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Introduction

• Firms rely on complex supply chains to get intermediate inputs

• These chains are constantly disrupted by suppliers going out of business

• Exit of one firm can push its suppliers and customers to exit
▶ Cascade of firm failures

• These cascades change the structure of the production network
▶ Affect how micro shocks aggregate into macro fluctuations

How do the entry/exit decisions of the firms affect the structure of the production network and
aggregate fluctuations?

2 / 37



Introduction

• Firms rely on complex supply chains to get intermediate inputs

• These chains are constantly disrupted by suppliers going out of business

• Exit of one firm can push its suppliers and customers to exit
▶ Cascade of firm failures

• These cascades change the structure of the production network
▶ Affect how micro shocks aggregate into macro fluctuations

How do the entry/exit decisions of the firms affect the structure of the production network and
aggregate fluctuations?

2 / 37



Introduction

• Firms rely on complex supply chains to get intermediate inputs

• These chains are constantly disrupted by suppliers going out of business

• Exit of one firm can push its suppliers and customers to exit
▶ Cascade of firm failures

• These cascades change the structure of the production network
▶ Affect how micro shocks aggregate into macro fluctuations

How do the entry/exit decisions of the firms affect the structure of the production network and
aggregate fluctuations?

2 / 37



Introduction

• Firms rely on complex supply chains to get intermediate inputs

• These chains are constantly disrupted by suppliers going out of business

• Exit of one firm can push its suppliers and customers to exit
▶ Cascade of firm failures

• These cascades change the structure of the production network
▶ Affect how micro shocks aggregate into macro fluctuations

How do the entry/exit decisions of the firms affect the structure of the production network and
aggregate fluctuations?

2 / 37



Introduction

• Firms rely on complex supply chains to get intermediate inputs

• These chains are constantly disrupted by suppliers going out of business

• Exit of one firm can push its suppliers and customers to exit
▶ Cascade of firm failures

• These cascades change the structure of the production network
▶ Affect how micro shocks aggregate into macro fluctuations

How do the entry/exit decisions of the firms affect the structure of the production network and
aggregate fluctuations?

2 / 37



Approach and results

Firms are connected with a finite set of suppliers/customers

• Fixed cost to operate → Firms operate or not depending on economic conditions
• Links between firms are active or not → Changes to the structure of the network

Key economic force: Complementarities in operation decisions of nearby firms

Efficient organization of production

• Tight clusters centered around productive firms
• A small change can trigger large reorganization of the network

Cascades of firm shutdowns

• Well-connected firms are hard to topple but create big cascades

Aggregate fluctuations

• Recessions feature fewer well-connected firms and less clustering
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Why study this problem

• Global survey of small and medium firms
▶ 39% report that losing their main supplier would adversely affect their operation, and 14% would need

to significantly downsize their business, require emergency support or shut down (Zurich Insurance
Group, 2015)

• Fall 2008: carmakers are on the verge of bankruptcy
▶ Policymakers worry about cascading effects through supply chains
▶ Ford CEO calls for bailout of GM and Chrysler in Senate testimony

• Do entry/exit decisions matter for the shape of the network?
▶ US data: 20% to 40% of link destructions occur with exit of supplier or customer
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Model



Model

• There are n firms that produce a differentiated good that can be used in the
▶ production of a final good

C ≡

 n∑
j=1

β
1
σ
j c

σ−1
σ

j

 σ
σ−1

▶ production of other differentiated goods

• Representative household
▶ Consumes the final good
▶ Supplies L units of labor inelastically
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Model

• Firm j produces good j with the production function

yj =
A

α
αj
j (1 − αj)

1−αj
zjθj

( n∑
i=1

Ω
1
εj
ij x

εj−1
εj

ij

) εj
εj−1 αj

l1−αj
j

• Firm j can only use good i as input if there is a connection from firm i to j
▶ Ωij > 0 if connection and Ωij = 0 otherwise
▶ A connection can be active or inactive
▶ Matrix Ω is exogenous

• A firm can only produce if it pays a fixed cost fjL in units of labor
▶ θj = 1 if j is operating and θj = 0 otherwise
▶ Vector θ is endogenous
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Efficient allocation and equilibrium

For today: focus on the problem of a social planner

In the paper: different equilibrium definitions

1. Variations of monopolistic competition
2. Stable equilibria (Hatfield et al. 2013, Oberfield 2018).

▶ An allocation is stable if there exist no coalition of firms that wishes to deviate.

