Cascades and Fluctuations in an Economy with an Endogenous Production Network

Mathieu Taschereau-Dumouchel May 2023

Cornell University

• Firms rely on complex supply chains to get intermediate inputs

- These chains are constantly disrupted by suppliers going out of business
- Exit of one firm can push its suppliers and customers to exit
 Cascade of firm failures
- These cascades change the structure of the production network
 - ▶ Affect how micro shocks aggregate into macro fluctuations

Introduction

- Firms rely on complex supply chains to get intermediate inputs
- These chains are constantly disrupted by suppliers going out of business
- Exit of one firm can push its suppliers and customers to exit
 - Cascade of firm failures
- These cascades change the structure of the production network
 - ► Affect how micro shocks aggregate into macro fluctuations

- Firms rely on complex supply chains to get intermediate inputs
- These chains are constantly disrupted by suppliers going out of business
- Exit of one firm can push its suppliers and customers to exit
 - ► Cascade of firm failures
- These cascades change the structure of the production network
 - ▶ Affect how micro shocks aggregate into macro fluctuations

- Firms rely on complex supply chains to get intermediate inputs
- These chains are constantly disrupted by suppliers going out of business
- Exit of one firm can push its suppliers and customers to exit
 - ► Cascade of firm failures
- These cascades change the structure of the production network
 - Affect how micro shocks aggregate into macro fluctuations

- Firms rely on complex supply chains to get intermediate inputs
- These chains are constantly disrupted by suppliers going out of business
- Exit of one firm can push its suppliers and customers to exit
 - Cascade of firm failures
- These cascades change the structure of the production network
 - Affect how micro shocks aggregate into macro fluctuations

Firms are connected with a finite set of suppliers/customers

- Fixed cost to operate \rightarrow Firms operate or not depending on economic conditions
- Links between firms are active or not ightarrow Changes to the structure of the network

Key economic force: Complementarities in operation decisions of nearby firms

Efficient organization of production

- Tight clusters centered around productive firms
- A small change can trigger large reorganization of the network

Cascades of firm shutdowns

• Well-connected firms are hard to topple but create big cascades

Aggregate fluctuations

Firms are connected with a finite set of suppliers/customers

- Fixed cost to operate \rightarrow Firms operate or not depending on economic conditions
- Links between firms are active or not \rightarrow Changes to the structure of the network

Key economic force: Complementarities in operation decisions of nearby firms

Efficient organization of production

- Tight clusters centered around productive firms
- A small change can trigger large reorganization of the network

Cascades of firm shutdowns

• Well-connected firms are hard to topple but create big cascades

Aggregate fluctuations

Firms are connected with a finite set of suppliers/customers

- Fixed cost to operate \rightarrow Firms operate or not depending on economic conditions
- Links between firms are active or not ightarrow Changes to the structure of the network

Key economic force: Complementarities in operation decisions of nearby firms

Efficient organization of production

- Tight clusters centered around productive firms
- A small change can trigger large reorganization of the network

Cascades of firm shutdowns

• Well-connected firms are hard to topple but create big cascades

Aggregate fluctuations

Firms are connected with a finite set of suppliers/customers

- Fixed cost to operate \rightarrow Firms operate or not depending on economic conditions
- Links between firms are active or not ightarrow Changes to the structure of the network

Key economic force: Complementarities in operation decisions of nearby firms

Efficient organization of production

- Tight clusters centered around productive firms
- A small change can trigger large reorganization of the network

Cascades of firm shutdowns

• Well-connected firms are hard to topple but create big cascades

Aggregate fluctuations

Firms are connected with a finite set of suppliers/customers

- Fixed cost to operate \rightarrow Firms operate or not depending on economic conditions
- Links between firms are active or not ightarrow Changes to the structure of the network

Key economic force: Complementarities in operation decisions of nearby firms

Efficient organization of production

- Tight clusters centered around productive firms
- A small change can trigger large reorganization of the network

Cascades of firm shutdowns

• Well-connected firms are hard to topple but create big cascades

Aggregate fluctuations

- Global survey of small and medium firms
 - 39% report that losing their main supplier would adversely affect their operation, and 14% would need to significantly downsize their business, require emergency support or shut down (Zurich Insurance Group, 2015)
- Fall 2008: carmakers are on the verge of bankruptcy
 - Policymakers worry about cascading effects through supply chains
 - ▶ Ford CEO calls for bailout of GM and Chrysler in Senate testimony
- Do entry/exit decisions matter for the shape of the network?
 - US data: 20% to 40% of link destructions occur with exit of supplier or customer

- Global survey of small and medium firms
 - 39% report that losing their main supplier would adversely affect their operation, and 14% would need to significantly downsize their business, require emergency support or shut down (Zurich Insurance Group, 2015)
- Fall 2008: carmakers are on the verge of bankruptcy
 - Policymakers worry about cascading effects through supply chains
 - ▶ Ford CEO calls for bailout of GM and Chrysler in Senate testimony
- Do entry/exit decisions matter for the shape of the network?
 - US data: 20% to 40% of link destructions occur with exit of supplier or customer

- Global survey of small and medium firms
 - 39% report that losing their main supplier would adversely affect their operation, and 14% would need to significantly downsize their business, require emergency support or shut down (Zurich Insurance Group, 2015)
- Fall 2008: carmakers are on the verge of bankruptcy
 - Policymakers worry about cascading effects through supply chains
 - ▶ Ford CEO calls for bailout of GM and Chrysler in Senate testimony
- Do entry/exit decisions matter for the shape of the network?
 - ▶ US data: 20% to 40% of link destructions occur with exit of supplier or customer

Model

• There are *n* firms that produce a differentiated good that can be used in the

production of a final good

$$C \equiv \left(\sum_{j=1}^{n} \beta_{j}^{rac{1}{\sigma}} c_{j}^{rac{\sigma-1}{\sigma}}
ight)^{rac{\sigma}{\sigma-1}}$$

production of other differentiated goods

- Representative household
 - Consumes the final good
 - Supplies L units of labor inelastically

Model

• Firm *j* produces good *j* with the production function

$$y_{j} = \frac{A}{\alpha_{j}^{\alpha_{j}} (1 - \alpha_{j})^{1 - \alpha_{j}}} z_{j} \theta_{j} \left(\sum_{i=1}^{n} \Omega_{ij}^{\frac{1}{\varepsilon_{j}}} x_{ij}^{\frac{\varepsilon_{j-1}}{\varepsilon_{j}}} \right)^{\frac{\varepsilon_{j}}{\varepsilon_{j}-1} \alpha_{j}} l_{j}^{1 - \alpha_{j}}$$

• Firm *j* can only use good *i* as input if there is a connection from firm *i* to *j*

- $\Omega_{ij} > 0$ if connection and $\Omega_{ij} = 0$ otherwise
- A connection can be active or inactive
- Matrix Ω is exogenous
- A firm can only produce if it pays a fixed cost f_iL in units of labor
 - $\theta_j = 1$ if j is operating and $\theta_j = 0$ otherwise
 - Vector θ is endogenous

• Firm *j* produces good *j* with the production function

$$y_{j} = \frac{A}{\alpha_{j}^{\alpha_{j}} \left(1 - \alpha_{j}\right)^{1 - \alpha_{j}}} z_{j} \theta_{j} \left(\sum_{i=1}^{n} \Omega_{ij}^{\frac{1}{\varepsilon_{j}}} x_{ij}^{\frac{\varepsilon_{j-1}}{\varepsilon_{j}}}\right)^{\frac{\varepsilon_{j}}{\varepsilon_{j}-1}\alpha_{j}} l_{j}^{1 - \alpha_{j}}$$

- Firm *j* can only use good *i* as input if there is a connection from firm *i* to *j*
 - $\Omega_{ij} > 0$ if connection and $\Omega_{ij} = 0$ otherwise
 - A connection can be active or inactive
 - Matrix Ω is exogenous
- A firm can only produce if it pays a fixed cost f_iL in units of labor
 - $\theta_j = 1$ if j is operating and $\theta_j = 0$ otherwise
 - Vector θ is endogenous

