Herding through Booms and Busts

Edouard Schaal CREI, ICREA, UPF, BGSE and CEPR Mathieu Taschereau-Dumouchel Cornell University

- Many historical recessions can be described as bubble-like "boom-bust" cycles
 - New technology accompanied by massive investment
 - Followed by a sharp contraction in macro aggregates
 - E.g.: IT-led boom in late 1990s

- Many historical recessions can be described as bubble-like "boom-bust" cycles
 - New technology accompanied by massive investment
 - Followed by a sharp contraction in macro aggregates
 - E.g.: IT-led boom in late 1990s
- A prominent view is that these cycles are expectations driven (Pigou, 1927)
 - Most of the literature: exogenous movements in expectations
 - But expectations have a life of their own
 - Why do people become optimistic in the first place?
 - · How can we explain the evolution of beliefs from optimistic to pessimistic?

- Many historical recessions can be described as bubble-like "boom-bust" cycles
 - New technology accompanied by massive investment
 - Followed by a sharp contraction in macro aggregates
 - E.g.: IT-led boom in late 1990s
- A prominent view is that these cycles are expectations driven (Pigou, 1927)
 - Most of the literature: exogenous movements in expectations
 - But expectations have a life of their own
 - Why do people become optimistic in the first place?
 - How can we explain the evolution of beliefs from optimistic to pessimistic?
- An important driver of expectations is the observation of others
 - ► Investment begets investment ⇒ herding

- We embed a model of rational herding into a business cycle framework
 - Agents learn from observing the investment behavior of others (social learning)
 - People can collectively fool themselves into thinking they're in a boom until they realize their mistake (bust)

- We embed a model of rational herding into a business cycle framework
 - Agents learn from observing the investment behavior of others (social learning)
 - People can collectively fool themselves into thinking they're in a boom until they realize their mistake (bust)
- Boom-bust cycles as false-positives
 - New technology arrives with uncertain quality
 - Agents have private information and observe the investment decisions of others
 - Importantly, we assume that there is common noise in private signals
 - · correlation of beliefs due to agents having similar sources of information
 - High investment indicates either
 - good technology, or
 - · bad technology but agents received optimistic private signals.

• Development of a boom-bust cycle:

- Unusually large realization of common noise may send the economy on self-confirming boom
 - · agents have optimistic private signals and invest a lot
 - · high investment is mistakenly attributed to technology being good
 - · agents invest more which seems to confirm initial assessment
 - more investment ⇒ more optimism ⇒ more investment...
- But agents are rational and information keeps arriving, so probability of false-positive state rises
 - · at some point, most pessimistic agents stop investing
 - · suddenly, high beliefs are no longer confirmed by experience
 - sharp reversal in beliefs and collapse of investment \Rightarrow bust
 - · truth is learned in the long run

• Results

- Model can produce endogenous boom-bust cycles
- ▶ Theory has predictions on bubble-like phenomena over the business cycle
 - · When/why they arise, under what conditions, at what frequency
 - When/why they burst without exogenous shock
- Since cycle is endogenous, policies are particularly powerful
 - · Policies can affect the boom duration/amplitude and timing of the burst
 - · Optimal policies (tax) leans against the wind, monetary policy ill-suited
- Quantification
 - Theory can generate realistic, sizable boom-bust cycles
 - · Endogenous boom-bust cycles above and below trend

Bubbles

- Macro: rational bubbles (Tirole, 1985; Martin and Ventura, 2012; Galí, 2014...), financial frictions (Kocherlakota, 1992; Miao and Wang, 2013, 2015...)
 - \Rightarrow specific sequence of exogenous sunspots
- Finance: agency problem (Allen and Gale, 2000;...), heterogeneous beliefs (Harrison and Kreps, 1978; Allen et al., 1993), asymmetric information (Abreu and Brunnermeier, 2003;...)
 - \Rightarrow price \neq fundamental, dynamics not the focus
- News/noise-driven cycle
 - Beaudry and Portier (2004, 2006, 2014), Jaimovich and Rebelo (2009), Lorenzoni (2009), Schmitt-Grohé and Uribe (2012), Blanchard, Lorenzoni and L'Huillier (2013), etc.
 - \Rightarrow Our theory can endogenize the information process that leads to news-driven cycles
- Herding
 - Banerjee (1992), Bikhchandani et al. (1992), Avery and Zemsky (1998), Chamley (2004)
 - Drawbacks of early herding models:
 - · Rely crucially on agents moving sequentially and making binary decisions
 - · Boom-busts only arise for specific sequence of events and particular ordering of people
 - This paper
 - Relax sequentiality of moves and binarity of decisions (> easier intro to standard models)
 - Boom-bust cycles arise endogenously after a single impulse shock (⇒natural evolution of beliefs in the presence of common noise)