Proposition
Every stable equilibrium is efficient.

Stable equilibrium
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Social planner

Problem P of a social planner

max
c,x,l

θ∈{0,1}n

 n∑
j=1

β
1
σ
j c

σ−1
σ

j

 σ
σ−1

subject to

1. a resource constraint for each good j

cj +
n∑

k=1
xjk ≤ A

α
αj
j (1 − αj) 1−αj

zjθj

( n∑
i=1

Ω
1
εj
ij x

εj−1
εj

ij

)αj
εj

εj−1

l1−αj
j

2. a resource constraint for labor
n∑

j=1
lj +

n∑
j=1

θjfjL ≤ L
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Social planner with exogenous θ

Define qj = w/λj

• From the FOCs, output is (1 − αj) yj = qjlj
• qj is the labor productivity of firm j

Proposition
In the efficient allocation

qj = zjθjA
( n∑

i=1
Ωijqεj−1

i

) αj
εj−1

(1)

for all j ∈ N . Furthermore, there is a unique vector q that satisfies (1).
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qj = zjθjA
( n∑

i=1
Ωijqεj−1

i

) αj
εj−1

• Access to a larger set of inputs increases productivity qj

• Access to cheaper inputs (lower 1/qi) leads to a cheaper output
• Gains in productivity propagate downstream through supply chains

Key economic force: Gains from input variety
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qj = zjθjA

 n∑
i=1

Ωij

ziθiA
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Ωki (. . .)
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Social planner with exogenous θ

With q we can solve for all other quantities easily

Lemma
Aggregate consumption is

C = Q

L −
n∑

j=1
θjfjL


where Q ≡

(∑n
j=1 βjqσ−1

j

) 1
σ−1 is aggregate labor productivity.

Other quantities
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Social planner with endogenous θ



Social planner with endogenous θ

Planner’s problem P can be expressed in terms of θ only

max
θ∈{0,1}n

Q

L −
n∑

j=1
θjfjL


with

qj = zjθjA
( n∑

i=1
Ωijqεj−1

i

) αj
εj−1

Trade-off: making firm j produce (θj = 1)

• increases labor productivity of the network Q
• reduces the amount of labor into production L −

∑n
j=1 θjfjL
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Social planner with endogenous θ

“Hard” problem (MINLP — NP Hard)

1. Feasible set θ ∈ {0, 1}n is not convex
2. Objective function is not concave

Brute force approach: exhaustive search

• Take a θ ∈ {0, 1}n, iterate on q and evaluate the objective function
• 2n vectors θ to try (≈ 106 configurations for 20 firms)
• Guaranteed to find correct solution but infeasible for n large
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Alternative approach

New solution approach: Find an alternative problem such that

P1 The alternative problem is easy to solve

P2 A solution to the alternative problem also solves P
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Reshaping P

Consider the relaxed and reshaped problem R

max
θ∈{0,1}n

Q

L −
n∑

j=1
θjfjL


with

qj = zjθjA
( n∑

i=1
Ωijqεj−1

i

) αj
εj−1

Parameters aj > 0 and bij reshape the objective function away from optimum (i.e. when 0 < θj < 1)

• For aj: if θj ∈ {0, 1} then θ
aj
j = θj

• For bij: {θi = 0} ⇒ {qi = 0} and {θi = 1} ⇒
{
θ

bij
i = 1

}
For θ ∈ {0, 1}n, aj and bij do not affect the value of the planner’s objective function
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How to pick aj and bij?

We are free to pick aj and bij to help us solve R

• Increase the concavity of R to remove local maxima
• But too much concavity might create new maximum in the middle of [0, 1]n

Economic intuition: first-order condition of R with respect to θj

But thinking at the margin is misleading!

• We want the planner to compare the whole discrete change between θ = 0 and θ = 1

The parameters aj and bij change the perceived value of good j when determining θj
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How to pick aj and bij?

What is the full gain in utility from operating j?

