↖= j. We can compute

1

1σ2
j

(
1zj
1ω̂j

)
=

1

1σ2
j


σ2
j

2 (1→ ω̂j)
2 +

1

2
log(1→ ⇁j)


=

1

2 (1→ ω̂j)
2 → 1

4ϑj (1→ ⇁j)
.

Putting the pieces together, we find the result.

C.12 Proof of Proposition 5
Proposition 5. The di!erence in log GDP between the baseline model and the fixed returns-to-scale

economy is given by

y → ỹ =
N∑

i=1

1

2
◁i (1→ ω̂i) log

(
1

1→ ⇁i

)
> 0.26

Proof. We first compute GDP in the fixed returns-to-scale economy (denoted by ·̃), in which all
firms in sector i have the same returns to scale ωil = ω̂i. The free-entry condition is E

[
#̃il

]
= ϖiW̃ .
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Using the expression for profit (54), this condition becomes

 ↘

→↘
exp

(
1

1→ ω̂i

(
log P̃i + φil + ai (ω̂i)→ ω̂i logHi

))
f (φil) dφil = ϖiW̃ .

Solving the integral and following the same aggregation steps as in the baseline model (Proposition
2), but without the endogenous choice of returns to scale, this condition yields a sectoral productivity
of

z̃i = µi + ai (ω̂i) +
σ2
i

2 (1→ ω̂i)
→ (1→ ω̂i) log ϖi.

Because ω̂il is fixed, the term related to the choice of scale and the resulting amplified selection (i.e.,
the fourth term on the right-hand side of (16)) is absent. Since the sectoral production function
and cost shares are still governed by ω̂i, the pricing equation is analogous to the baseline model:
log

(
P̃ /W̃

)
= →L (ω̂) z̃. Log GDP is therefore given by:

ỹ = [◁ (ω̂)]≃ z̃ (ω̂) + log L̄.

Note that the Domar weights ◁ (ω̂) are identical to the baseline model because the sectoral input
shares are the same in both economies.

Recall from 16 and 20 that in the baseline model

y = [◁ (ω̂)]≃ z (ω̂) + log L̄,

where
zi = µi + ai (ω̂i) +

σ2
i

2

1

1→ ω̂i
+

1

2
(1→ ω̂i) log

(
1

1→ ⇁i

)
→ (1→ ω̂i) log ϖi.

As a result,
y → ỹ = [◁ (ω̂)]≃ (z (ω̂)→ z̃ (ω̂)) . (70)

The di!erence in the sectoral productivity vectors, z → z̃, is a vector where the i-th element is

zi (ω̂i)→ z̃i (ω̂i) =
1

2
(1→ ω̂i) log

(
1

1→ ⇁i

)
.

Substituting in (70) yields (26). The inequality y → ỹ > 0 holds since 0 < ⇁i < 1 for all i.
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C.13 Proof of Proposition 7
Proposition 7. The response of log GDP y to a shock !µi is given by

!y = ◁i!µi +
1

2

d◁i

dµi

(!µi)
2 + o

(
(!µi)

2
)
. (30)

Furthermore, the second-order term is non-negative,

d◁i

dµi

=


→

N∑

k=1

Kki◁k

dω̂k
dµi


↔ 0.

Proof. The second-order expansion of y with respect to productivity shocks is

!y =
N∑

i=1

dy

dµi

!µi +
1

2

N∑

i,j

d2y

dµidµj

!µi!µj + o
(
!2µ

)
.

By Proposition 6, dy/dµi = ◁i which yields (30) when !µj = 0 for all j ↖= i. Next, Corollary 7
implies that

d◁i

dµi

= →
N∑

k=1

Kki◁k

dω̂k
dµi

↔ 0,

where the inequality follows since dω̂k/dµi ↔ 0 from Corollary 6.

C.14 Proof of Lemma 8
Lemma 8. An increase in ▷S

j
decreases the returns to scale in all downstream sectors:

dω̂i
d▷S

j

= → 1

1→ ▷S
j

%→1
i

Kij ↘ 0. (32)

Proof. See proof of Proposition 10 in Supplement D.5.

C.15 Proof of Proposition 8

Proposition 8. In the presence of sales wedges, the impact of a parameter χ ↓
{
µj ,σ2

j
,ϖj , ϑj

}
on

GDP is given by

dy

dχ
=

1y

1χ
+

N∑

i=1

1y

1ω̂i

dω̂i
dχ

,

86



6910where 1y/1χ is given by Proposition 6, dω̂i/1χ is given by Corollaries 6 to 10, and 1y/1ω̂i ↔ 0.

Proof. See proof of Proposition 12 in Supplement D.5.

C.16 Proof of Corollary 1
Corollary 1. The growth of e!ective returns to scale ω̂ is given by

dω̂

dt
= %→1Kgµ > 0. (34)

Furthermore, as t ⇒ ⇑, e!ective returns to scale ω̂ converges to 1.

