Cascades and Fluctuations in an Economy with an Endogenous Production Network

Mathieu Taschereau-Dumouchel
May 2023

Cornell University

Introduction

- Firms rely on complex supply chains to get intermediate inputs
- These chains are constantly disrupted by suppliers going out of business
- Exit of one firm can push its suppliers and customers to exit

Introduction

- Firms rely on complex supply chains to get intermediate inputs
- These chains are constantly disrupted by suppliers going out of business
- Exit of one firm can push its suppliers and customers to exit
- These cascades change the structure of the production network
- Affect how micro shocks aggregate into macro fluctuations

Introduction

- Firms rely on complex supply chains to get intermediate inputs
- These chains are constantly disrupted by suppliers going out of business
- Exit of one firm can push its suppliers and customers to exit
- Cascade of firm failures
- These cascades change the structure of the production network
- Affect how micro shocks aggregate into macro fluctuations

How do the entry/exit decisions of the firms affect the structure of the production network and aggregate fluctuations?

Introduction

- Firms rely on complex supply chains to get intermediate inputs
- These chains are constantly disrupted by suppliers going out of business
- Exit of one firm can push its suppliers and customers to exit
- Cascade of firm failures
- These cascades change the structure of the production network
- Affect how micro shocks aggregate into macro fluctuations

How do the entry/exit decisions of the firms affect the structure of the production network and aggregate fluctuations?

- Firms rely on complex supply chains to get intermediate inputs
- These chains are constantly disrupted by suppliers going out of business
- Exit of one firm can push its suppliers and customers to exit
- Cascade of firm failures
- These cascades change the structure of the production network
- Affect how micro shocks aggregate into macro fluctuations

How do the entry/exit decisions of the firms affect the structure of the production network and aggregate fluctuations?

Approach and results

Firms are connected with a finite set of suppliers/customers

- Fixed cost to operate \rightarrow Firms operate or not depending on economic conditions
- Links between firms are active or not \rightarrow Changes to the structure of the network

Key economic force: Complementarities in operation decisions of nearby firms

Efficient organization of production

- Tight clusters centered around productive firms
* A small change can trigger large reorganization of the network

Approach and results

Firms are connected with a finite set of suppliers/customers

- Fixed cost to operate \rightarrow Firms operate or not depending on economic conditions
- Links between firms are active or not \rightarrow Changes to the structure of the network

Key economic force: Complementarities in operation decisions of nearby firms

- Tight clusters centered around productive firms

- Well-connected firms are hard to topple but create big cascades

Approach and results

Firms are connected with a finite set of suppliers/customers

- Fixed cost to operate \rightarrow Firms operate or not depending on economic conditions
- Links between firms are active or not \rightarrow Changes to the structure of the network

Key economic force: Complementarities in operation decisions of nearby firms

Efficient organization of production

- Tight clusters centered around productive firms
- A small change can trigger large reorganization of the network
- Well-connected firms are hard to topple but create big cascades
- Recessions feature fewer well-connected firms and less clustering

Approach and results

Firms are connected with a finite set of suppliers/customers

- Fixed cost to operate \rightarrow Firms operate or not depending on economic conditions
- Links between firms are active or not \rightarrow Changes to the structure of the network

Key economic force: Complementarities in operation decisions of nearby firms

Efficient organization of production

- Tight clusters centered around productive firms
- A small change can trigger large reorganization of the network

Cascades of firm shutdowns

- Well-connected firms are hard to topple but create big cascades
- Recessions feature fewer well-connected firms and less clustering

Approach and results

Firms are connected with a finite set of suppliers/customers

- Fixed cost to operate \rightarrow Firms operate or not depending on economic conditions
- Links between firms are active or not \rightarrow Changes to the structure of the network

Key economic force: Complementarities in operation decisions of nearby firms

Efficient organization of production

- Tight clusters centered around productive firms
- A small change can trigger large reorganization of the network

Cascades of firm shutdowns

- Well-connected firms are hard to topple but create big cascades

Aggregate fluctuations

- Recessions feature fewer well-connected firms and less clustering

Why study this problem

- Global survey of small and medium firms
- 39% report that losing their main supplier would adversely affect their operation, and 14% would need to significantly downsize their business, require emergency support or shut down (Zurich Insurance Group, 2015)
- Fall 2008: carmakers are on the verge of bankruptcy
- Policymakers worry about cascading effects through suf ply chains
- Ford CEO calls for bailout of GM and Chrysler in Senate testimony
- Do entry/exit decisions matter for the shape of the network?
- US data: 20% to 40% of link destructions occur with exit of sup lier or customer

Why study this problem

- Global survey of small and medium firms
- 39% report that losing their main supplier would adversely affect their operation, and 14% would need to significantly downsize their business, require emergency support or shut down (Zurich Insurance Group, 2015)
- Fall 2008: carmakers are on the verge of bankruptcy
- Policymakers worry about cascading effects through supply chains
- Ford CEO calls for bailout of GM and Chrysler in Senate testimony
- Do entry/exit decisions matter for the shape of the network?
- IIS data 20% to 40% of link destructions nccur with exit of sumplier or customer