∆C =

∫ cj

0

∂C
∂cj

dc̃j =

∫ cj

0
β

1
σ
j c̃−

1
σ

j C
1
σ dc̃j =

σ

σ − 1cj
∂C
∂cj︸︷︷︸
λj

The benefit of operating j should be proportional to σ
σ−1 . Similar reasoning for bij.

From now on set
aj =

1
σ − 1 and bij =

1
εj − 1 − 1

σ − 1 (⋆)

and verify that these parameter values are helpful
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P1: Under some conditions the reshaped problem R is easy to solve

Proposition
Let εj = ε and αj = α for all j. If Ωij = diej for some vectors d and e then the KKT conditions are
necessary and sufficient to characterize a solution to R.

Define Ω̄ = ω (1 − I) where 1 is the all-one matrix, I the identity and ω > 0.

Proposition
Let σ = εj for all j. Suppose that the {βj}j∈N are not too far from each other and that the matrix Ω is
close enough to Ω̄. Then there exists a threshold f̄ > 0 such that if fj < f̄ for all j the KKT conditions
are necessary and sufficient to characterize a solution to R.

These two propositions only provides sufficient conditions

• Later: robustness
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are necessary and sufficient to characterize a solution to R.

These two propositions only provides sufficient conditions

• Later: robustness
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P2: A solution to R also solves P

Proposition
If θ∗ ∈ {0, 1}n solves R, then θ∗ also solves P

But why would a solution to R be in {0, 1}n? First-order condition of R with respect to θj

• Under (⋆) the marginal benefit of θj only depends on θj through aggregates Fj and Gj

• For large connected network: {Fj,Gj} → independent of θj
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Example with two firms

Relaxed problem without reshaping
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Problem: V is not concave

⇒ First-order conditions are not sufficient

⇒ Numerical algorithm can get stuck in local maxima
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Example with two firms

Relaxed problem with reshaping

 0

 0.5

 1

 0  0.5  1

θ
2

θ
1

0
.5

3

0
.5

3

0.53

0.53

0
.5

0
.5

0
.5

0
.5

0
.5

0.5

0.5

0.5

0
.4

0
.4

0
.4

0
.4

0
.4

0
.3

0
.3

0
.3

0
.2

0
.1

Problem: V is now (quasi) concave

⇒ First-order conditions are necessary and sufficient

⇒ Numerical algorithm converges to global maximum
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Tests on Small Networks

For small networks we can solve P directly using exhaustive search and compare to solution of R

With reshaping Without reshaping

n Correct θ Error in C Correct θ Error in C

8 99.9% 0.001% 86.5% 0.791%
10 99.9% 0.001% 85.2% 0.855%
12 99.9% 0.001% 84.5% 0.903%
14 99.9% 0.001% 84.0% 0.926%

Notes Break. by Ω Homo. firms Link by link Large networks

Link by link large Error FOCs

The errors come from

1. firms that are particularly isolated
2. two θ configurations with almost same output
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Tests with calibrated parameters

Same parameters as calibration

Table 1: Testing the reshaping approach for n large

With reshaping Without reshaping

n Correct θ Error in C Correct θ Error in C

1000 99.9% < 0.001% 66.5% 0.56%
Notes: Parameters as in the calibrated economy. We simulate 100 different matrices Ω

and, for each Ω, draw 100 productivity vectors z. We run the procedure described in the
appendix on each of them and report average results. x < 0.001% indicates that x > 0
but that proper rounding would yield 0.
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Economic Forces



Gains from input variety create complementarities

Operating a firm increases the incentives to operate its neighbors in Ω.

• Impact of operating 2 on the incentives to operate 1 and 3
▶ θ2 = 1 → q2 is larger if 1 operates
▶ θ2 = 1 → q3 is larger if 3 operates

• Upstream and downstream complementarities in operating decisions
→ Cascades of firm shutdowns
▶ Stronger with low elasticity of substitution ε and higher input share α
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Complementarities lead to clustering

Proposition

Operating a group of firms is more beneficial when there are more potential connections between them.