1. Simplified learning model

2. Business-cycle model with herding

- Simple, abstract model
- Time is discrete $t = 0, 1, ..., \infty$
- Unit continuum of risk neutral agents indexed by $j \in [0,1]$

- Agents choose whether to invest or not, $i_{jt} = 1$ or 0
 - Investing requires paying the cost c
- Investment technology has common return

$$R_t = \theta + u_t$$

with:

- ▶ Permanent component $\theta \in \{\theta_H, \theta_L\}$ with $\theta_H > \theta_L$, drawn once-and-for-all
- Transitory component $u_t \sim \text{iid } F^u$

- Agents receive a private signal s_j drawn from distributions with pdf $f_{\theta+\varepsilon}^s(s_j)$
 - ξ is some common noise drawn from CDF F^{ξ}
 - captures the fact that agents learn from common sources (media, govt)
- Example: $f_{\theta+\xi}^{s} \sim \mathcal{N}\left(\theta+\xi, \sigma_{s}^{2}\right)$

$$s_{j} = \theta + \xi + v_{j}$$
 where $v_{j} \sim \text{iid } \mathcal{N}\left(0, \sigma_{s}^{2}\right)$

- In addition, all agents observe public signals
 - return on investment R_t
 - measure of investors m_t (social learning)
- Measure of investors is

$$m_t = \int_0^1 i_{jt} dj + \varepsilon_t$$

where $\varepsilon_t \sim \text{iid} \ F^m$ captures informational noise or noise traders

- Measure m_t is an endogenous nonlinear aggregator of private information
 - how much information is released varies over time

Simple timing:

- At date t = 0: θ , ξ and the s_i 's are drawn once and for all
- At date $t \ge 0$,
 - 1. Agent j chooses whether to invest or not
 - 2. Production takes place
 - 3. Agents observe $\{R_t, m_t\}$ and update their beliefs

Learning Model: Information Sets

- Beliefs are heterogeneous
- Denote public information to an outside observer at beginning of period t

$$\mathcal{I}_t = \{R_{t-1}, m_{t-1}, \dots, R_0, m_0\}$$
$$= \{R_{t-1}, m_{t-1}\} \cup \mathcal{I}_{t-1}$$

 Multiple sources of uncertainty so must keep track of joint distribution of public beliefs:

$$\Lambda_t\left(\tilde{\theta},\tilde{\xi}\right) = \Pr\left(\theta = \tilde{\theta}, \xi = \tilde{\xi} \,|\, \mathcal{I}_t\right)$$

• The information set of agent *j* is

$$\mathcal{I}_{jt} = \mathcal{I}_t \cup \left\{ s_j \right\}$$

• Recover individual beliefs Λ_{jt} using Bayes' law over Λ_t and s_j

Learning Model: Characterizing Beliefs

• For ease of exposition, simplify aggregate uncertainty to three states

$$\omega = (\theta, \xi) \in \left\{ \underbrace{(\theta_L, 0)}_{\text{bad}}, \underbrace{(\theta_H, 0)}_{\text{good}}, \underbrace{(\theta_L, \overline{\xi})}_{\text{false-positive}} \right\} \text{ with } \theta_L < \theta_L + \overline{\xi} < \theta_H$$

- $\omega = \left(\theta_L, \overline{\xi}\right)$ is the false-positive state: technology is low, but agents receive unusually positive news
- Just need to keep track of two state variables (p_t, q_t)

$$p_t \equiv \Lambda_t \left(\theta_H, 0 \right)$$
 and $q_t \equiv \Lambda_t \left(\theta_L, \overline{\xi} \right)$

• Can recover private beliefs $p_{jt} \equiv p_j (p_t, q_t, s_j)$ and $q_{jt} \equiv q_j (p_t, q_t, s_j)$ from Bayes' law