• Firm *j* produces good *j* with the production function

$$y_{j} = \frac{A}{\alpha_{j}^{\alpha_{j}} \left(1 - \alpha_{j}\right)^{1 - \alpha_{j}}} z_{j} \theta_{j} \left(\sum_{i=1}^{n} \Omega_{ij}^{\frac{1}{\varepsilon_{j}}} x_{ij}^{\frac{\varepsilon_{j-1}}{\varepsilon_{j}}}\right)^{\frac{\varepsilon_{j}}{\varepsilon_{j}-1} \alpha_{j}} l_{j}^{1 - \alpha_{j}}$$

- Firm *j* can only use good *i* as input if there is a connection from firm *i* to *j*
 - $\Omega_{ij} > 0$ if connection and $\Omega_{ij} = 0$ otherwise
 - A connection can be active or inactive
 - Matrix Ω is exogenous
- A firm can only produce if it pays a fixed cost f_iL in units of labor
 - $\theta_j = 1$ if j is operating and $\theta_j = 0$ otherwise
 - Vector θ is *endogenous*

7/37

Efficient allocation and equilibrium

For today: focus on the problem of a social planner

In the paper: different equilibrium definitions

- 1. Variations of monopolistic competition
- 2. Stable equilibria (Hatfield et al. 2013, Oberfield 2018).
 - An allocation is stable if there exist no coalition of firms that wishes to deviate.

Proposition

Every stable equilibrium is efficient.

Stable equilibrium

For today: focus on the problem of a social planner

In the paper: different equilibrium definitions

- 1. Variations of monopolistic competition
- 2. Stable equilibria (Hatfield et al. 2013, Oberfield 2018).
 - An allocation is stable if there exist no coalition of firms that wishes to deviate.

Proposition

Every stable equilibrium is efficient.

Stable equilibrium

For today: focus on the problem of a social planner

In the paper: different equilibrium definitions

- 1. Variations of monopolistic competition
- 2. Stable equilibria (Hatfield et al. 2013, Oberfield 2018).
 - An allocation is stable if there exist no coalition of firms that wishes to deviate.

Proposition

Every stable equilibrium is efficient.

Stable equilibrium

Social planner

Problem ${\mathcal P}$ of a social planner

$$\max_{\substack{c,x,l\\\theta\in\{0,1\}^n}}\left(\sum_{j=1}^n\beta_j^{\frac{1}{\sigma}}c_j^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

subject to

1. a resource constraint for each good j

$$c_j + \sum_{k=1}^n x_{jk} \leq \frac{A}{\alpha_j^{\alpha_j} (1 - \alpha_j)^{1 - \alpha_j}} z_j \theta_j \left(\sum_{i=1}^n \Omega_{ij}^{\frac{1}{\epsilon_j}} x_{ij}^{\frac{\epsilon_j - 1}{\epsilon_j}} \right)^{\alpha_j \frac{\epsilon_j}{\epsilon_j - 1}} l_j^{1 - \alpha_j}$$

2. a resource constraint for labor

$$\sum_{j=1}^{n} l_j + \sum_{j=1}^{n} \theta_j f_j L \le L$$

Social planner

Problem \mathcal{P} of a social planner

$$\max_{\substack{c,x,l\\\in\{0,1\}^n}} \left(\sum_{j=1}^n \beta_j^{\frac{1}{\sigma}} c_j^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

θ

subject to

1. a resource constraint for each good j

$$c_j + \sum_{k=1}^n x_{jk} \leq \frac{A}{\alpha_j^{\alpha_j} \left(1 - \alpha_j\right)^{1 - \alpha_j}} z_j \theta_j \left(\sum_{i=1}^n \Omega_{ij}^{\frac{1}{\varepsilon_j}} x_{ij}^{\frac{\varepsilon_j - 1}{\varepsilon_j}}\right)^{\alpha_j \frac{\varepsilon_j}{\varepsilon_j - 1}} l_j^{1 - \alpha_j}$$

2. a resource constraint for labor

$$\sum_{j=1}^{n} l_j + \sum_{j=1}^{n} \theta_j f_j L \le L$$

Social planner

Problem \mathcal{P} of a social planner

$$\max_{\substack{\mathbf{c},\mathbf{x},l\\\theta\in\{0,1\}^n}}\left(\sum_{j=1}^n\beta_j^{\frac{1}{\sigma}}c_j^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

subject to

1. a resource constraint for each good j

LM: λ_i

$$c_j + \sum_{k=1}^n x_{jk} \leq \frac{A}{\alpha_j^{\alpha_j} (1 - \alpha_j)^{1 - \alpha_j}} z_j \theta_j \left(\sum_{i=1}^n \Omega_{ij}^{\frac{1}{\varepsilon_j}} x_{ij}^{\frac{\varepsilon_j - 1}{\varepsilon_j}} \right)^{\alpha_j \frac{\varepsilon_j}{\varepsilon_j - 1}} l_j^{1 - \alpha_j}$$

2. a resource constraint for labor

$$\sum_{j=1}^n I_j + \sum_{j=1}^n \theta_j f_j L \le L$$

LM: w

Social planner with exogenous θ

Define $q_j = w/\lambda_j$

- From the FOCs, output is $(1 \alpha_j) y_j = q_j l_j$
- q_j is the labor productivity of firm j

Proposition

In the efficient allocation

$$q_{j} = z_{j}\theta_{j}A\left(\sum_{i=1}^{n}\Omega_{ij}q_{i}^{\varepsilon_{j}-1}\right)^{\frac{c_{j}}{\varepsilon_{j}-1}}$$
(1)

for all $j \in \mathcal{N}$. Furthermore, there is a unique vector q that satisfies (1).

$$q_j = z_j heta_j A\left(\sum_{i=1}^n \Omega_{ij} q_i^{arepsilon_j-1}
ight)^{rac{lpha_j}{arepsilon_j-1}}$$

- Access to a larger set of inputs increases productivity q_j
- Access to cheaper inputs (lower $1/q_i$) leads to a cheaper output
- Gains in productivity propagate downstream through supply chains

$$q_j = z_j heta_j A\left(\sum_{i=1}^n \Omega_{ij} q_i^{arepsilon_j-1}
ight)^{rac{lpha_j}{arepsilon_j-1}}$$

- Access to a larger set of inputs increases productivity q_j
- Access to cheaper inputs (lower 1/q_i) leads to a cheaper output
- Gains in productivity propagate downstream through supply chains

$$q_j = z_j \theta_j A\left(\sum_{i=1}^n \Omega_{ij} q_i^{\varepsilon_j - 1}\right)^{\frac{\alpha_j}{\varepsilon_j - 1}}$$

- Access to a larger set of inputs increases productivity q_j
- Access to cheaper inputs (lower $1/q_i$) leads to a cheaper output
- Gains in productivity propagate downstream through supply chains

$$q_j = z_j \theta_j A\left(\sum_{i=1}^n \Omega_{ij} \left(z_i \theta_i A\left(\sum_{k=1}^n \Omega_{ki} \left(\dots\right)\right)^{\frac{\alpha_j}{\varepsilon_j-1}}\right)^{\varepsilon_j-1}\right)^{\frac{\alpha_j}{\varepsilon_j-1}}\right)$$

- Access to a larger set of inputs increases productivity q_i
- Access to cheaper inputs (lower $1/q_i$) leads to a cheaper output
- Gains in productivity propagate downstream through supply chains

$$q_j = z_j heta_j A\left(\sum_{i=1}^n \Omega_{ij} q_i^{arepsilon_j-1}
ight)^{rac{lpha_j}{arepsilon_j-1}}$$

- Access to a larger set of inputs increases productivity q_j
- Access to cheaper inputs (lower $1/q_i$) leads to a cheaper output
- · Gains in productivity propagate downstream through supply chains
With q we can solve for all other quantities easily

Lemma

Aggregate consumption is

$$C = Q\left(L - \sum_{j=1}^{n} heta_j f_j L
ight)$$

where $Q \equiv \left(\sum_{j=1}^{n} \beta_j q_j^{\sigma-1}\right)^{rac{1}{\sigma-1}}$ is aggregate labor productivity.