Figure 1: Clustering with three random draws of productivity z

Formal statement
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Large impact of small shock

Non-convex economy: a small shock can trigger a large reorganization

But welfare is barely affected (Theorem of the Maximum)
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The role of elasticities

large ε, large σ small ε, large σ

large ε, small σ small ε, small σ
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Quantitative Exploration



Network data

Two datasets that cover the U.S. economy

• Compustat
▶ Public firms must self-report important customers (>10% of sales)
▶ Cohen and al (2008) and Atalay et al (2011) use fuzzy-text matching algorithms to build the network

• Factset Revere
▶ Includes public and private firms, and less important relationships
▶ Data from 10-K, 10-Q, annual reports, investor presentations, websites, press releases, etc

Years Firms/year Links/year

Compustat
Atalay et al (2001) 1976 - 2009 1,300 1,500
Cohen and Frazzini (2006) 1980 - 2004 950 1,100

Factset 2003 - 2016 13,000 46,000
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Parameters

Focus on the shape of the network and limit heterogeneity across firms

Parameters from the literature

• αj = 0.5 to fit share of intermediate (Jorgenson et al 1987, Jones 2011)
• σ = εj = 5 average of estimates (Broda et al 2006)
• log zit is AR1 with log zit ∼ iid N

(
0, 0.392) (Bartelsman et al, 2013), ρz = 0.81 (Foster et al,

2008)
• fj × n = 5% to fit employment in management occupations
• n = 1000 for high precision while limiting computations

Unobserved matrix Ω

• Picked to match the observed in-degree distribution
• Generate thousands of random Ω’s and report averages

Ω Cal. econ.
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Shape of the network

What does an optimally designed network looks like?

• Compare optimal and random networks
• Differences highlights how efficient allocation shapes the network

Power law exponents Clustering coefficient

Network In-degree Out-degree

Efficient 0.97 0.92 3.45
Random 1.18 1.15 2.08

Efficient network has

• greater fraction of highly connected firms
• more clustering among firms

Def. clust. coeff.
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Cascades of shutdowns

For each firm in each year

• Look at all neighbors upstream and downstream
• Regress the share of neighbors that exit on whether the original firm exits (and some controls)
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Resilience of firms

Size of cascades and probability of exit by degree of firm

Size of cascades Probability of exit

Data Model Data Model

Average firm 0.9 1.1 11.8% 11.3%
High-degree firm 3.1 4.3 2.5% 1.7%

Notes: Size of cascades refers to firm exits up to and including the third neighbors.
High degree means above the 90th percentile.

• Highly-connected firms are hard to topple but upon shutting down they create large cascades
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Aggregate fluctuations

Static model but z shocks move output and the structure of network together

Table 2: Correlations with aggregate output

Model Datasets

Factset Compustat

AHRS CF

Power law exponents
In-degree distribution −0.53 −0.87 −0.35 −0.12
Out-degree distribution −0.63 −0.97 −0.31 −0.11

Global clustering coefficient 0.60 0.76 0.18 0.11

• Recessions: too costly to organize clusters around most productive firms
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Aggregate fluctuations

Y = Q
(

L −
∑

j
θjfjL

)

Table 3: Standard deviations of log aggregates

Output Labor Prod. Prod. labor
Y ≈ Q + L −

∑
j fjθj

Optimal network 0.10 0.10 0.009
Fixed network 0.12 0.12 0

• Volatility of output about 20% smaller when network evolves endogenously
▶ The difference comes from changes in the structure of the network

• Average output is also 11% lower

Intuition
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Conclusion

Summary

• Model of network formation through entry/exit of firms
• Complementarities lead to clustering of activity and cascades
• Calibration captures empirical cascades and correlation between network and output
• Reorganization of network leads to smaller fluctuation

In the paper: inefficient allocations

• Reshaping can also solve those equilibrium
• Different upstream/downstream complementarities
• More rigid networks
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Appendix



Stable equilibrium

• Definitions
▶ A contract between i and j is a quantity shipped xij and a payment Tij.
▶ An arrangement is a contract between all possible pairs of firms.
▶ A coalition is a set of firms J.
▶ A deviation for a coalition J consists of

1. dropping any contracts with firms not in J and,
2. altering any contract involving two firms in J.