Why study this problem

- Global survey of small and medium firms
- 39% report that losing their main supplier would adversely affect their operation, and 14% would need to significantly downsize their business, require emergency support or shut down (Zurich Insurance Group, 2015)
- Fall 2008: carmakers are on the verge of bankruptcy
- Policymakers worry about cascading effects through supply chains
- Ford CEO calls for bailout of GM and Chrysler in Senate testimony
- Do entry/exit decisions matter for the shape of the network?
- US data: 20% to 40% of link destructions occur with exit of supplier or customer

Model

- There are n firms that produce a differentiated good that can be used in the
- production of a final good

$$
C \equiv\left(\sum_{j=1}^{n} \beta_{j}^{\frac{1}{\sigma}} c_{j}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}
$$

- production of other differentiated goods
- Representative household
- Consumes the final good
- Supplies L units of labor inelastically
- Firm j produces good j with the production function

$$
y_{j}=\frac{A}{\alpha_{j}^{\alpha_{j}}\left(1-\alpha_{j}\right)^{1-\alpha_{j}}} z_{j} \theta_{j}\left(\sum_{i=1}^{n} \Omega_{i j}^{\frac{1}{\varepsilon_{j}}}{ }_{i j}^{\frac{\varepsilon_{j}-1}{\varepsilon_{j}}}\right)^{\frac{\varepsilon_{j}}{\varepsilon_{j}-1} \alpha_{j}} l_{j}^{1-\alpha_{j}}
$$

- Firm j can only use good i as input if there is a connection from firm i to j
- $\Omega_{i j}>0$ if connection and $\Omega_{i j}=0$ otherwise
- A connection can be active or inactive
- Matrix Ω is exogenous
- A firm can only produce if it pays a fixed cost $f_{j} L$ in units of labor
- $\theta_{j}=1$ if j is operating and $\theta_{j}=0$ otherwise
- Vector θ is endogenous
- Firm j produces good j with the production function

$$
y_{j}=\frac{A}{\alpha_{j}^{\alpha_{j}}\left(1-\alpha_{j}\right)^{1-\alpha_{j}}} z_{j} \theta_{j}\left(\sum_{i=1}^{n} \Omega_{i j}^{\frac{1}{\varepsilon_{j}}} x_{i j}^{\frac{\varepsilon_{j}-1}{\varepsilon_{j}}}\right)^{\frac{\varepsilon_{j}}{\varepsilon_{j}-1} \alpha_{j}} l_{j}^{1-\alpha_{j}}
$$

- Firm j can only use good i as input if there is a connection from firm i to j
- $\Omega_{i j}>0$ if connection and $\Omega_{i j}=0$ otherwise
- A connection can be active or inactive
- Matrix Ω is exogenous
- A firm can only produce if it pays a fixed cost $f_{j} L$ in units of labor
$\Rightarrow \theta_{j}=1$ if j is operating and $\theta_{j}=0$ otherwise
\Rightarrow Vector θ is endogenous
- Firm j produces good j with the production function

$$
y_{j}=\frac{A}{\alpha_{j}^{\alpha_{j}}\left(1-\alpha_{j}\right)^{1-\alpha_{j}}} z_{j} \theta_{j}\left(\sum_{i=1}^{n} \Omega_{i j}^{\frac{1}{\varepsilon_{j}}} x_{i j}^{\frac{\varepsilon_{j}-1}{\varepsilon_{j}}}\right)^{\frac{\varepsilon_{j}}{\varepsilon_{j}-1} \alpha_{j}} l_{j}^{1-\alpha_{j}}
$$

- Firm j can only use good i as input if there is a connection from firm i to j
- $\Omega_{i j}>0$ if connection and $\Omega_{i j}=0$ otherwise
- A connection can be active or inactive
- Matrix Ω is exogenous
- A firm can only produce if it pays a fixed cost $f_{j} L$ in units of labor
- $\theta_{j}=1$ if j is operating and $\theta_{j}=0$ otherwise
- Vector θ is endogenous

Efficient allocation and equilibrium

For today: focus on the problem of a social planner

In the paper: different equilibrium definitions

1. Variations of monopolistic competition
2. Stable equilibria (Hatfield et al. 2013, Oberfield 2018).

- An allocation is stable if there exist no coalition of firms t tat wishes to deviate

Proposition
Fverv stable ea ilibrium is efficient

Efficient allocation and equilibrium

For today: focus on the problem of a social planner

In the paper: different equilibrium definitions

1. Variations of monopolistic competition
2. Stable equilibria (Hatfield et al. 2013, Oberfield 2018).

- An allocation is stable if there exist no coalition of firms that wishes to deviate.

Proposition
-ven sia' ${ }^{\prime}$ e equilibrium is efficient

Efficient allocation and equilibrium

For today: focus on the problem of a social planner

In the paper: different equilibrium definitions

1. Variations of monopolistic competition
2. Stable equilibria (Hatfield et al. 2013, Oberfield 2018).

- An allocation is stable if there exist no coalition of firms that wishes to deviate.

Proposition

Every stable equilibrium is efficient.