Other quantities

Planner's problem \mathcal{P} can be expressed in terms of θ only

$$\max_{\theta \in \{0,1\}^n} Q\left(L - \sum_{j=1}^n \theta_j f_j L\right)$$

with

$$q_j = z_j heta_j A\left(\sum_{i=1}^n \Omega_{ij} q_i^{arepsilon_j-1}
ight)^{rac{lpha_j}{arepsilon_j-1}}$$

Trade-off: making firm j produce $(heta_j = 1)$

- increases labor productivity of the network Q
- reduces the amount of labor into production $L \sum_{i=1}^n heta_j f_j L$

Planner's problem \mathcal{P} can be expressed in terms of θ only

$$\max_{\theta \in \{0,1\}^n} Q\left(L - \sum_{j=1}^n \theta_j f_j L\right)$$

with

$$q_j = z_j heta_j A \left(\sum_{i=1}^n \Omega_{ij} q_i^{arepsilon_j - 1}
ight)^{rac{lpha_j}{arepsilon_j - 1}}$$

Trade-off: making firm *j* produce ($\theta_j = 1$)

increases labor productivity of the network Q

• reduces the amount of labor into production $L - \sum_{i=1}^{n} \theta_j f_j L_i$

Planner's problem \mathcal{P} can be expressed in terms of θ only

$$\max_{\theta \in \{0,1\}^n} Q\left(L - \sum_{j=1}^n \theta_j f_j\right)$$

with

$$q_j = z_j heta_j A\left(\sum_{i=1}^n \Omega_{ij} q_i^{arepsilon_j-1}
ight)^{rac{lpha_j}{arepsilon_j-1}}$$

Trade-off: making firm *j* produce ($\theta_j = 1$)

• increases labor productivity of the network Q

• reduces the amount of labor into production $L - \sum_{i=1}^n heta_j f_j L$

Planner's problem \mathcal{P} can be expressed in terms of θ only

$$\max_{\theta \in \{0,1\}^n} Q\left(L - \sum_{j=1}^n \frac{\theta_j f_j L}{k}\right)$$

with

$$q_j = z_j heta_j A\left(\sum_{i=1}^n \Omega_{ij} q_i^{arepsilon_j-1}
ight)^{rac{lpha_j}{arepsilon_j-1}}$$

Trade-off: making firm *j* produce ($\theta_j = 1$)

- increases labor productivity of the network Q
- reduces the amount of labor into production $L \sum_{i=1}^{n} \theta_i f_i L$

"Hard" problem (MINLP — NP Hard)

- 1. Feasible set $\theta \in \{0,1\}^n$ is not convex
- 2. Objective function is not concave

Brute force approach: exhaustive search

- Take a $heta \in \left\{0,1
 ight\}^n$, iterate on q and evaluate the objective function
- 2^{*n*} vectors heta to try (pprox 10⁶ configurations for 20 firms)
- Guaranteed to find correct solution but infeasible for *n* large

"Hard" problem (MINLP — NP Hard)

- 1. Feasible set $\theta \in \{0,1\}^n$ is not convex
- 2. Objective function is not concave

Brute force approach: exhaustive search

- Take a $heta \in \{0,1\}^n$, iterate on q and evaluate the objective function
- 2^n vectors heta to try ($pprox 10^6$ configurations for 20 firms)
- Guaranteed to find correct solution but infeasible for n large

New solution approach: Find an alternative problem such that

- P1 The alternative problem is easy to solve
- $\mathsf{P2}$ A solution to the alternative problem also solves $\mathcal P$

Reshaping \mathcal{P}

Consider the relaxed and reshaped problem $\ensuremath{\mathcal{R}}$

$$\max_{\theta \in \{0,1\}^n} Q\left(L - \sum_{j=1}^n \theta_j f_j L\right)$$

with

$$q_j = z_j heta_j A\left(\sum_{i=1}^n \Omega_{ij} q_i^{arepsilon_j-1}
ight)^{rac{lpha_j}{arepsilon_j-1}}$$

Parameters $a_l>0$ and b_{ll} reshape the objective function away from optimum (i.e. when $0< heta_l<1$)

- For a_j : if $heta_j \in \{0,1\}$ then $heta_j^{a_j} = heta_j$
- For b_{ij} : $\{\theta_i = 0\} \Rightarrow \{q_i = 0\}$ and $\{\theta_i = 1\} \Rightarrow \left\{\theta_i^{b_{ij}} = 1\right\}$

Reshaping \mathcal{P}

Consider the $\underline{\mathsf{relaxed}}$ and reshaped problem $\mathcal R$

$$\max_{\theta \in [0,1]^n} Q\left(L - \sum_{j=1}^n \theta_j f_j L\right)$$

with

$$q_j = z_j heta_j A\left(\sum_{i=1}^n \Omega_{ij} q_i^{arepsilon_j-1}
ight)^{rac{lpha_j}{arepsilon_j-1}}$$

Parameters $a_j > 0$ and b_{ij} reshape the objective function away from optimum (i.e. when $0 < heta_j < 1)$

- For a_j : if $heta_j \in \{0,1\}$ then $heta_j^{a_j} = heta_j$
- For b_{ij} : $\{\theta_i = 0\} \Rightarrow \{q_i = 0\}$ and $\{\theta_i = 1\} \Rightarrow \left\{\theta_i^{b_{ij}} = 1\right\}$

Reshaping \mathcal{P}

Consider the $\underline{\mathsf{relaxed}}$ and $\underline{\mathsf{reshaped}}$ problem $\mathcal R$

$$\max_{\theta \in [0,1]^n} Q\left(L - \sum_{j=1}^n \theta_j f_j L\right)$$

with

$$q_j = z_j heta_j^{a_j} A\left(\sum_{i=1}^n \Omega_{ij} heta_i^{b_{ij}} q_i^{arepsilon_j-1}
ight)^{rac{lpha_j}{arepsilon_j-1}}$$

Parameters $a_j>0$ and b_{ij} reshape the objective function away from optimum (i.e. when $0< heta_j<1$)

• For a_j : if $heta_j \in \{0,1\}$ then $heta_j^{a_j} = heta_j$

• For
$$b_{ij}$$
: $\{\theta_i = 0\} \Rightarrow \{q_i = 0\}$ and $\{\theta_i = 1\} \Rightarrow \left\{\theta_i^{b_{ij}} = 1\right\}$

Reshaping $\mathcal P$

Consider the $\underline{\mathsf{relaxed}}$ and $\underline{\mathsf{reshaped}}$ problem $\mathcal R$

$$\max_{\theta \in [0,1]^n} Q\left(L - \sum_{j=1}^n \theta_j f_j L\right)$$

with

$$q_{j} = z_{j} \theta_{j}^{a_{j}} A \left(\sum_{i=1}^{n} \Omega_{ij} \theta_{i}^{b_{ij}} q_{i}^{\varepsilon_{j}-1} \right)^{\frac{\alpha_{j}}{\varepsilon_{j}-1}}$$

Parameters $a_j > 0$ and b_{ij} reshape the objective function away from optimum (i.e. when $0 < \theta_j < 1$)

• For a_j : if $heta_j \in \{0,1\}$ then $heta_j^{a_j} = heta_j$

• For
$$b_{ij}$$
: $\{\theta_i = 0\} \Rightarrow \{q_i = 0\}$ and $\{\theta_i = 1\} \Rightarrow \left\{\theta_i^{b_{ij}} = 1\right\}$

We are free to pick a_j and b_{ij} to help us solve \mathcal{R}

- Increase the concavity of ${\mathcal R}$ to remove local maxima
- But too much concavity might create new maximum in the middle of $\left[0,1
 ight]^n$

Economic intuition: first-order condition of \mathcal{R} with respect to θ_j

But thinking at the margin is misleading!