▶ A dominating deviation is a deviation such that no firm is worse off and one firm is better off.
▶ An allocation is feasible if cj +

∑
k xjk ≤ yj and

∑
j lj + θjfjL ≤ L.
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Stable equilibrium

• Firm j maximize profits

πj = pjcj − wlj +
n∑

i=1
Tji −

n∑
i=1

Tij − θjwfjL,

subject to cj +
∑n

k=1 xjk ≤ yj and cj = βjC (pj/P)−σ.

Definition 1
A stable equilibrium is an arrangement {xij,Tij}i,j∈N 2 , firms’ choices {pj, cj, lj, θj}j∈N and a wage w
such that:

1. the household maximizes,
2. firms maximize,
3. markets clear,
4. there are no dominating deviations by any coalition, and
5. the equilibrium allocation is feasible.

Return
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Other quantities

• Labor allocation

l =
[
(In − Γ) diag

(
1

1 − α

)]−1
(
β ◦
(

q
Q

)◦(σ−1) Y
Q

)
• Output

(1 − αj) yj = qjlj
• Consumption

cj = βj
(qj

w
)σ

Y
• Intermediate goods flows

xijλ
εj
i = λ

εj
j αj

(
Azjθj

(
λj
w

)1−αj
) εj−1

αj
δijΩ

εj
ij yj.
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Tests Details

Aggregates parameters
• σ ∈ {4, 6, 8}
• log (zk) ∼ iid N

(
0, 0.252)

• Ω randomly drawn such that firms have on average 3, 4, 5, 6, 7 or 8 potential incoming
connections

▶ The corresponding average number of active incoming connections is 2.1, 3.0, 3.8, 4.5, 5.3, and 5.8,
respectively.

▶ For each non-zero: Ωij ∼ iid U ([0, 1])

Individual parameters
• fj ∼ iid U ([0, 0.2/n])
• αj ∼ iid U ([0.25, 0.75])
• εj ∼ iid U ([4, σ])
• βj ∼ iid U ([0, 1])

For each possible combination of aggregate parameters, 200 networks Ω and productivity vectors z are
drawn. An economy is kept in the sample only if the first-order conditions yield a solution for which θ

hits the bounds {0, 1}. More than 90% of the economies are kept in the sample.

Return
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Breakdown by Ω

Firms with correct θ

n Reshaping? All Ω’s More connected Ω’s Less connected Ω’s

8 Yes 99.8% 99.9% 99.6%
No 88.2% 89.1% 87.4%

10 Yes 99.7% 99.9% 99.5%
No 86.5% 87.3% 85.8%

12 Yes 99.7% 99.9% 99.5%
No 86.2% 87.0% 85.5%

14 Yes 99.7% 99.9% 99.4%
No 85.5% 86.1% 85.1%

• Less connected Ω: firms have 3, 4 or 5 potential incoming connections
• More connected Ω: firms have 6, 7 or 8 potential incoming connections

Return

37 / 37



Homogeneous Firms

Number of firms n

8 10 12 14

A. With reshaping
Firms with correct θ 99.9% 99.8% 99.8% 99.8%
Error in output Y 0.001% 0.002% 0.002% 0.002%

B. Without reshaping
Firms with correct θ 87.2% 85.8% 84.7% 83.8%
Error in output Y 0.71% 0.79% 0.85% 0.89%

Notes: Random networks with parameters f ∈ {0.05/n, 0.1/n, 0.15/n}, σz = 0.25,
α ∈ {0.45, 0.5, 0.55}, σ ∈ {4, 6, 8}, ε ∈ {4, 6, 8} and networks Ω randomly drawn such that firms have
on average 2, 4, 5, 6, 7 to 8 potential incoming connections. Each non-zero Ωij is set to 1. For each
combination of the parameters, 200 different economies are created. For each economy, productivity is
drawn from log(zk) ∼ iid N

(
0, σ2

z
)
. An economy is kept in the sample only if the first-order conditions

yield a solution for which θ hits the bounds. More than 90% of the economies are kept in the sample.