Proof. The first equation follows directly from (22). Note that the right-hand side is strictly positive
for 0 < ω̂ < 1 and converges to 0 as ω̂ ⇒ 1. The second result follows.

C.17 Proof of Proposition 9
Proposition 9. The growth rate of GDP is given by

dy

dt
=

gµ
1→ ς

≃



1→ 1√
1
ϖ

1→φ

φ

gµ

1→ε
t+K



 > 0, (35)

where K > 0 is a time-invariant term given in the proof of the proposition.

Proof. The envelope theorem implies that

dy

dt
= (1→ ω̂ς)→1 gµ. (71)

Therefore, to characterize dy/dt, we need to solve for ω̂ (t). Equation (34) can be written as

dω̂

dt
=

1

2ϑ → σ2

ς (1→ ω̂)3

1→ ω̂ς
gµ

and reorganized as
ςgµ(

ϑ → ϱ2

2

)
2
dt =

(
1→ ς

(1→ ω̂)3
+

ς

(1→ ω̂)2

)
dω̂.
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Integrating on both sides yields

ςgµ(
ϑ → ϱ2

2

)
2
t+R =

1→ ς

2 (1→ ω̂)2
+

ς

1→ ω̂
, (72)

where R is a constant that can be pinned down using an initial condition. Suppose that at t = 0,
the equilibrium is such that ω̂ = ω̂0. Then,

R =
1→ ς

2 (1→ ω̂0)
2 +

ς

(1→ ω̂0)
> 0.

Equation (72) provides the evolution of ω̂ over time. Since ϑ > σ2/2 by assumption, it shows that
ω̂ ⇒ 1 as t ⇒ ⇑. Combining (72) with 71 yields

dy

dt
=

gµ
1→ ς

≃



1→ 1√
1 + 1

ϖ

1→φ

φ

(
gµ

1→ε
t+→1→φ

φ
a↗ (ω̂0)→ 2a (ω̂0)

)



 > 0.

This expression can be written as (35).

C.18 Proof of Corollary 2
Corollary 2. For any t > 0, GDP grows faster in the economy with endogenous returns to scale.

In the limit as t ⇒ ⇑, the long-run growth rates satisfy

lim
t⇒↘

dy

dt
=

1

1→ ς
gµ >

1

1→ ω̂0ς
gµ = lim

t⇒↘

dỹ

dt
,

where ỹ is log GDP in the fixed returns-to-scale economy, and where ω̂0 is e!ective returns to scale

in the baseline economy at t = 0.

Proof. In the economy with exogenous returns to scale, (20) implies that dy

dt
= 1

1→φϑ0
gµ. In the

economy with endogenous returns to scale, the envelope theorem implies at, at any point in time
we have dy

dt
= 1

1→φϑ(t)gµ. This implies that the two economies have the same growth rate at t = 0

since ω (t) = ω0 by definition. But since dω/dt > 0 by Corollary 1, the growth rate of the economy
with endogenous returns to scale is larger for any t > 0. The second part of the result follows from
taking the limit t ⇒ ⇑ in (35).
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D Robustness, extensions, and additional analysis
In this online supplement, we provide additional analysis of the benchmark model presented in

the main text. We also show that that model can be extended in di!erent ways.

D.1 Truncated normal shocks
In the baseline model, we assume that productivity shocks φil follow a normal distribution. While

this allows for a tractable analytical solution, it theoretically permits firms to draw arbitrarily low
productivity shocks, which could imply returns to scale ωil /↓ (0, 1). In this online supplement, we
solve the model assuming that productivity follows a Truncated Normal distribution. We show that
the equilibrium conditions converge to those of the baseline model as the truncation point goes to
negative infinity.

Specifically, productivity shocks of firms in industry i follow truncated normal distribution with
support [φi,⇑). We assume that φi is su"ciently high such that

φi > 2ϑi → si,

where si is given in (62). Under this restriction, all firms choose ωil ↓ (0, 1), as is evident from (62).
The analogue of the free-entry condition, given by (8) in the main text, is

exp (→si)

 ↘

ωi

exp

{
φ2
il
→ s2

i

4ϑi
+

s2
i
+ φilsi
2ϑi

}
exp


→(φil → µi)

2

2σ2
i


1

1→ $
(
ωi→µi
ϱi

)dφil = ϖi
W

0i

.

Simplifying this expression, we get

W

0i

ϖi =
W 1→

∑
j φij


N

j=1 P
φij

j

0i

√
1

1→ ⇁i

exp


1

2

(si + µi)
2

2ϑi (1→ ⇁i)


T1i, (73)

where, as above, ⇁i =
ϱ
2
i

2ϖi
, and

T1i =
1→ $

(⇑
1→εi
ϱi

(
φi → µi → εi

1→εi
(µi + si)

))

1→ $
(

1
ϱi

(φi → µi)
) .