Details

• Agents invests iff

 $E_{jt}\left[R_t | \mathcal{I}_{jt}\right] \geqslant c$

• Under \checkmark for f^s , optimal investment decision is a cutoff rule $s^*(p_t, q_t)$:

$$i_{jt} = 1 \Leftrightarrow s_j \geqslant s^* \left(p_t, q_t
ight)$$

• The measure of investing agents is

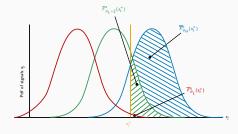
$$m_t = \overline{F}_{\theta+\xi}^s \left(s^* \left(p_t, q_t \right) \right) + \varepsilon_t$$

- $\overline{F}_{\theta+\xi}^{s}(s_{j})$ is complementary CDF of private signal s_{j}
- ► Since s^* (p_t, q_t) and $\left\{\overline{F}^s_{\omega}\right\}_{\omega \in \Omega}$ known to all agents, m_t is a noisy signal about $\theta + \xi$

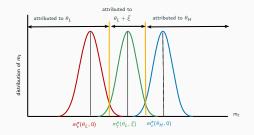
Bayesian updating

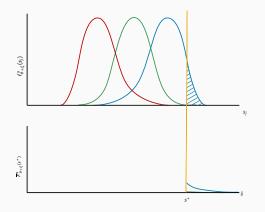
Endogenous Learning: 3-state example

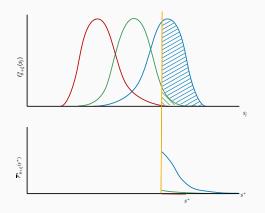
• In the 3-state example, only three measures m_t are possible (up to ε_t)

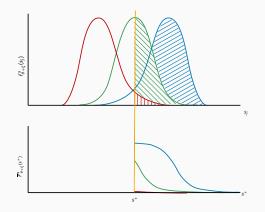


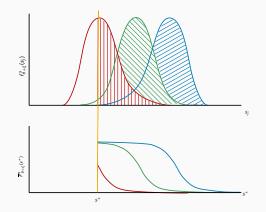
• Distributions of $m_t = \overline{F}^s\left(\hat{s}_t\right) + \varepsilon_t$ in the 3 states of the world



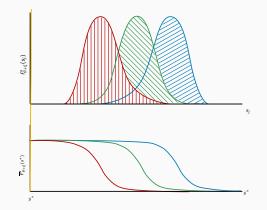




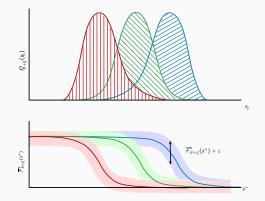


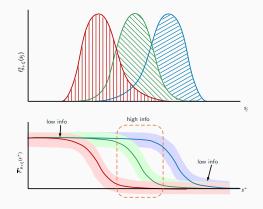


• Informativeness of m_t varies over time



• Informativeness of m_t varies over time





Why is this interesting?

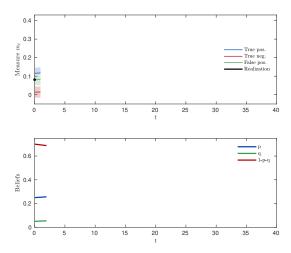
- Asymmetry
 - helps explain why booms are slow to take off when few people invest and crashes are sudden
- Persistence
 - "bubbly situations" can persist for a long time when agents herd on same action (information cascade)
- Policy
 - some policy intervention may suddenly release information and trigger bust
 - motivates leaning-against-the-wind policies

• Parametrization

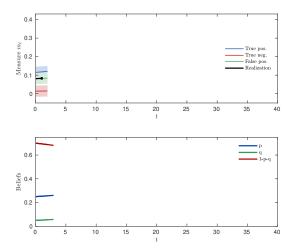
- Fundamentals: $\theta_h = 1.0$, $\theta_l = 0.5$, $\overline{\xi} = 0.4$
- ► Gaussian signals:

$$s_{j}= heta+\xi+v_{j}$$
 with $v_{j}\sim\mathcal{N}\left(0,\sigma_{v}^{2}
ight)$

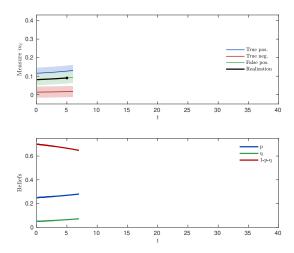
• Priors:
$$P(\theta_l, \overline{\xi}) \ll P(\theta_h, 0)$$