Return

37 / 37



Link by link

• Real firms: fj = 0, αj = 0.5, σ = εj = 6 and σz = 0.25
• Link firms: βj = 0, only one input and one output, fj ∼ iid U ([0, 0.1/n]), αj ∼ iid U ([0.5, 1]),

σz = 0.25
• Ω: between any two real firm, there is a link firm with probability p ∈ {0.7, 0.8, 0.9}

Number of firms With reshaping Without reshaping

Real firms m Link firms n − m Correct θ Error in C Correct θ Error in C

3 up to 6 99.9% 0.001% 94.1% 0.17%
4 up to 12 99.7% 0.003% 91.3% 0.25%
5 up to 20 99.7% 0.006% 89.2% 0.31%

Return
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Large Networks

For large networks we cannot solve PSP directly by trying all possible vectors θ

• After all the welfare-improving 1-deviations θ are exhausted:

With reshaping Without reshaping

n Correct θ Error in C Correct θ Error in C

1000 > 99.9% < 0.001% 68.9% 0.58%
Notes: 200 different Ω and z that satisfy the properties of the calibrated economy.

• No guarantee that the solution has been found but very few “obvious errors”
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Link by link

• Same parameters as before
• After all the welfare-improving 1-deviation in θ are exhausted:

Number of firms With reshaping Without reshaping

Real firms m Link firms n − m Correct θ Error in C Correct θ Error in C

10 up to 90 99.7% 0.005% 83.8% 0.46%
25 up to 600 99.9% 0.001% 80.5% 0.55%
40 up to 1560 < 99.9% < 0.001% 79.5% 0.57%

• θj converges on {0, 1} for all j in about 60-85% of the tests
▶ Even without convergence small error in output and few errors in θ
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Solution away from corners

• Sometimes the first-order conditions do not converge on a corner.
• Without excluding these simulations:

Error in C

n Reshaping? All Ω’s More connected Ω’s Less connected Ω’s

8 Yes 0.007% < 0.001% 0.014%
No 0.683% 0.640% 0.726%

10 Yes 0.013% < 0.001% 0.027%
No 0.781% 0.739% 0.823%

12 Yes 0.008% < 0.001% 0.016%
No 0.799% 0.744% 0.853%

14 Yes 0.008% 0.001% 0.016%
No 0.831% 0.801% 0.862%

Return
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Formal statement

Proposition 1
Let J ⊂ N be a group of firms. Denote by θ+ ∈ {0, 1}n the operating vector when the firms in J
operate (θ+j = 1 for j ∈ J ). Similarly, let θ− ∈ {0, 1}n be the operating vector when the firms in J do
not operate (θ−j = 0 for j ∈ J ). For all j /∈ J , assume θ+j = θ−j . Denote by Ω− a network of potential
connections and let Ω+ be identical to Ω− except that it has an additional connection between two
firms in J . Then

CΩ+

(
θ+
)
− CΩ+

(
θ−
)
≥ CΩ−

(
θ+
)
− CΩ−

(
θ−
)
,

where CΩ (θ) denotes consumption under the potential network Ω and the operating vector θ.
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Clustering coefficient

• Ω is drawn randomly so that joint distribution of in-degree and out-degree is a bivariate power law
of the first kind

f (xin, xout) = ξ (ξ − 1) (xin + xout − 1)−(ξ+1)

where ξ is calibrated to 1.85. The marginals for xin and xout follow power law with exponent ξ.
• Correlation between observed in-degree and out-degree

▶ Model: 0.67
▶ Data: 0.43
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Calibrated Network

Model Datasets

Factset Compustat

AHRS CF

Power law exponents
In-degree distribution 0.97 0.97 1.13 1.32
Out-degree distribution 0.92 0.83 2.24 2.22

Global clustering coefficient (normalized) 3.45 3.46 0.08 0.09
Notes: Global clustering coefficients are multiplied by the square roots of the number of nodes for better comparison.
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Shape of Network
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Figure 2: Model and Factset data for 2016
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Clustering coefficient

• Triplet: three connected nodes (might be overlapping)
• Triangles: three fully connected nodes (3 triplets)

Clustering coefficient = 3 × number of triangles
number of triplets
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Intuition

A given network θk is a function that maps z → Yk (z)

From extreme value theory
Var (Y) = Var

(
max

k∈{1,...,2n}
Yk

)
declines rapidly with n Return
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Intuition

A given network θk is a function that maps z → Yk (z)

From extreme value theory
Var (Y) = Var
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