In the baseline model, φi = →⇑, and T1i = 1.
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Next, following the same steps as in Supplement C.8, we can compute ω̂i:

ω̂i =

∫
l
ωilPiQildl∫
l
PiQildl

= 1→ 1→ ⇁i

si+µi
2ϖi

+ (1→ ⇁i)T2
= 1→ (1→ ⇁i) (1→ ωi (µi))

1 + (1→ ⇁i) (1→ ωi (µi))T2i
,

where

T2i =

1
2ϖi

1⇑
2⇀

exp

(
→1

2

(⇑
1→εi
ϱi

(
φi → µi → εi

1→εi
(µi + si)

))2
)

1→ $
(⇑

1→εi
ϱi

(
φi → µi → εi

1→εi
(µi + si)

)) .

Clearly, if φi = →⇑, then T2i = 0, and we are back to the baseline model (see Equation (64)).
Finally, we can derive the analogue of (19). Following the same steps as in Supplement C.8, we

get

log
P

W
=→ (I → [diag (⇁) + (I → diag (⇁)) diag (ω (µ))]ς)→1≃

µ+ a (ω (µ))→ (I → diag (⇁)) (I → diag (ω (µ)))

(
1

2
log (1→ ⇁) + log ϖ→ log T1

)
.

Again, if φi = →⇑, we are back to the baseline model.
Clearly, if firms with φil = µi choose ωil ↓ (0, 1), φi can be chosen such that φi < µi. Furthermore,

if σi is su"ciently small, T1i is arbitrarily close to one and T2i is arbitrarily close to zero. In that
case, the mass of firms choosing ωil /↓ (0, 1) in our baseline model is negligible, and the baseline
economy is almost equivalent to the model with truncated normal shocks.

D.2 The impact of ω and ς on returns to scale
In this online supplement, we characterize how entry costs ϖ and the cost of scalability ϑ a!ect

returns to scale.

D.3 Entry cost
We examine the impact of entry costs on returns-to-scale decisions.

Lemma 9. The impact of the entry cost ϖj on the e!ective returns to scale ω̂j is given by

dω̂i
d log ϖj

= %→1
i

[
→Kij (1→ ω̂j)→ I{i=j}

]
. (74)

In particular, dω̂i/d log ϖj ↘ 0 for i ↖= j.
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Proof. Applying the implicit function theorem to (68), we get

dω̂

d log ϖj
= →


1F
1ω̂

→1 1F
1 log ϖj

.

We have already computed the first term in the proof of Lemma 6, so consider the second one. We
have

1Fi

1 log ϖj
= ς≃

i L (ω̂)
1z (ω̂)

1 log ϖj
+

1 log ϖi
1 log ϖj

= →ς≃
i L (ω̂) 1j (1→ ω̂j) + 1 (i = j) .

Putting the pieces together we find the result.

An increase in the entry cost in sector j always reduces the e!ective returns to scale of any
other sector i ↖= j. The mechanism is similar to that of a shock to µj . Increasing ϖj decreases j’s
productivity zj , which increases the price of the input bundle of any sector that relies on j. Firms
in those sectors then reduce their returns to scale to rely less on expensive intermediate inputs. At
the same time, the e!ective returns to scale ω̂j of sector j itself typically increases with ϖj . This
is because, when entry costs are large, there is more pressure to have fewer but larger firms, which
requires large ω̂j .

D.4 Cost of adjusting returns to scale
The productivity cost ϑi of adjusting returns to scale also a!ects firms’ scalability decisions.

Lemma 10. The impact of the productivity cost of higher returns to scale ϑj on the e!ective returns

to scale ω̂i is given by

dω̂i
dϑj

= %→1
i

(
Kij

1zj
1ϑj

→ I{i=j}
12zi

1ϑi1ω̂i

)
(75)

where
↽zj

↽ϖj
= → 1

1→ϑ̂j
→ 1

2ϖj

εj

1→εj
(1→ ω̂j) < 0 and

↽
2
zi

↽ϖi↽ϑ̂i
= → 1

(1→ϑ̂i)
2 +

1
2ϖi

εi
1→εi

. In particular, dω̂i/dϑj ↘
0 for i ↖= j.

Proof. Applying the implicit function theorem to (68), we get

dω̂

dϑj
= →


1F
1ω̂

→1  1F
1ϑj


.