• We want the planner to compare the whole discrete change between heta=0 and heta=1

The parameters a_j and b_{ij} change the perceived value of good j when determining $heta_j$

How to pick a_j and b_{ij} ?

We are free to pick a_i and b_{ij} to help us solve \mathcal{R}

- Increase the concavity of ${\mathcal R}$ to remove local maxima
- But too much concavity might create new maximum in the middle of $[0,1]^n$

Economic intuition: first-order condition of \mathcal{R} with respect to θ_j without reshaping

$$\lambda_j c_j + \sum_{k=1}^n \lambda_j x_{jk} - \sum_{i=1}^n \lambda_i x_{ij} - w l_j - w \theta_j f_j L = \theta_j \Delta \mu_j,$$

But thinking at the margin is misleading!

• We want the planner to compare the whole discrete change between heta=0 and heta=1

The parameters a_j and b_{ij} change the perceived value of good j when determining $heta_j$

How to pick a_j and b_{ij} ?

We are free to pick a_i and b_{ij} to help us solve \mathcal{R}

- Increase the concavity of ${\mathcal R}$ to remove local maxima
- But too much concavity might create new maximum in the middle of $[0,1]^n$

Economic intuition: first-order condition of \mathcal{R} with respect to θ_j without reshaping

$$\lambda_j c_j + \sum_{k=1}^n \lambda_j x_{jk} - \sum_{i=1}^n \lambda_i x_{ij} - w l_j - w \theta_j f_j L = \theta_j \Delta \mu_j,$$

But thinking at the margin is misleading!

• We want the planner to compare the whole discrete change between $\theta = 0$ and $\theta = 1$

The parameters a_j and b_{ij} change the perceived value of good j when determining $heta_j$

How to pick a_j and b_{ij} ?

We are free to pick a_i and b_{ij} to help us solve \mathcal{R}

- Increase the concavity of ${\mathcal R}$ to remove local maxima
- But too much concavity might create new maximum in the middle of $[0,1]^n$

Economic intuition: first-order condition of \mathcal{R} with respect to θ_j with reshaping

$$(1 + a_j) \lambda_j c_j + \sum_{k=1}^n (1 + a_j + b_{jk}) \lambda_j x_{jk} - \sum_{i=1}^n \lambda_i x_{ij} - w l_j - w \theta_j f_j L = \theta_j \Delta \mu_j,$$

But thinking at the margin is misleading!

• We want the planner to compare the whole discrete change between $\theta = 0$ and $\theta = 1$

The parameters a_j and b_{ij} change the perceived value of good j when determining θ_j

What is the full gain in utility from operating j?

$$\Delta C = \int_0^{c_j} \frac{\partial C}{\partial c_j} d\tilde{c}_j = \int_0^{c_j} \beta_j^{\frac{1}{\sigma}} \tilde{c}_j^{-\frac{1}{\sigma}} C^{\frac{1}{\sigma}} d\tilde{c}_j = \frac{\sigma}{\sigma - 1} c_j \underbrace{\frac{\partial C}{\partial c_j}}_{\lambda_j}$$

The benefit of operating j should be proportional to $\frac{\sigma}{\sigma-1}$. Similar reasoning for b_{ij} .

From now on set

$$a_j = rac{1}{\sigma-1}$$
 and $b_{ij} = rac{1}{arepsilon_j-1} - rac{1}{\sigma-1}$ (2)

and verify that these parameter values are helpful

What is the full gain in utility from operating j?

$$\Delta C = \int_0^{c_j} \frac{\partial C}{\partial c_j} d\tilde{c}_j = \int_0^{c_j} \beta_j^{\frac{1}{\sigma}} \tilde{c}_j^{-\frac{1}{\sigma}} C^{\frac{1}{\sigma}} d\tilde{c}_j = \frac{\sigma}{\sigma - 1} c_j \underbrace{\frac{\partial C}{\partial c_j}}_{\lambda_j}$$

The benefit of operating j should be proportional to $\frac{\sigma}{\sigma-1}$. Similar reasoning for b_{ij} .

From now on set
$$a_j = rac{1}{\sigma-1}$$
 and $b_{ij} = rac{1}{arepsilon_j-1} - rac{1}{\sigma-1}$ (*)

and verify that these parameter values are helpful

P1: Under some conditions the reshaped problem $\ensuremath{\mathcal{R}}$ is easy to solve

Proposition

Let $\varepsilon_j = \varepsilon$ and $\alpha_j = \alpha$ for all j. If $\Omega_{ij} = d_i e_j$ for some vectors d and e then the KKT conditions are necessary and sufficient to characterize a solution to \mathcal{R} .

Define $\overline{\Omega} = \omega \left(\mathbb{1} - I \right)$ where $\mathbb{1}$ is the all-one matrix, I the identity and $\omega > 0$.

Proposition

Let $\sigma = \varepsilon_j$ for all j. Suppose that the $\{\beta_j\}_{j \in \mathcal{N}}$ are not too far from each other and that the matrix Ω is close enough to $\overline{\Omega}$. Then there exists a threshold $\overline{f} > 0$ such that if $f_j < \overline{f}$ for all j the KKT conditions are necessary and sufficient to characterize a solution to \mathcal{R} .

These two propositions only provides sufficient conditions

P1: Under some conditions the reshaped problem $\ensuremath{\mathcal{R}}$ is easy to solve

Proposition

Let $\varepsilon_j = \varepsilon$ and $\alpha_j = \alpha$ for all j. If $\Omega_{ij} = d_i e_j$ for some vectors d and e then the KKT conditions are necessary and sufficient to characterize a solution to \mathcal{R} .

Define $\overline{\Omega} = \omega (\mathbb{1} - I)$ where $\mathbb{1}$ is the all-one matrix, I the identity and $\omega > 0$.

Proposition

Let $\sigma = \varepsilon_j$ for all j. Suppose that the $\{\beta_j\}_{j \in \mathcal{N}}$ are not too far from each other and that the matrix Ω is close enough to $\overline{\Omega}$. Then there exists a threshold $\overline{f} > 0$ such that if $f_j < \overline{f}$ for all j the KKT conditions are necessary and sufficient to characterize a solution to \mathcal{R} .

These two propositions only provides sufficient conditions

Let $\varepsilon_j = \varepsilon$ and $\alpha_j = \alpha$ for all j. If $\Omega_{ij} = d_i e_j$ for some vectors d and e then the KKT conditions are necessary and sufficient to characterize a solution to \mathcal{R} .

Define $\overline{\Omega} = \omega (\mathbb{1} - I)$ where $\mathbb{1}$ is the all-one matrix, I the identity and $\omega > 0$.

Proposition

Let $\sigma = \varepsilon_j$ for all j. Suppose that the $\{\beta_j\}_{j \in \mathcal{N}}$ are not too far from each other and that the matrix Ω is close enough to $\overline{\Omega}$. Then there exists a threshold $\overline{f} > 0$ such that if $f_j < \overline{f}$ for all j the KKT conditions are necessary and sufficient to characterize a solution to \mathcal{R} .

These two propositions only provides sufficient conditions

Let $\varepsilon_j = \varepsilon$ and $\alpha_j = \alpha$ for all j. If $\Omega_{ij} = d_i e_j$ for some vectors d and e then the KKT conditions are necessary and sufficient to characterize a solution to \mathcal{R} .

Define $\overline{\Omega} = \omega (\mathbb{1} - I)$ where $\mathbb{1}$ is the all-one matrix, I the identity and $\omega > 0$.

Proposition

Let $\sigma = \varepsilon_j$ for all *j*. Suppose that the $\{\beta_j\}_{j \in \mathcal{N}}$ are not too far from each other and that the matrix Ω is close enough to $\overline{\Omega}$. Then there exists a threshold $\overline{f} > 0$ such that if $f_j < \overline{f}$ for all *j* the KKT conditions are necessary and sufficient to characterize a solution to \mathcal{R} .