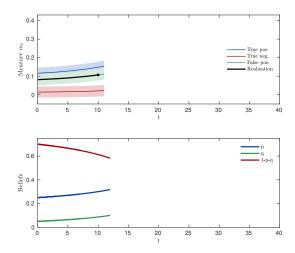
- Mechanism
 - ▶ high investment rates consistent with true and false positive ⇒ p and q rise progressively
 - ▶ for initial q₀ sufficiently low, most of it is attributed to high state (p dominates)



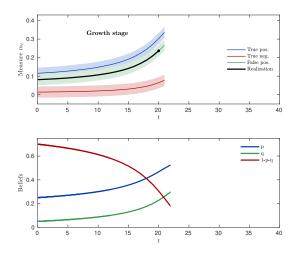
- Mechanism
 - ▶ high investment rates consistent with true and false positive ⇒ p and q rise progressively
 - ▶ for initial q₀ sufficiently low, most of it is attributed to high state (p dominates)



- Mechanism
 - ▶ high investment rates consistent with true and false positive ⇒ p and q rise progressively
 - for initial q_0 sufficiently low, most of it is attributed to high state (p dominates)

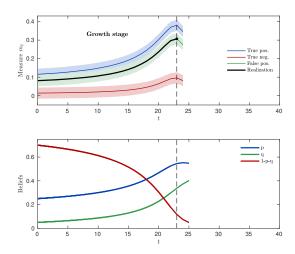


- Mechanism
 - ▶ high investment rates consistent with true and false positive ⇒ p and q rise progressively
 - for initial q_0 sufficiently low, most of it is attributed to high state (p dominates)



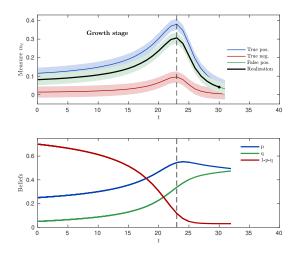
- Mechanism
 - ▶ high investment rates consistent with true and false positive ⇒ p and q rise progressively
 - for initial q_0 sufficiently low, most of it is attributed to high state (p dominates)

• Bursting phase



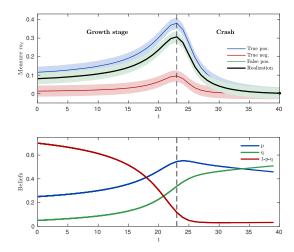
- Mechanism
 - \blacktriangleright when q high enough, some investors leave the market, releasing more information
 - \blacktriangleright early exit of investors incompatible with high state \Rightarrow quick collapse of investment

• Bursting phase

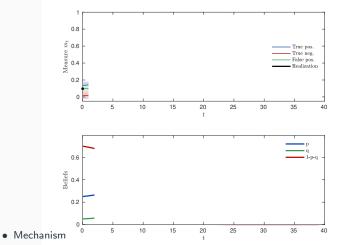


- Mechanism
 - \blacktriangleright when q high enough, some investors leave the market, releasing more information
 - \blacktriangleright early exit of investors incompatible with high state \Rightarrow quick collapse of investment

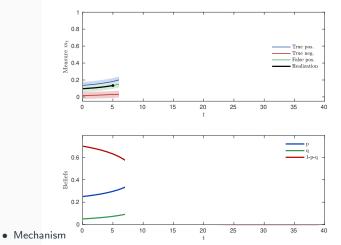
• Bursting phase



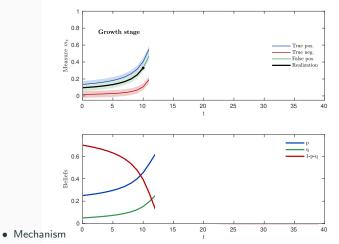
- Mechanism
 - \blacktriangleright when q high enough, some investors leave the market, releasing more information
 - \blacktriangleright early exit of investors incompatible with high state \Rightarrow quick collapse of investment



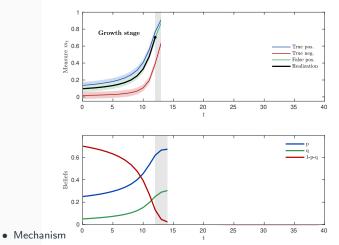
- p is so high that almost everyone invests, releasing close to no information
- because information not exactly 0, q slowly rises in the background



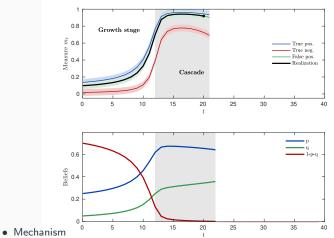
- p is so high that almost everyone invests, releasing close to no information
- because information not exactly 0, q slowly rises in the background