We have already computed the first term in the proof of Lemma 6, so consider the second one. We
have

1Fi

1ϑj
:= ς≃

i L (ω̂)
1z (ω̂)

1ϑj
+

12ai (ω̂i)

1ϑjdω̂i
+

1

2

1

1ϑj
log (1→ ⇁i) .
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If i ↖= j,
1Fi

1ϑj
:= →Kij

1zj
1ϑj

,

where
1zj
1ϑj

= → 1

1→ ω̂j
→ 1

2ϑj

⇁j

1→ ⇁j

(1→ ω̂j) < 0.

For i = j, we have an extra term,

1Fi

1ϑi
:= →Kii

1zi (ω̂)

1ϑi
→ 1

(1→ ω̂i)
2 +

1

2ϑi

⇁i

1→ ⇁i

.

Consider first the impact of a higher ϑj on the e!ective returns to scale of another sector i ↖= j.
Unsurprisingly, a higher productivity cost of adjusting returns to scale leads to a lower productivity
in sector j. Through input-output linkages, that lower productivity increases the price of the
intermediate input bundles of firms that rely, directly or indirectly, on j as an input (Lij > 0).
Those firms, to limit the negative impact of higher inputs, lower their returns to scale. A similar
impact is at work when considering the impact of a higher ϑj on j itself, but in addition, j is also
a!ected more directly by the increase in ϑj . Indeed, a larger ϑj mechanically makes a high ω̂j more
expensive, which amplifies the negative movement in ω̂j . In general, these forces combine to create
a stronger negative impact of ϑj on ω̂j .

D.5 Wedges
In this online supplement, we consider an economy with wedges. In the presence of wedges, the

firm’s problem (2) becomes

#il := max
ϑil,Lil,Xil

(
1→ ▷Si

)
PiFi (Lil, Xil, ωil)→

(
1 + ▷Li

)
WLil →

N∑

j=1

(
1 + ▷Xij

)
PjXij,l. (76)

Firms in sector i have to pay
(
1 + ▷X

ij

)
Pj for each unit of good j, ▷X

ij
> →1, and

(
1 + ▷L

i

)
W

for each unit of labor, ▷L
i

> →1. Firms face an e!ective sales tax ▷S
i

< 1. Finally, we introduce
a corporate tax rate ▷!

i
. This tax does not directly a!ect the profit-maximization problem (76).

However, it a!ects the free-entry condition (8):

Ei

[(
1→ ▷!i

)
#i (φil, P

↑,W ↑)
]
= ϖiW

↑.
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As we can see, the profit tax e!ectively increases the entry cost.
Wedges

{
▷X , ▷L, ▷S , ▷!

}
can capture a variety of economic factors, such as tari!s, transportation

costs, taxes, markups, etc. Some of those wedges can be associated with loss of resources, while
others only lead to resource redistribution. To capture this, we assume that a fraction of wedge
income is rebated to the household, such that its budget constraint (7) becomes

N∑

i=1

PiCi ↘ WL̄+ T ,

where

T =
N∑

i=1

3Si ▷
S

i PiQi +
N∑

i=1

3Li ▷
L

i WLi +
N∑

i=1

N∑

j=1

3Xij ▷
X

ij PjXij +
N∑

i=1

3!i ▷
!
i #i.

Here 3S
i
, 3L

i
, 3X

ij
, 3!

i
↓ [0, 1]. Note that wedges

{
▷X , ▷L, ▷S , ▷!

}
can be both positive or negative.

For example, ▷X
ij

is positive in case of transportation costs. If those are iceberg costs, nothing is
rebated to the household, and 3X

ij
= 0. Tari!s would also correspond to a positive ▷X

ij
. Di!erent

from transportation costs, tari! income is likely partially rebated to the household, in which case
3X
ij

is positive. On the other hand, ▷X
ij

would be negative in case of government subsidies. Such
subsidies are financed by lump-sum taxation of the household, such that 3X

ij
= 1.58

The model can be analyzed analogously to our baseline model. In particular, we can derive that
the equilibrium price vector is given by

log
P

W
= →L (ω̂) z (ω̂) , (77)

where, as in the baseline model, ω̂ is a vector of sales-weighted average returns to scale, L (ω̂) =

(I → diag (ω̂)ς)→1, and

zi (ω̂i) = µi → Ti + ai (ω̂i) +
σ2
i

2

1

1→ ω̂i
+

1

2
(1→ ω̂i) log

(
1

1→ ⇁i

)
→ (1→ ω̂i) log

ϖi
1→ ▷!

i

. (78)

The productivity shifter Ti is

Ti = Ti

(
▷Li , ▷

S

i , ▷
X

i , ω̂i
)
= log





(
1 + ▷L

i

)ϑ̂i(1→∑
j φij)N

j=1

(
1 + ▷X

ij

)ϑ̂iφij

1→ ▷S
i



 . (79)

58Deadweight losses of subsidies can be captured by setting 3Xij > 1.
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Introducing wedges
{
▷X , ▷L, ▷S

}
is, therefore, equivalent to a change in sectoral total factor pro-

ductivities. An increase in wedges ▷L
i

, ▷S
i

or ▷X
ij

reduces the e!ective productivity of sector i,
resulting in a reduction in the returns to scale in all sectors. This result is analogous to the e!ect
of a reduction in µi, described in Corollary 6. At the same time, an increase in the corporate tax
▷!
i

e!ectively increases the entry cost, and so its impact on returns to scale is analogous to that of
log ϖi, described in Corollary 9.