These two propositions only provides sufficient conditions

If $\theta^* \in \{0,1\}^n$ solves \mathcal{R} , then θ^* also solves \mathcal{P}

But why would a solution to $\mathcal R$ be in $\{0,1\}^n$? First-order condition of $\mathcal R$ with respect to $heta_j$

- Under (*) the marginal benefit of θ_j only depends on θ_j through aggregates F_j and G_j
- For large connected network: $\{F_j, G_j\} \rightarrow$ independent of θ_j

If $\theta^* \in \{0,1\}^n$ solves \mathcal{R} , then θ^* also solves \mathcal{P}

But why would a solution to \mathcal{R} be in $\{0,1\}^n$? First-order condition of \mathcal{R} with respect to θ_j

Marginal Benefit $(\theta_j, F_j(\theta)) - Marginal Cost (\theta_j, G_j(\theta)) = \overline{\mu}_j - \underline{\mu}_i$

• Under (*) the marginal benefit of θ_j only depends on θ_j through aggregates F_j and G_j

• For large connected network: $\{F_j, G_j\} \rightarrow$ independent of θ_j

If $\theta^* \in \{0,1\}^n$ solves \mathcal{R} , then θ^* also solves \mathcal{P}

But why would a solution to \mathcal{R} be in $\{0,1\}^n$? First-order condition of \mathcal{R} with respect to θ_j

Marginal Benefit
$$(\mathcal{M}_{i}, F_{j}(\theta)) - Marginal Cost $(\mathcal{M}_{i}, G_{j}(\theta)) = \overline{\mu}_{j} - \underline{\mu}_{i}$$$

• Under (*) the marginal benefit of θ_j only depends on θ_j through aggregates F_j and G_j

• For large connected network: $\{F_j, G_j\} \rightarrow \text{independent of } \theta_j$

If $\theta^* \in \{0,1\}^n$ solves \mathcal{R} , then θ^* also solves \mathcal{P}

But why would a solution to \mathcal{R} be in $\{0,1\}^n$? First-order condition of \mathcal{R} with respect to θ_j

Marginal Benefit
$$(\chi_i, F_j(\ell))$$
 – Marginal Cost $(\chi_i, G_j(\ell)) = \bar{\mu}_j - \underline{\mu}_i$

- Under (*) the marginal benefit of θ_j only depends on θ_j through aggregates F_j and G_j
- For large connected network: $\{F_j, G_j\} \rightarrow$ independent of θ_j

Example with two firms

Relaxed problem without reshaping

Problem: V is not concave

- \Rightarrow First-order conditions are not sufficient
- \Rightarrow Numerical algorithm can get stuck in local maxima

Example with two firms

Relaxed problem without reshaping

Problem: V is not concave

- \Rightarrow First-order conditions are not sufficient
- \Rightarrow Numerical algorithm can get stuck in local maxima

Example with two firms

Relaxed problem with reshaping

Problem: V is now (quasi) concave

- $\Rightarrow\,$ First-order conditions are necessary and sufficient
- $\Rightarrow\,$ Numerical algorithm converges to global maximum

Tests on Small Networks

For small networks we can solve ${\cal P}$ directly using exhaustive search and compare to solution of ${\cal R}$

	With re	eshaping	Without	Without reshaping		
п	Correct θ	Error in C	Correct θ	Error in C		
8	99.9%	0.001%	86.5%	0.791%		
10	99.9%	0.001%	85.2%	0.855%		
12	99.9%	0.001%	84.5%	0.903%		
14	99.9%	0.001%	84.0%	0.926%		
Notes → Break. by Ω → Homo. firms → Link by link → Large networks						
12 14	99.9% 99.9% s • Break. by Ω by link large • Ei	0.001% 0.001%	84.5% 84.0%	0.903 0.920		

The errors come from

- 1. firms that are particularly isolated
- 2. two $\boldsymbol{\theta}$ configurations with almost same output

Same parameters as calibration

Table 1:	Testing	the	reshaping	approach	for	п	large
----------	---------	-----	-----------	----------	-----	---	-------

	With reshaping			Without reshaping				
п	Correct θ	Error in C		$Correct\ \theta$	Error in C			
1000	99.9%	< 0.001%		66.5%	0.56%			

Notes: Parameters as in the calibrated economy. We simulate 100 different matrices Ω and, for each Ω , draw 100 productivity vectors z. We run the procedure described in the appendix on each of them and report average results. x < 0.001% indicates that x > 0 but that proper rounding would yield 0.

Economic Forces

Operating a firm increases the incentives to operate its neighbors in $\boldsymbol{\Omega}.$

- Impact of operating 2 on the incentives to operate 1 and 3
 - $heta_2 = 1
 ightarrow q_2$ is larger if 1 operates
 - $heta_2 = 1
 ightarrow q_3$ is larger if 3 operates
- Upstream and downstream complementarities in operating decisions
 - \rightarrow Cascades of firm shutdowns
 - \blacktriangleright Stronger with low elasticity of substitution ε and higher input share α

Operating a firm increases the incentives to operate its neighbors in $\boldsymbol{\Omega}.$

- Impact of operating 2 on the incentives to operate 1 and 3
 - $heta_2 = 1
 ightarrow q_2$ is larger if 1 operates
 - $heta_2 = 1
 ightarrow q_3$ is larger if 3 operates
- Upstream and downstream complementarities in operating decisions
 - \rightarrow Cascades of firm shutdowns
 - \blacktriangleright Stronger with low elasticity of substitution ε and higher input share α

Operating a firm increases the incentives to operate its neighbors in $\boldsymbol{\Omega}.$

Impact of operating 2 on the incentives to operate 1 and 3

- $heta_2 = 1
 ightarrow q_2$ is larger if 1 operates
- $\blacktriangleright \ \theta_2 = \mathbf{1} \rightarrow \mathbf{q}_3 \text{ is larger if 3 operates}$
- Upstream and downstream complementarities in operating decisions
 - \rightarrow Cascades of firm shutdowns
 - \blacktriangleright Stronger with low elasticity of substitution ε and higher input share α
Operating a firm increases the incentives to operate its neighbors in $\boldsymbol{\Omega}.$

- Impact of operating 2 on the incentives to operate 1 and 3
 - $heta_2 = 1
 ightarrow q_2$ is larger if 1 operates
 - $heta_2 = 1
 ightarrow q_3$ is larger if 3 operates
- Upstream and downstream complementarities in operating decisions
 - \rightarrow Cascades of firm shutdowns
 - \blacktriangleright Stronger with low elasticity of substitution ε and higher input share α

Operating a firm increases the incentives to operate its neighbors in $\boldsymbol{\Omega}.$

- Impact of operating 2 on the incentives to operate 1 and 3
 - $heta_2 = 1
 ightarrow q_2$ is larger if 1 operates
 - $\blacktriangleright \ \theta_2 = 1 \rightarrow q_3 \ \text{is larger if 3 operates}$
- Upstream and downstream complementarities in operating decisions
 - \rightarrow Cascades of firm shutdowns
 - \blacktriangleright Stronger with low elasticity of substitution ε and higher input share α

Operating a firm increases the incentives to operate its neighbors in $\boldsymbol{\Omega}.$

- Impact of operating 2 on the incentives to operate 1 and 3
 - $heta_2 = 1
 ightarrow q_2$ is larger if 1 operates
 - $heta_2 = 1
 ightarrow q_3$ is larger if 3 operates
- Upstream and downstream complementarities in operating decisions
 - $\rightarrow\,$ Cascades of firm shutdowns
 - \blacktriangleright Stronger with low elasticity of substitution ε and higher input share α

Proposition

Operating a group of firms is more beneficial when there are more potential connections between them.