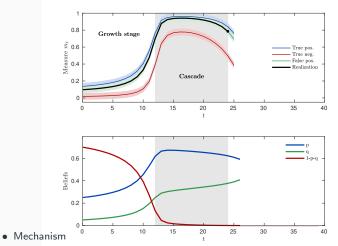
- \blacktriangleright p is so high that almost everyone invests, releasing close to no information
- because information not exactly 0, q slowly rises in the background



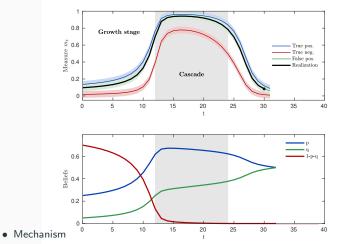
- p is so high that almost everyone invests, releasing close to no information
- because information not exactly 0, *q* slowly rises in the background



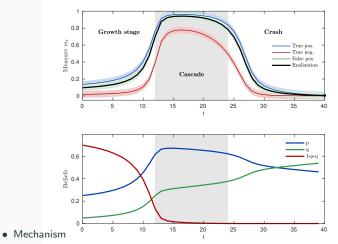
- \blacktriangleright p is so high that almost everyone invests, releasing close to no information
 - because information not exactly 0, q slowly rises in the background



- \blacktriangleright p is so high that almost everyone invests, releasing close to no information
- because information not exactly 0, q slowly rises in the background



- p is so high that almost everyone invests, releasing close to no information
- because information not exactly 0, q slowly rises in the background



- p is so high that almost everyone invests, releasing close to no information
- because information not exactly 0, q slowly rises in the background

- Allow ξ to take a continuum of values \bigcirc Go
 - Results survive
 - Proposition: there always exists a threshold <u>ξ</u> such that ξ ≥ <u>ξ</u> triggers a boom and bust episode.
- Planner's problem 🕑 😡
 - The equilibrium is inefficient
 - Planner adopts lean-against-the-wind policies

- 1. Learning model
- 2. Business-cycle model with herding

• Objective

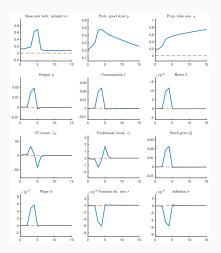
- How do boom-and-bust in beliefs lead to general macroeconomic expansion, followed by a below-trend contraction?
- Full-fledge macro model amenable for quantification and policy analysis
- - 1. Dynamic arrival of new technologies and technology choice
 - 2. Entrepreneurs choose new vs. old technology and learn from measure of tech adopters
 - 3. Two types of capital: Traditional (T) and Information Technology (IT)
 - IT investment is required to enjoy the new technology
 - 4. Nominal rigidities
 - · Study impact of monetary policy
- Mechanism
 - Entrepreneurs choose new vs. old technology and agents learn from measure of tech adopters
 - Boom fueled by build-up of IT capital and positive wealth effect on consumption
 - Belief reversal causes sudden realization of misallocation in investments
 - \Rightarrow negative wealth effect and collapse of IT investment causing recession

IRF to False-Positive

- Calibration
 Details
 - Based on the dot-com boom-bust episode
 - ▶ Uses data from the Survey of Professional Forecaster to discipline beliefs

IRF to False-Positive

- Calibration
 Details
 - Based on the dot-com boom-bust episode
 - ▶ Uses data from the Survey of Professional Forecaster to discipline beliefs
- Impulse response: false positive $(\theta, \xi) = (\theta_l, 0.75 (\theta_h \theta_l))$



• Mechanism

- ▶ Positive wealth effect c ↗,
- ▶ Build-up of future IT capital i^{IT} >
- Anticipation of future productivity growth $\Rightarrow \pi \searrow$, $r \searrow$
- Aggregate demand $\nearrow \Rightarrow y \nearrow, h \nearrow$
- Quantitative
 - Endogenous boom-bust with positive comovement between c, i, h and y
 - $\blacktriangleright\,$ But boom-bust may arise at high probability (benchmark 15% $\gg 10^{-6}$ (Avery and Zemsky, 1998)