Proposition 10. An increase in wedges
{
▷X , ▷L, ▷S

}
reduces returns to scale in all sectors. An

increase in the profit tax ▷!
i

reduces returns to scale in other sectors but can increase returns to

scale in sector i.59

The market-clearing conditions (9) also change. Specifically, for good i, the resource constraint
becomes

(
1→

(
1→ 3Si

)
▷Si

)
Qi = Ci +

N∑

j=1

(
1 +

(
1→ 3Xji

)
▷Xji

)
Xji.

Then the Domar weight of sector i is

◁̃i =
PiQi

P̄ Y
= 1i

(
I → diag

[(
1→ 3S

)
↙ ▷S

]
→ ς̃≃diag (ω̂)

)→1
ε,

where ↙ denotes element-wise product of two vectors, and

ς̃ji = ςji

(
1→ ▷Sj

)



1 +

(
1→ 3X

ji

)
▷X
ji

1 + ▷X
ji



 .

Clearly, if ▷S
j
↔ 0 and ▷X

ji
↔ 0, then ς̃ji ↘ ςji.

Using these results, we can derive how wedges a!ect the expression for the aggregate output.

Proposition 11. Equilibrium log GDP y := log Y is given by

y (ω̂) = ε≃L (ω̂) z (ω̂)  
Contribution of productivity

+ log L̄  
Labor endowment

→ log&⇁  
Wedges income

, (80)

59We provide expressions for derivatives of returns to scale with respect to wedges in the proof of this
proposition.
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where

&⇁ =

1→
N∑

i=1

◁̃i



(
1→ ▷Si

)
ω̂i




N∑

j=1

ςij

3X
ij
▷X
ij

1 + ▷X
ij

+



1→
N∑

j=1

ςij



 3L
i
▷L
i

1 + ▷L
i



+ 3Si ▷
S

i + 3!i ▷
!
i

(
1→ ▷Si

)
(1→ ω̂i)



 .

As discussed above, some wedges can lead to a destruction of resources while others may lead
to redistribution of resources. In the latter case, aggregate output needs to be adjusted for wedges
income. This is the last term in expression (80). Naturally, if 3X

ij
= 3L

i
= 3S

i
= 3!

i
= 0 for all i

and j, then nothing is rebated to the household, and log&⇁ = 0. If all the wedges are nonnegative,
and some of the wedge income is rebated back to the household, then log&⇁ < 0, which leads to a
higher y.60

The presence of wedges distorts the economy. Intuitively, firms do not internalize that part of
the wedge income is rebated to the household, and their decisions are ine"cient as a result. If none
of the wedge income is rebated to the household, then log&⇁ = 0, and the economy is e"cient. In
that case, firms correctly perceive wedges as resource-destructive. In the ine"cient economy, the
equilibrium returns to scale do not maximize GDP, and any marginal change in returns to scale can
have a nontrivial impact on GDP. Specifically, a change in the underlying parameter χ leads to the
following response of GDP:

dy

dχ
=

1y

1χ
+

N∑

j=1

1y

1ω̂j

dω̂j
dχ

.

In general, the sign of the response of GDP to a marginal change in returns to scale, ↽y

↽ϑ̂j
, depends

on the sign of wedges. However, we can provide a sharp characterization in a few important special
cases.

Proposition 12. Suppose that there are no profit taxes, ▷!
i

= 0, and all other wedges are positive,

▷X
ij

> 0, ▷L
i

> 0, and ▷S
i

> 0 for all i, j, and suppose that some of the wedge income is rebated to

the household, log&⇁ < 0. Then any marginal increase in the returns to scale leads to an increase

in GDP,
↽y

↽ϑ̂j
> 0.

Consider first the case with no profit taxes. If other wedges are positive, the equilibrium returns
to scale are too low (Proposition 10) as the firms do not internalize that part of the wedge income is

60Of course, in that case, sectoral productivities (78) are also lower than in the no-wedges economy.
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rebated to the household. Then, any change in the parameter that leads to an increase in returns to
scale is beneficial for GDP. For example, if the economy becomes more productive, as captured by
a higher µj , the equilibrium returns to scale increase (Corollary 6).61 Such a change has a positive
impact on GDP because the equilibrium returns to scale were ine"ciently low before the change.