Figure 1: Clustering with three random draws of productivity z

Formal statement

Large impact of small shock

Non-convex economy: a small shock can trigger a large reorganization

But welfare is barely affected (Theorem of the Maximum)

Large impact of small shock

Non-convex economy: a small shock can trigger a large reorganization

But welfare is barely affected (Theorem of the Maximum)

The role of elasticities

Quantitative Exploration

Network data

Two datasets that cover the U.S. economy

• Compustat

- Public firms must self-report important customers (>10% of sales)
- > Cohen and al (2008) and Atalay et al (2011) use fuzzy-text matching algorithms to build the network

Factset Revere

- Includes public and private firms, and less important relationships
- ▶ Data from 10-K, 10-Q, annual reports, investor presentations, websites, press releases, etc

Network data

Two datasets that cover the U.S. economy

• Compustat

- Public firms must self-report important customers (>10% of sales)
- ▶ Cohen and al (2008) and Atalay et al (2011) use fuzzy-text matching algorithms to build the network

• Factset Revere

- Includes public and private firms, and less important relationships
- ▶ Data from 10-K, 10-Q, annual reports, investor presentations, websites, press releases, etc

Network data

Two datasets that cover the U.S. economy

• Compustat

- Public firms must self-report important customers (>10% of sales)
- ▶ Cohen and al (2008) and Atalay et al (2011) use fuzzy-text matching algorithms to build the network

• Factset Revere

- Includes public and private firms, and less important relationships
- ▶ Data from 10-K, 10-Q, annual reports, investor presentations, websites, press releases, etc

	Years	Firms/year	Links/year
Compustat			
Atalay et al (2001)	1976 - 2009	1,300	1,500
Cohen and Frazzini (2006)	1980 - 2004	950	1,100
Factset	2003 - 2016	13,000	46,000

Parameters

Focus on the shape of the network and limit heterogeneity across firms

Parameters from the literature

- $\alpha_j = 0.5$ to fit share of intermediate (Jorgenson et al 1987, Jones 2011)
- $\sigma = \varepsilon_j = 5$ average of estimates (Broda et al 2006)
- log z_{it} is AR1 with log $z_{it} \sim \text{iid } \mathcal{N}(0, 0.39^2)$ (Bartelsman et al, 2013), $\rho_z = 0.81$ (Foster et al, 2008)
- $f_j \times n = 5\%$ to fit employment in management occupations
- n = 1000 for high precision while limiting computations

Unobserved matrix Ω

- Picked to match the observed in-degree distribution
- Generate thousands of random Ω 's and report averages

Parameters

Focus on the shape of the network and limit heterogeneity across firms

Parameters from the literature

- $\alpha_j = 0.5$ to fit share of intermediate (Jorgenson et al 1987, Jones 2011)
- $\sigma = \varepsilon_j = 5$ average of estimates (Broda et al 2006)
- log z_{it} is AR1 with log $z_{it} \sim \text{iid } \mathcal{N}(0, 0.39^2)$ (Bartelsman et al, 2013), $\rho_z = 0.81$ (Foster et al, 2008)
- $f_j \times n = 5\%$ to fit employment in management occupations
- n = 1000 for high precision while limiting computations

Unobserved matrix Ω

- Picked to match the observed in-degree distribution
- Generate thousands of random Ω's and report averages

Parameters

Focus on the shape of the network and limit heterogeneity across firms

Parameters from the literature

- $\alpha_j = 0.5$ to fit share of intermediate (Jorgenson et al 1987, Jones 2011)
- $\sigma = \varepsilon_j = 5$ average of estimates (Broda et al 2006)
- log z_{it} is AR1 with log $z_{it} \sim \text{iid } \mathcal{N}(0, 0.39^2)$ (Bartelsman et al, 2013), $\rho_z = 0.81$ (Foster et al, 2008)
- $f_j \times n = 5\%$ to fit employment in management occupations
- n = 1000 for high precision while limiting computations

Unobserved matrix Ω

- Picked to match the observed in-degree distribution
- Generate thousands of random Ω's and report averages

Shape of the network

What does an optimally designed network looks like?

- Compare optimal and random networks
- Differences highlights how efficient allocation shapes the network

Efficient network has

- greater fraction of highly connected firms
- more clustering among firms

Def. clust. coeff.

Shape of the network

What does an optimally designed network looks like?

- Compare optimal and random networks
- Differences highlights how efficient allocation shapes the network

	Power law exponents		Clustering coefficient
Network	In-degree	Out-degree	
Efficient	0.97	0.92	3.45
Random	1.18	1.15	2.08

Efficient network has

- greater fraction of highly connected firms
- more clustering among firms

Def. clust. coeff.

For each firm in each year

- Look at all neighbors upstream and downstream
- Regress the share of neighbors that exit on whether the original firm exits (and some controls)

For each firm in each year

- Look at all neighbors upstream and downstream
- Regress the share of neighbors that exit on whether the original firm exits (and some controls)

Size of cascades and probability of exit by degree of firm

	Size of cascades			Probability of exit		
	Data	Model		Data	Model	
Average firm	0.9	1.1		11.8%	11.3%	
High-degree firm	3.1	4.3		2.5%	1.7%	

 $\it Notes:$ Size of cascades refers to firm exits up to and including the third neighbors. High degree means above the 90th percentile.

Highly-connected firms are hard to topple but upon shutting down they create large cascades

Size of cascades and probability of exit by degree of firm

	Size of cascades			Probabil	ity of exit
	Data	Model		Data	Model
Average firm	0.9	1.1		11.8%	11.3%
High-degree firm	3.1	4.3		2.5%	1.7%

 $\it Notes:$ Size of cascades refers to firm exits up to and including the third neighbors. High degree means above the 90th percentile.

• Highly-connected firms are hard to topple but upon shutting down they create large cascades

Static model but z shocks move output and the structure of network together

 Table 2: Correlations with aggregate output

Recessions: too costly to organize clusters around most productive firms

Static model but z shocks move output and the structure of network together

Table 2: Correlations with aggregate output

	Model		Datasets		
		Factset Compustat		oustat	
			AHRS	CF	
Power law exponents					
In-degree distribution	-0.53	-0.87	-0.35	-0.12	
Out-degree distribution	-0.63	-0.97	-0.31	-0.11	
Global clustering coefficient	0.60	0.76	0.18	0.11	

Recessions: too costly to organize clusters around most productive firms

Static model but z shocks move output and the structure of network together

Table 2: Correlations with aggregate output

	Model		Datasets		
		Factset Compustat		oustat	
			AHRS	CF	
Power law exponents					
In-degree distribution	-0.53	-0.87	-0.35	-0.12	
Out-degree distribution	-0.63	-0.97	-0.31	-0.11	
Global clustering coefficient	0.60	0.76	0.18	0.11	

• Recessions: too costly to organize clusters around most productive firms

$$Y = Q\left(L - \sum_{j} \theta_{j} f_{j}L\right)$$

Table 3: Standard deviations of log aggregates

	Output Y	2	Labor Prod. <mark>Q</mark>	+	Prod. labor $L - \sum_j f_j \theta_j$
Optimal network Fixed network	0.10 0.12		0.10 0.12		0.009

- Volatility of output about 20% smaller when network evolves endogenously
 - The difference comes from changes in the structure of the network
- Average output is also 11% lower

Intuition

$$Y = Q\left(L - \sum_{j} \theta_{j} f_{j}L\right)$$

Table 3: Standard deviations of log aggregates

	Output Y	\approx	Labor Prod. <mark>Q</mark>	+	Prod. labor $L - \sum_j f_j \theta_j$
Optimal network	0.10		0.10		0.009

- Volatility of output about 20% smaller when network evolves endogenously
 - ► The difference comes from changes in the structure of the network
- Average output is also 11% lower

Intuition

Summary

- Model of network formation through entry/exit of firms
- Complementarities lead to clustering of activity and cascades
- Calibration captures empirical cascades and correlation between network and output
- Reorganization of network leads to smaller fluctuation

In the paper: inefficient allocations

- Reshaping can also solve those equilibrium
- Different upstream/downstream complementarities
- More rigid networks

Appendix

- Definitions
 - A contract between *i* and *j* is a quantity shipped x_{ij} and a payment T_{ij} .
 - An *arrangement* is a contract between all possible pairs of firms.
 - A *coalition* is a set of firms *J*.
 - ▶ A deviation for a coalition J consists of
 - 1. dropping any contracts with firms not in J and,
 - 2. altering any contract involving two firms in J.
 - > A dominating deviation is a deviation such that no firm is worse off and one firm is better off.
 - An allocation is *feasible* if $c_j + \sum_k x_{jk} \le y_j$ and $\sum_j l_j + \theta_j f_j L \le L$.