- Govt policies are powerful in this setup
 - Learning externality: agents do not internalize that investment affects release of info
 - Since cycle is endogenous, policies can substantially dampen boom-busts
- Monetary policy that leans-against-the-wind: Details
 - May succeed in dampening fluctuations
 - But barely affects the new vs. old technology trade-off to take care of learning externality
 - Stabilizes boom-bust in the new technology at the expense of other sector

- Introduce herding phenomena as a potential source of business cycles
- We have proposed a business cycle model with herding
 - people can collectively fool themselves for extended period of time
 - endogenous boom-bust cycles patterns after unusually large noise shocks
 - the model has predictions on the timing and frequency of such phenomena
- Quantitatively, such crises can arise with relatively high probability despite fully rational agents
- Provides rationale for leaning-against-the-wind policies which can substantially dampen fluctuations

• Private beliefs (p_{jt}, q_{jt}) are given by Bayes' law:

$$p_{jt} \equiv p_j \left(p_t, q_t, s_j \right) = \frac{p_t f^s_{\theta_H} \left(s_j \right)}{p_t f^s_{\theta_H} \left(s_j \right) + q_t f^s_{\theta_L + \overline{\xi}} \left(s_j \right) + (1 - p_t - q_t) f^s_{\theta_L} \left(s_j \right)}$$
$$q_{jt} \equiv q_j \left(p_t, q_t, s_j \right) = \frac{q_t f^s_{\theta_L} \left(s_j \right)}{p_t f^s_{\theta_H} \left(s_j \right) + q_t f^s_{\theta_L + \overline{\xi}} \left(s_j \right) + (1 - p_t - q_t) f^s_{\theta_L} \left(s_j \right)}$$

• Under MLRP, individual beliefs p_i are monotonic in s_i

$$\frac{\partial p_j}{\partial s_j} \left(p_t, q_t, s_j \right) \ge 0$$

- Assumption: F_x^s satisfies monotone likelihood ratio property (MLRP)
 - *i.e.*: a higher s signals a higher $\theta + \xi$

$$x_2 > x_1 \text{ and } s_2 > s_1 \quad \Rightarrow \quad \frac{f_{x_2}^s\left(s_2\right)}{f_{x_1}^s\left(s_2\right)} \ge \frac{f_{x_2}^s\left(s_1\right)}{f_{x_1}^s\left(s_1\right)} \quad (\mathsf{MLRP})$$

• Satisfied by many standard distributions like $f_{\theta}^{s} \sim N\left(\theta, \sigma^{2}\right)$, etc.

• After observing m_t , public beliefs are updated

$$p_{t+1} = \frac{p_t f^m \left(m_t - \overline{F}^s_{\theta_H} \left(s_t^* \right) \right)}{\Omega}$$

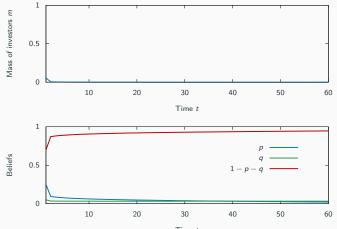
and

$$q_{t+1} = \frac{q_t f^m \left(m_t - \overline{F}^s_{\theta_L + \overline{\xi}}\left(s^*_t\right)\right)}{\Omega}$$

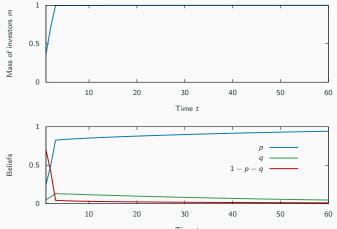
where

$$\Omega = p_{t}f^{m}\left(m_{t} - \overline{F}_{\theta_{H}}^{s}\left(s_{t}^{*}\right)\right) + q_{t}f^{m}\left(m_{t} - \overline{F}_{\theta_{L}}^{s}\left(s_{t}^{*}\right)\right) + (1 - p_{t} - q_{t})f^{m}\left(m_{t} - \overline{F}_{\theta_{L}}^{s}\left(s_{t}^{*}\right)\right)$$

• Similar updating rule with exogenous signal $R_t = \theta + u_t$



Time t

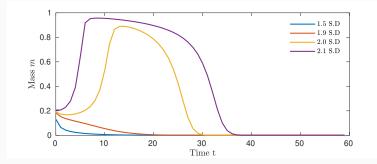


Time t

- Previous simulations may look knife-edge
 - require state $(\theta_I, \overline{\xi})$ to be infrequent and resemble $(\theta_H, 0)$
- We now allow ξ to take a continuum of values
- Take-away:
 - ▶ small shocks (<1 SD) are quickly learned,
 - but unusually large shocks lead to boom-bust pattern

Simulations: Continuous ξ

• True fundamental $(\theta_I = 0, \xi = \text{multiple of } \sigma_{\xi})$



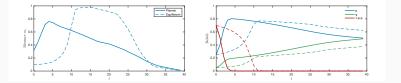
Proposition

In the Gaussian case, for θ and ξ independent and R_t sufficiently uninformative, there always exists a threshold $\underline{\xi}$ such that $\xi \ge \underline{\xi}$ triggers a boom and bust episode.