Profit taxes a!ect the equilibrium returns to scale di!erently. As Proposition 10 suggests, an
increase in the profit tax ▷!

i
is equivalent, from the firms’ perspective, to an increase in the entry

cost ϖi. Such an increase typically leads to a higher ω̂i (see our discussion following Corollary
9). Therefore, if profit taxes are rebated to the household, equilibrium returns to scale tend to be
ine"ciently high as firms incorrectly perceive entry costs as being too high. In that case, any change
in the parameter that leads to a further increase in returns to scale is harmful for GDP. Expression
(85) in the proof of Proposition 12 provides an exact expression for ↽y

↽ϑ̂j
in that case.

D.5.1 Proof of Proposition 10

Proposition 10. An increase in wedges
{
▷X , ▷L, ▷S

}
reduces returns to scale in all sectors. An

increase in the profit tax ▷!
i

reduces returns to scale in other sectors but can increase returns to

scale in sector i.

Proof. Taking first-order conditions of (76) with respect to Lil and Xil, we can derive the following
expression for log profit of firm l in sector i:

log#il = logPi + log
(
1→ ▷Si

)
+

ai (ωil) + ωil
(
log Pi

W
→
∑

N

j=1 ςij log
Pj

W

)

1→ ωil

+

φil → ωil


log

(1+⇁
L
i )

1→
∑N

j=1 ςij ∏N
j=1(1+⇁

X
ij )

ςij

(1→⇁Si )



1→ ωil
.

Then the first-order condition with respect to ωil yields

d log#il

dωil
= 0 ⇔ (81)

φil → log





(
1 + ▷L

i

)1→∑N
j=1 φij N

j=1

(
1 + ▷X

ij

)φij

(
1→ ▷S

i

)



+ log
Pi

W
→

N∑

j=1

ςij log
Pj

W
+ ai (ωil) + (1→ ωil)

dai
dωil

= 0.

61If χ ↓
{
µj ,σ2

j ,ϖj , ϑj
}
, it is straightforward to show that ϑy

ϑϖ and dε̂j

dϖ are given by the same expressions
as in the baseline model.
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Following the same steps as in the proof of Proposition 2, we can derive that the equilibrium
price vector is given by (77), and the sales-weighted average of firm-level returns to scale ω̂i satisfies

1

1→ ωil
=

1→ ⇁i

1→ ω̂i
+

φil → µ̃i

2ϑi
, (82)

where µ̃i = µi → log

[
(1+⇁

L
i )

1→
∑N

j=1 ςij ∏N
j=1(1+⇁

X
ij )

ςij

(1→⇁Si )

]
. Plugging (77) and (82) into (81), we get the

following equation for ω̂:

Fi =
dai (ω̂i)

dω̂i
+

σ2
i

2

1

(1→ ω̂i)
2 + ς≃

i L (ω̂) z (ω̂) +
1

2
log (1→ ⇁i) + log

ϖi
1→ ▷!

i

(83)

→ log



(1 + ▷Li
)1→∑N

j=1 φij

N

j=1

(
1 + ▷Xij

)φij



 = 0.

Denote by χi any of ▷X
ij

, ▷L
i

or ▷S
i

. Then, by the implicit function theorem,

dω̂

dχi

= →

1F
1ω̂

→1  1F
1χi


.

As in the baseline model, we have
1Fi

1ω̂i
= (1→ ⇁i)

d2ai
dω̂2

i

and ↽Fi
↽ϑ̂j

= 0 if i ↖= j. Furthermore,

1Fi

1χk

= ς≃
i L (ω̂)

1z (ω̂)

1χk

→
1 log

(
1 + ▷L

i

)1→∑N
j=1 φij N

j=1

(
1 + ▷X

ij

)φij


1χk

.

From (78), it is clear that ↽zk
↽ςk

< 0. Therefore, dϑ̂

dςi
↘ 0. In particular, we have

dω̂i
d▷S

j

= → 1

1→ ▷S
j

dω̂i

d log
(
1→ ▷S

j

) = → 1

1→ ▷S
j


(1→ ⇁i)

d2ai
dω̂2

i

→1

Kij .
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D.5.2 Proof of Proposition 11

Proposition 11. Equilibrium log GDP y := log Y is given by

y (ω̂) = ε≃L (ω̂) z (ω̂)  
Contribution of productivity

+ log L̄  
Labor endowment

→ log&⇁  
Wedges income

,

where

&⇁ =

1→
N∑

i=1

◁̃i



(
1→ ▷Si

)
ω̂i




N∑

j=1

ςij

3X
ij
▷X
ij

1 + ▷X
ij

+



1→
N∑

j=1

ςij



 3L
i
▷L
i

1 + ▷L
i



+ 3Si ▷
S

i + 3!i ▷
!
i

(
1→ ▷Si

)
(1→ ω̂i)



 .