Stable equilibrium

• Firm *j* maximize profits

$$\pi_j = p_j c_j - w l_j + \sum_{i=1}^n T_{ji} - \sum_{i=1}^n T_{ij} - \theta_j w f_j L,$$

subject to $c_j + \sum_{k=1}^n x_{jk} \leq y_j$ and $c_j = \beta_j C(p_j/P)^{-\sigma}$.

Definition 1

A stable equilibrium is an arrangement $\{x_{ij}, T_{ij}\}_{i,j \in N^2}$, firms' choices $\{p_j, c_j, l_j, \theta_j\}_{j \in N}$ and a wage w such that:

- 1. the household maximizes,
- 2. firms maximize,
- 3. markets clear,
- 4. there are no dominating deviations by any coalition, and
- 5. the equilibrium allocation is feasible.

Return

Stable equilibrium

• Firm *j* maximize profits

$$\pi_j = p_j c_j - w l_j + \sum_{i=1}^n T_{ji} - \sum_{i=1}^n T_{ij} - \theta_j w f_j L,$$

subject to $c_j + \sum_{k=1}^n x_{jk} \leq y_j$ and $c_j = \beta_j C(p_j/P)^{-\sigma}$.

Definition 1

A stable equilibrium is an arrangement $\{x_{ij}, T_{ij}\}_{i,j\in\mathcal{N}^2}$, firms' choices $\{p_j, c_j, l_j, \theta_j\}_{j\in\mathcal{N}}$ and a wage w such that:

- 1. the household maximizes,
- 2. firms maximize,
- 3. markets clear,
- 4. there are no dominating deviations by any coalition, and
- 5. the equilibrium allocation is feasible.

Other quantities

• Labor allocation

$$I = \left[(I_n - \Gamma) \operatorname{diag} \left(\frac{1}{1 - \alpha} \right) \right]^{-1} \left(\beta \circ \left(\frac{q}{Q} \right)^{\circ (\sigma - 1)} \frac{Y}{Q} \right)$$

$$(1-\alpha_j) y_j = q_j l_j$$

Consumption

$$c_j = \beta_j \left(\frac{q_j}{w}\right)^\sigma Y$$

• Intermediate goods flows

$$x_{ij}\lambda_i^{\varepsilon_j} = \lambda_j^{\varepsilon_j}\alpha_j \left(Az_j\theta_j\left(\frac{\lambda_j}{w}\right)^{1-\alpha_j}\right)^{\frac{\varepsilon_j-1}{\alpha_j}}\delta_{ij}\Omega_{ij}^{\varepsilon_j}y_j.$$

◀ Return

Tests Details

Aggregates parameters

- $\sigma \in \{4, 6, 8\}$
- $\log(z_k) \sim \mathrm{iid} \ \mathcal{N}\left(0, 0.25^2\right)$
- Ω randomly drawn such that firms have on average 3, 4, 5, 6, 7 or 8 *potential* incoming connections
 - ▶ The corresponding average number of *active* incoming connections is 2.1, 3.0, 3.8, 4.5, 5.3, and 5.8, respectively.
 - For each non-zero: $\Omega_{ij} \sim {
 m iid} \ U([0,1])$

Individual parameters

- $f_j \sim \text{iid } U([0, 0.2/n])$
- $\alpha_j \sim \text{iid } U([0.25, 0.75])$
- $\varepsilon_j \sim \text{iid } U([4,\sigma])$
- $\beta_j \sim \text{iid } U([0,1])$

For each possible combination of aggregate parameters, 200 networks Ω and productivity vectors z are drawn. An economy is kept in the sample only if the first-order conditions yield a solution for which $\theta_{37/37}$

Breakdown by Ω

		Firms with correct $ heta$				
п	Reshaping?	All Ω's	More connected $\Omega^\prime s$	Less connected Ω 's		
8	Yes	99.8%	99.9%	99.6%		
	No	88.2%	89.1%	87.4%		
10	Yes	99.7%	99.9%	99.5%		
	No	86.5%	87.3%	85.8%		
12	Yes	99.7%	99.9%	99.5%		
	No	86.2%	87.0%	85.5%		
14	Yes	99.7%	99.9%	99.4%		
	No	85.5%	86.1%	85.1%		

- Less connected $\Omega:$ firms have 3, 4 or 5 potential incoming connections
- More connected $\Omega:$ firms have 6, 7 or 8 potential incoming connections

	Number of firms <i>n</i>			
	8	10	12	14
A. With reshaping				
Firms with correct $ heta$	99.9%	99.8%	99.8%	99.8%
Error in output Y	0.001%	0.002%	0.002%	0.002%
B. Without reshaping				
Firms with correct $ heta$	87.2%	85.8%	84.7%	83.8%
Error in output Y	0.71%	0.79%	0.85%	0.89%

Notes: Random networks with parameters $f \in \{0.05/n, 0.1/n, 0.15/n\}$, $\sigma_z = 0.25$,

 $\alpha \in \{0.45, 0.5, 0.55\}, \sigma \in \{4, 6, 8\}, \varepsilon \in \{4, 6, 8\}$ and networks Ω randomly drawn such that firms have on average 2, 4, 5, 6, 7 to 8 *potential* incoming connections. Each non-zero Ω_{ij} is set to 1. For each combination of the parameters, 200 different economies are created. For each economy, productivity is drawn from $\log(z_k) \sim \operatorname{iid} \mathcal{N}(0, \sigma_z^2)$. An economy is kept in the sample only if the first-order conditions yield a solution for which θ hits the bounds. More than 90% of the economies are kept in the sample.

Return

Link by link

- Real firms: $f_j = 0$, $\alpha_j = 0.5$, $\sigma = \varepsilon_j = 6$ and $\sigma_z = 0.25$
- Link firms: $\beta_j = 0$, only one input and one output, $f_j \sim \text{iid } U([0, 0.1/n])$, $\alpha_j \sim \text{iid } U([0.5, 1])$, $\sigma_z = 0.25$
- Ω : between any two real firm, there is a link firm with probability $p \in \{0.7, 0.8, 0.9\}$

Number of firms		With reshaping		Without reshaping	
Real firms <i>m</i>	Link firms <i>n</i> – <i>m</i>	Correct θ	Error in C	$Correct\ \theta$	Error in C
3	up to 6	99.9%	0.001%	94.1%	0.17%
4	up to 12	99.7%	0.003%	91.3%	0.25%
5	up to 20	99.7%	0.006%	89.2%	0.31%

Return
For large networks we cannot solve \mathcal{P}_{SP} directly by trying all possible vectors heta

• After all the welfare-improving 1-deviations θ are exhausted:

	With reshaping		Withou	Without reshaping		
п	Correct θ	Error in C	Correct θ	Error in C		
1000	> 99.9%	< 0.001%	68.9%	0.58%		

Notes: 200 different Ω and z that satisfy the properties of the calibrated economy.