Return

Welfare

- Information externality: agents do not internalize how investment affects the release of information
 - They invest too much in a boom (too little in a negative boom)
- We study the constrained-efficient planning problem 🕑 😡
 - Optimal policy leans against the wind to maximize collect of information
 - Implementation with investment tax/subsidy
 - Stabilizing "bubbles" comes at the cost of slowing good booms



• We adopt the welfare criterion from Angeletos and Pavan (2007)

$$V\left(p,q
ight) = \max_{\hat{s}} E_{ heta,\xi} \left[\int_{\hat{s}} E\left[heta - c |\mathcal{I}_j
ight] dj + \gamma V\left(p',q'
ight) |\mathcal{I}
ight]$$

where \mathcal{I} is public info and \mathcal{I}_i is individual info

• Crucially, the planner understands how \hat{s} affects evolution of beliefs

Return

Business Cycle Model: Summary

- Four types of agents:
 - Households, Entrepreneurs, Retailers and Monetary Authority
- Three sectors: entrepreneur sector, retail sector and final good
- Two types of capital: IT vs. traditional
- Entrepreneurs choose between two technologies: new vs. old
 - new technology more intensive in IT capital

$$Y_{it} = A_{it} \left(\omega_i \left(K_i^{IT} \right)^{\frac{\zeta-1}{\zeta}} + (1 - \omega_i) \left(K_i^T \right)^{\frac{\zeta-1}{\zeta}} \right)^{\alpha \frac{\zeta}{\zeta-1}} (L_{it})^{1-\alpha}, \ i \in \{n, o\}$$

- Herding in technology adoption:
 - $\theta \in \{\theta_H, \theta_L\}$ is drawn and entrepreneurs receive private signals (+ common noise ξ)
 - Initially $A_{nt} = A_{ot}$ until technology matures (prob. λ) then $A_{nt} = \theta$.
 - Measure of entrepreneurs using new technology

$$m_t = (1 - \mu) \overline{F}^s_{\theta + \xi} \left(s^*_t \right) + \mu \varepsilon_t$$

where $\mu =$ measure of noise entrepreneurs

Entrepreneurs learn from observing m_t

• Agents:

- Households Details
- Retailers and monetary authority Petails
- Entrepreneurs
- Three sectors: entrepreneur sector, retail sector and final good
 - Entrepreneur sector: technology choice, no nominal rigidities
 - ▶ Retail sector: buys the bundle of goods from entrepreneurs, subject to nominal rigidities
 - Final good: bundle of retail goods used for consumption and investment

Business Cycle Model: Entrepreneurs

- Unit measure of entrepreneurs indexed by $j \in [0,1]$
 - monopolistic producers of a single variety
- At any date, there is a traditional technology ("old") to produce varieties

$$Y_{jt}^{o} = A^{o} \left(\omega_{o} \left(K_{o}^{IT} \right)^{\frac{\zeta-1}{\zeta}} + (1 - \omega_{o}) \left(K_{o}^{T} \right)^{\frac{\zeta-1}{\zeta}} \right)^{\alpha \frac{\zeta}{\zeta-1}} \left(L_{jt}^{o} \right)^{1-\alpha}$$

• With probability η , an innovative technology arrives ("new")

$$Y_{jt}^{n} = A_{t}^{n} \left(\omega_{n} \left(K_{n}^{lT} \right)^{\frac{\zeta-1}{\zeta}} + (1 - \omega_{n}) \left(K_{n}^{T} \right)^{\frac{\zeta-1}{\zeta}} \right)^{\alpha \frac{\zeta}{\zeta-1}} \left(L_{jt}^{n} \right)^{1-\alpha}$$

where

 $\omega_n > \omega_o$

• The new technology needs to mature to become fully productive

$$A^n_t = \begin{cases} A^o & \text{before maturation} \\ \theta & \text{after} \end{cases}$$