Proof. From the household’s budget constraint, we have

Y = WL̄+ T , (84)

where

T =
N∑

i=1




N∑

j=1

3Xij ▷
X

ij PjXij + 3Li ▷
L

i WLi + 3Si ▷
S

i PiQi + 3!i ▷
!
i #i





=
N∑

i=1




N∑

j=1

ω̂iςij

3X
ij
▷X
ij

1 + ▷X
ij

(
1→ ▷Si

)
PiQi + ω̂i



1→
N∑

j=1

ςij



 3L
i
▷L
i

1 + ▷L
i

(
1→ ▷Si

)
PiQi

+3Si ▷
S

i PiQi + 3!i ▷
!
i

(
1→ ▷Si

)
(1→ ω̂i)PiQi

)


= Y
N∑

i=1

◁̃i



(
1→ ▷Si

)
ω̂i




N∑

j=1

ςij3Xij ▷
X

ij

1 + ▷X
ij

+

(
1→

∑
N

j=1 ςij

)
3L
i
▷L
i

1 + ▷L
i



+ 3Si ▷
S

i + 3!i ▷
!
i

(
1→ ▷Si

)
(1→ ω̂i)



 .

Plugging this into (84) gives the result.

D.5.3 Proof of Proposition

Proposition 10. Suppose that there are no corporate taxes, ▷!
i

= 0, and all other wedges are

positive, ▷X
ij

> 0, ▷L
i

> 0, and ▷S
i

> 0 for all i, j, and suppose that some of the wedge income is

rebated to the household, log&⇁ < 0. Then any marginal increase in the returns to scale leads to an
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increase in GDP,
↽y

↽ϑ̂j
> 0.

Proof. Di!erentiating y, given by (80), with respect to ω̂i and using the first-order condition (83),
we get

1y

1ω̂i
= →1 log&⇁

1ω̂i
=

Numi

&⇁

,

where the numerator is

Numi = ◁̃i

(
1→ ▷Si

)



N∑

j=1

ςij

3X
ij
▷X
ij

1 + ▷X
ij

+



1→
N∑

j=1

ςij



 3L
i
▷L
i

1 + ▷L
i

→ 3!i ▷
!
i





+
N∑

k=1

d◁̃k

dω̂i



(
1→ ▷Sk

)
ω̂k




N∑

j=1

ςkj

3X
kj
▷X
kj

1 + ▷X
kj

+



1→
N∑

j=1

ςkj



 3L
k
▷L
k

1 + ▷L
k



+ 3Sk ▷
S

k + 3!k ▷
!
k

(
1→ ▷Sk

)
(1→ ω̂k)



 .

The derivative of the Domar weights is given by

d◁̃k

dω̂i
=

N∑

j=1

ς̃ij

(
I → diag

[(
1→ 3S

)
↙ ▷S

]
→ diag (ω̂) ς̃

)→1

jk
◁̃i > 0.

Therefore, if taxes are positive (▷X , ▷L, ▷S > 0) but there is no profit tax (▷! = 0), all terms in the
numerator are positive (assuming some rebates 3 > 0), implying ↽y

↽ϑ̂i
> 0.

In contrast, if ▷X = ▷L = ▷S = 0 and ▷! > 0 with 3! = 1, then ◁̃ = ◁, and we get

1y

1ω̂i
= ◁i

→▷!
i
+
∑

N

k=1

(∑
N

j=1 ςijLjk

)
▷!
k
(1→ ω̂k)

1→
∑

N

i=1 ◁i▷!i (1→ ω̂i)
. (85)

As ω̂k ⇒ 1 for all k, the term (1 → ω̂k) vanishes, leaving only the negative term →◁i▷!i . Thus, ↽y

↽ϑ̂i

becomes negative.

D.6 Sales wedge correlated with productivity
In this online supplement, we consider an economy in which firms face sales tax (37). The firm’s

problem (2) becomes

#il := max
ϑil,Lil,Xil

(
1→ ▷Sil

)
PiFi (Lil, Xil, ωil)→WLil →

N∑

j=1

PjXij,l,
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where Fi (Lil, Xil, ωil) is given by (1). Clearly, this problem is equivalent to the one in the main text
if we redefine the productivity as

φ̃il = φil + log
(
1→ ▷Sil

)
= (1→ bi) (φil → µi) + µi + log

(
1→ ▷Si

)
,

such that φ̃il ↑ iid N
(
µ̃i, σ̃2

i

)
, where

µ̃i = µi + log
(
1→ ▷Si

)
and σ̃i = (1→ bi)σi.