• No guarantee that the solution has been found but very few "obvious errors"

Link by link

- Same parameters as before
- After all the welfare-improving 1-deviation in θ are exhausted:

Number of firms		With reshaping		Without reshaping	
Real firms <i>m</i>	Link firms <i>n</i> – <i>m</i>	Correct θ	Error in C	Correct θ	Error in C
10	up to 90	99.7%	0.005%	83.8%	0.46%
25	up to 600	99.9%	0.001%	80.5%	0.55%
40	up to 1560	< 99.9%	< 0.001%	79.5%	0.57%

• θ_j converges on $\{0,1\}$ for all j in about 60-85% of the tests

 \blacktriangleright Even without convergence small error in output and few errors in θ

◀ Return

Solution away from corners

- Sometimes the first-order conditions do not converge on a corner.
- Without excluding these simulations:

			Error in C		
п	Reshaping?	All Ω's	More connected Ω 's	Less connected Ω 's	
8	Yes	0.007%	< 0.001%	0.014%	
	No	0.683%	0.640%	0.726%	
10	Yes	0.013%	< 0.001%	0.027%	
	No	0.781%	0.739%	0.823%	
12	Yes	0.008%	< 0.001%	0.016%	
	No	0.799%	0.744%	0.853%	
14	Yes	0.008%	0.001%	0.016%	
	No	0.831%	0.801%	0.862%	

Proposition 1

Let $\mathcal{J} \subset \mathcal{N}$ be a group of firms. Denote by $\theta^+ \in \{0,1\}^n$ the operating vector when the firms in \mathcal{J} operate $(\theta_j^+ = 1 \text{ for } j \in \mathcal{J})$. Similarly, let $\theta^- \in \{0,1\}^n$ be the operating vector when the firms in \mathcal{J} do not operate $(\theta_j^- = 0 \text{ for } j \in \mathcal{J})$. For all $j \notin \mathcal{J}$, assume $\theta_j^+ = \theta_j^-$. Denote by Ω^- a network of potential connections and let Ω^+ be identical to Ω^- except that it has an additional connection between two firms in \mathcal{J} . Then

$$\mathcal{C}_{\Omega^{+}}\left(heta^{+}
ight) -\mathcal{C}_{\Omega^{+}}\left(heta^{-}
ight) \geq \mathcal{C}_{\Omega^{-}}\left(heta^{+}
ight) -\mathcal{C}_{\Omega^{-}}\left(heta^{-}
ight) ,$$

where $C_{\Omega}(\theta)$ denotes consumption under the potential network Ω and the operating vector θ .

• Ω is drawn randomly so that joint distribution of in-degree and out-degree is a bivariate power law of the first kind

$$f(x_{in}, x_{out}) = \xi (\xi - 1) (x_{in} + x_{out} - 1)^{-(\xi+1)}$$

where ξ is calibrated to 1.85. The marginals for x_{in} and x_{out} follow power law with exponent ξ .

- Correlation between observed in-degree and out-degree
 - Model: 0.67
 - ▶ Data: 0.43

	Model	Datasets		
		Factset	Factset Compustat	
			AHRS	CF
Power law exponents				
In-degree distribution	0.97	0.97	1.13	1.32
Out-degree distribution	0.92	0.83	2.24	2.22
Global clustering coefficient (normalized)	3.45	3.46	0.08	0.09

Notes: Global clustering coefficients are multiplied by the square roots of the number of nodes for better comparison.

Shape of Network

Figure 2: Model and Factset data for 2016

- Triplet: three connected nodes (might be overlapping)
- Triangles: three fully connected nodes (3 triplets)

 $Clustering \ coefficient = \frac{3 \times number \ of \ triangles}{number \ of \ triplets}$

A given network θ^k is a function that maps $z \to Y_k(z)$

From extreme value theory

$$\operatorname{Vor}\left(\operatorname{constant}_{\mathcal{O}} \mathcal{V}_{\mathcal{O}} = \operatorname{Vor}\left(\operatorname{constant}_{\mathcal{O}} \mathcal{V}_{\mathcal{O}} \right)^{1/2} \operatorname{Vor}\left(\operatorname{constant}_{\mathcal{O}} \right)^{1/2} \operatorname{Vor}\left(\operatorname{constant}_{\mathcal{O}} \mathcal{V}_{\mathcal{O}} \right)^{1/2}$$

declines rapidly with n

A given network θ^k is a function that maps $z \to Y_k(z)$

From extreme value theory

 $\mathsf{Vor}\left(\mathsf{v}_{\mathsf{eff}},\mathsf{max}_{\mathsf{eff}},\mathsf{Vor}\left(\mathsf{V}\right)=\mathsf{Vor}\left(\mathsf{v}_{\mathsf{eff}},\mathsf{max}_{\mathsf{eff}},\mathsf{Vor}\left(\mathsf{V}\right)=\mathsf{Vor}\left(\mathsf{v}_{\mathsf{eff}},\mathsf{max}_{\mathsf{eff}},\mathsf{Vor}\left(\mathsf{V}\right)=\mathsf{Vor}\left(\mathsf{v}_{\mathsf{eff}},\mathsf{max}_{\mathsf{eff}},\mathsf{Vor}\left(\mathsf{V}\right)=\mathsf{Vor}\left(\mathsf{v}_{\mathsf{eff}},\mathsf{Vor}\left(\mathsf{V}\right)=\mathsf{Vor}\left(\mathsf{v}_{\mathsf{eff}},\mathsf{Vor}\left(\mathsf{V}\right)=\mathsf{Vor}\left(\mathsf{v}_{\mathsf{eff}},\mathsf{Vor}\left(\mathsf{V}\right)=\mathsf{Vor}\left(\mathsf{v}_{\mathsf{eff}},\mathsf{Vor}\left(\mathsf{V}\right)=\mathsf{Vor}\left(\mathsf{v}_{\mathsf{eff}},\mathsf{Vor}\left(\mathsf{V}\right)=\mathsf{Vor}\left(\mathsf{v}_{\mathsf{eff}},\mathsf{Vor}\left(\mathsf{V}\right)=\mathsf{Vor}\left(\mathsf{v}_{\mathsf{eff}},\mathsf{Vor}\left(\mathsf{V}\right)=\mathsf{Vor}\left(\mathsf{Vor}\left(\mathsf{V}\right)=\mathsf{Vor}\left(\mathsf{Vor}\left(\mathsf{V}\right)=\mathsf{Vor}\left(\mathsf{Vor}\left(\mathsf{V}\right)=\mathsf{Vor}\left(\mathsf{Vor}\left(\mathsf{V}\right)=\mathsf{Vor}\left(\mathsf{Vor}\left(\mathsf{V}\right)=\mathsf{Vor}\left(\mathsf{Vor}\left(\mathsf{Vor}\left(\mathsf{V}\right)=\mathsf{Vor}\left(\mathsf{Vor}\left(\mathsf{Vor}\left(\mathsf{Vor}\left(\mathsf{Vor}\left(\mathsf{V}\right)\right)=\mathsf{Vor}\left(\mathsf{$

declines rapidly with n

A given network θ^k is a function that maps $z \to Y_k(z)$

From extreme value theory

$$\operatorname{Var}\left(Y
ight)=\operatorname{Var}\left(\max_{k\in\{1,...,2^n\}}Y_k
ight)$$

declines rapidly with n

A given network θ^k is a function that maps $z \to Y_k(z)$

From extreme value theory

$$\operatorname{Var}\left(Y
ight)=\operatorname{Var}\left(\max_{k\in\{1,...,2^n\}}Y_k
ight)$$

declines rapidly with n

A given network θ^k is a function that maps $z \to Y_k(z)$

From extreme value theory

$$\operatorname{Var}\left(Y
ight)=\operatorname{Var}\left(\max_{k\in\{1,\ldots,2^n\}}Y_k
ight)$$

declines rapidly with n

A given network θ^k is a function that maps $z \to Y_k(z)$

From extreme value theory

$$\operatorname{Var}\left(Y
ight)=\operatorname{Var}\left(\max_{k\in\{1,\ldots,2^n\}}Y_k
ight)$$

declines rapidly with n

A given network θ^k is a function that maps $z \to Y_k(z)$

From extreme value theory

$$\operatorname{Var}(Y) = \operatorname{Var}\left(\max_{k \in \{1, \dots, 2^n\}} Y_k\right)$$

declines rapidly with n

A given network θ^k is a function that maps $z \to Y_k(z)$

From extreme value theory

$$\operatorname{Var}(Y) = \operatorname{Var}\left(\max_{k \in \{1, \dots, 2^n\}} Y_k\right)$$

declines rapidly with n

A given network θ^k is a function that maps $z \to Y_k(z)$

From extreme value theory

$$\operatorname{Var}(Y) = \operatorname{Var}\left(\max_{k \in \{1, \dots, 2^n\}} Y_k\right)$$

declines rapidly with n

◀ Return