- The new technology matures with probability λ per period
- The true productivity θ is high or low $\theta \in \{\theta_H, \theta_L\}$ with $\theta_H > \theta_L$

- Each period, entrepreneurs choose which technology to use
 - for simplicity, assume no cost of switching so problem is static
 - denote m_t the measure of entrepreneurs that adopt the new technology
- A fraction μ of entrepreneurs is clueless when it comes to technology adoption
 - "noise entrepreneurs"
 - random fraction ε_t adopts the new technology

• At t = 0, all entrepreneurs receive a private signal about θ from pdf $f_{\theta+\xi}^s$

• Social learning takes place through economic aggregates which reveal

$$m_{t} = (1 - \mu) \overline{F}_{\theta + \xi}^{s} (s_{t}^{*}) + \mu \varepsilon$$

- Assume public signal $S_t = \theta + u_t$ which capture media, statistical agencies, etc.
- No additional uncertainty, hence information evolves identically to learning model

Return to summary of the model
 Return

- Households live forever, work, consume and save in capital
- Preferences

$$E\left[\sum eta^t \log\left(C_t - rac{L_t^{1+rac{1}{\psi}}}{1+rac{1}{\psi}}
ight)
ight], \quad \sigma \geqslant 1, \psi \geqslant 0,$$

where
$$C_t = \left(\int_0^1 C_{jt}^{\frac{\sigma-1}{\sigma}} dj\right)^{\frac{\sigma}{\sigma-1}}$$
 is the final good

• Law of motion for the two capitals

$$K_{jt+1} = (1 - \delta) K_{jt} + I_{jt}, j = o, n$$

• Budget constraint

$$C_t + \sum_{j=o,n} I_{jt} + \frac{B_t}{P_t} = W_t L_t + \sum_{j=o,n} R_{jt} K_{jt} + \frac{1+r_{t-1}}{1+\pi_t} \frac{B_{t-1}}{P_{t-1}} + \Pi_t$$

Return

• Retail sector:

- buys the bundle of goods produced by entrepreneurs
- differentiates it one-for-one without additional cost
- $\blacktriangleright\,$ subject to Calvo-style nominal rigidity \rightarrow standard NK Phillips curve
- Monetary authority follows the Taylor rule

$$r_t = \phi_\pi \pi_t + \phi_y y_t$$

◀ Return

Parameter	Value	Target	
α	.36	Labor share	
β	.99	4% annual interest rate	
θ_p	.75	1 year price duration	
σ	10	Markups of about 11%	
ϕ_y	.125	Clarida, Gali and Gertler (2000)	
ϕ_{π}	1.5	Clarida, Gali and Gertler (2000)	
ψ	2	Frisch elasticity of labor supply	
ζ	1.71	Elas. between types of K (Boddy and Gort, 1971)	

Objective:	target moments	from the	late 9	0s Dot	com bubble
------------	----------------	----------	--------	--------	------------

Parameter	Value	Target
ωο	.11	Share IT capital 1991
ω_n	.26	Share IT capital 2007
λ	1/22	Duration of NASDAQ boom-bust 1995Q4-2001Q1
θ_h	1.099	SPF's highest growth forecast over 1995-2001
θ_I	.912	SPF's lowest growth forecast over 1995-2001
sj	N (0, .156)	SPF's avg. dispersion in forecasts over 1995-2001
μ	15%	Fraction of noise traders
ε	Beta(2, 2)	Non-uniform distribution over $[0, 1]$
<i>P</i> 0	0.20	See below
q_0	0.15	See below

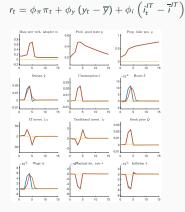
Tricky parameters:

- Noise traders μ and ε : little guidance in the literature (David, et al. 2016)
 - Sensitivity $\mu \in [0.02, 0.2]$: agents learn too fast if $\mu < 0.02$, too slowly if $\mu > 0.2$ (no quick collapse)
- p0, q0: hard to tell with a single historical episode
 - The paper offers sensitivity over these two parameters

Return

Monetary Policy

• Taylor rule that leads against the wind:



- A leaning-against-the-wind monetary policy:
 - Dampens fluctuations in output (welfare +0.002%)
 - But fails to improve tech adoption threshold and info collection
 - Other more directed tools (tech subsidies/taxes) more promising