Similar to the baseline model, define

ω̂i :=


Mi

0

◁̃il

◁̃i

ωildl, (86)

with ◁̃il := (1→ ▷il)◁il and ◁̃i :=
(
1→ ▷̂S

i

)
◁i, where

▷̂Si =


Mi

0

◁il

◁i

▷Sil dl. (87)

As in the baseline model, we get
1

1→ ω̂i
=

µ̃i + si
2ϑi (1→ ⇁̃i)

,

where si = logPi → logHi. Integrating (87), we get

1

1→ ▷̂S
i

=
1

1→ ▷S
i


1 +

⇁̃i

1→ε̃i
1→ϑ̂i

bi
1→ bi


exp


→ bi
1→ bi

4⇁̃iϑi
1→ε̃i
1→ϑ̂i

+ σ̃2
i

bi
1→bi

2

1

(1→ ⇁̃i)


. (88)

Then, following the same steps as in the main model, we can derive

logW = ε≃ (I → diag (ω̂)ς)→1 z̃ (ω̂) ,

where
z̃i (ω̂i) = µ̃i + ai (ω̂i) +

σ̃2
i

2

1

1→ ω̂i
+

1

2
(1→ ω̂i) log

(
1

1→ ⇁̃i

)
→ (1→ ω̂i) log ϖi

and ⇁̃i =
ϱ̃
2
i

2ϖi
.

We assume that all tax proceeds are rebated to the household. Therefore, using the market
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clearing condition (9), we get

◁i :=
PiQi

P̄ Y
= ε≃ (

I → diag
(
1→ ▷̂S

)
diag (ω̂)ς

)
1i.

The rebate amount is

T =
N∑

i=1


Mi

0
▷SilPiQildl =

N∑

i=1

▷̂Si ◁iP̄ Y.

GDP is then

C = WL̄+ T ⇔ logC = logW + log L̄→ log


1→

N∑

i=1

▷̂Si ◁i


.

D.7 Dispersed returns-to-scale economy
In this online supplement, we consider the dispersed returns-to-scale economy. Specifically,

consider the initial economy (we will use subscripts b to mark any quantities in that economy).
From (10), firm l in sector i chooses the following returns to scale:

1

1→ ωb
il

=
1

2ϑi

(
φbil + sbi

)
, (89)

where sb
i
= logP b

i
→ logHb

i
in the initial economy. Furthermore, from (17), we know that

1

1→ ω̂b
i

=
1

2ϑi
(
1→ ⇁b

i

)
(
µb

i + sbi

)
, (90)

where ⇁b

i
=

(ϱb
i )

2

2ϖi
.

Suppose now that there is a change in the distribution of φb
il
, such that the mean changes from

µb

i
to µi, and the standard deviation changes from σb

i
to σi. Such a change can reflect an increase

in µ for all sectors (Section 7.2) or removal of sales tax (Section 7.3). Then, productivity φb
il

shifts
to φil, where

φb → µb
i

σb
i

=
φil → µi

σi
.

In the dispersed economy, firms can adjust all their choices except returns to scale. The free-entry
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condition (8)
 ↘

→↘
exp


logPi +

φil + ai
(
ωb
il

)
+ ωb

il
si

1→ ωb
il



  
=!il(ωil,ϑbil)

fi (φil) dφil = ϖiW,

where si = logPi → logHi, and ωb
il

is given by (89). Taking this integral, we get

exp





[(
µb

i
+ sb

i

) (
1→ ⇁b

i

ϱi

ϱb
i

)
+ ⇁b

i
(µi + si)

]2
1

1→εb
i

(
2
ϑi
ϑb
i
→1

) →
(
µb
i
+ sb

i

)2

2
(
σb

i

)2




≃ (91)

exp




N∑

j=1

ςij log
Pj

W



 1√
1→ ⇁b

i

(
2 ϱi

ϱb
i
→ 1

) = ϖi.

Next, we can define ω̂i in the same way as usual, ω̂i =
∫
Mi

0
ωil
ωi
ωb
il
dl, where again ωb

il
is given by

(89). Omitting tedious yet straightforward calculations, we get

1

1→ ω̂i
=

1

2ϑi
(
1→ ⇁b

i

(
2 ϱi

ϱb
i
→ 1

))
(

µb

i + sbi

)
+ ⇁b

i

(
µi + si →

(
µb

i + sbi

) σi
σb

i

)
. (92)

Combining (90), (91), and (92), we get

logW = ε≃ (I → diag (ω̂)ς)→1 z,

where

zi =µi →




1→ ⇁b

i

(
2 ϱi

ϱb
i
→ 1

)

1→ ω̂i
→ 2

1→ ⇁b

i

1→ ω̂b
i

(
1→ ⇁b

i

σi
σb
i

)
+ (1→ ω̂i)

(
1→ ⇁b

i

1→ ω̂b
i

)2


 ϑi
⇁b
i

→ (1→ ω̂i)


1

2
log

(
1→ ⇁b

i

(
2
σi
σb

i

→ 1

))
+ log ϖ


.

GDP is then Y = WL̄.
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