Social planner

Problem \mathcal{P} of a social planner

$$
\max _{\substack{c, x, l \\ \theta \in\{0,1\}^{n}}}\left(\sum_{j=1}^{n} \beta_{j}^{\frac{1}{\sigma}} c_{j}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}
$$

subject to
a resource constraint for each good j
a resource constraint for labor

Social planner

Problem \mathcal{P} of a social planner

$$
\max _{\substack{c, x, \theta \in\{0,1\}^{n}}}\left(\sum_{j=1}^{n} \beta_{j}^{\frac{1}{\sigma}} c_{j}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}
$$

subject to

1. a resource constraint for each good j

$$
c_{j}+\sum_{k=1}^{n} x_{j k} \leq \frac{A}{\alpha_{j}^{\alpha_{j}}\left(1-\alpha_{j}\right)^{1-\alpha_{j}}} z_{j} \theta_{j}\left(\sum_{i=1}^{n} \Omega_{i j}^{\frac{1}{\varepsilon_{j}}} x_{i j}^{\frac{\varepsilon_{j}-1}{\varepsilon_{j}}}\right)^{\alpha_{j} \frac{\varepsilon_{j}}{\varepsilon_{j}-1}} l_{j}^{1-\alpha_{j}}
$$

2. a resource constraint for labor

$$
\sum_{j=1}^{n} I_{j}+\sum_{j=1}^{n} \theta_{j} f_{j} L \leq L
$$

Social planner

Problem \mathcal{P} of a social planner

$$
\max _{\substack{c, x, l \\ \theta \in\{0,1\}^{n}}}\left(\sum_{j=1}^{n} \beta_{j}^{\frac{1}{\sigma}} c_{j}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}
$$

subject to

1. a resource constraint for each good j

LM: λ_{j}

$$
c_{j}+\sum_{k=1}^{n} x_{j k} \leq \frac{A}{\alpha_{j}^{\alpha_{j}}\left(1-\alpha_{j}\right)^{1-\alpha_{j}}} z_{j} \theta_{j}\left(\sum_{i=1}^{n} \Omega_{i j}^{\frac{1}{\varepsilon_{j}}} x_{i j}^{\frac{\varepsilon_{j}-1}{\varepsilon_{j}}}\right)^{\alpha_{j} \frac{\varepsilon_{j}}{\varepsilon_{j}-1}} l_{j}^{1-\alpha_{j}}
$$

2. a resource constraint for labor

$$
\sum_{j=1}^{n} I_{j}+\sum_{j=1}^{n} \theta_{j} f_{j} L \leq L
$$

Social planner with exogenous θ

Define $q_{j}=w / \lambda_{j}$

- From the FOCs, output is $\left(1-\alpha_{j}\right) y_{j}=q_{j} l_{j}$
- q_{j} is the labor productivity of firm j

Proposition

In the efficient allocation

$$
\begin{equation*}
q_{j}=z_{j} \theta_{j} A\left(\sum_{i=1}^{n} \Omega_{i j} q_{i}^{\varepsilon_{j}-1}\right)^{\frac{\alpha_{j}}{\varepsilon_{j}-1}} \tag{1}
\end{equation*}
$$

for all $j \in \mathcal{N}$. Furthermore, there is a unique vector q that satisfies (1).

$$
q_{j}=z_{j} \theta_{j} A\left(\sum_{i=1}^{n} \Omega_{i j} q_{i}^{\varepsilon_{j}-1}\right)^{\frac{\alpha_{j}}{\varepsilon_{j}-1}}
$$

- Access to a larger set of inputs increases productivity q_{j}
- Aecece to cheanor innute (lamior $1 /$ mi) loade th a cheanor output

$$
q_{j}=z_{j} \theta_{j} A\left(\sum_{i=1}^{n} \Omega_{i j} q_{i}^{\varepsilon_{j}-1}\right)^{\frac{\alpha_{j}}{\varepsilon_{j}-1}}
$$

- Access to a larger set of inputs increases productivity q_{j}
- Access to cheaper inputs (lower $1 / q_{i}$) leads to a cheaper output
- Gains in productivity propagate downstream through supply chains

$$
q_{j}=z_{j} \theta_{j} A\left(\sum_{i=1}^{n} \Omega_{i j} q_{i}^{\varepsilon_{j}-1}\right)^{\frac{\alpha_{j}}{\varepsilon_{j}-1}}
$$

- Access to a larger set of inputs increases productivity q_{j}
- Access to cheaper inputs (lower $1 / q_{i}$) leads to a cheaper output
- Gains in productivity propagate downstream through supply chains

Key economic force: Gains from input variety

$$
q_{j}=z_{j} \theta_{j} A\left(\sum_{i=1}^{n} \Omega_{i j}\left(z_{i} \theta_{i} A\left(\sum_{k=1}^{n} \Omega_{k i}(\ldots)\right)^{\frac{\alpha_{i}}{\varepsilon_{i}-1}}\right)^{\varepsilon_{j}-1}\right)^{\frac{\alpha_{j}}{\varepsilon_{j}-1}}
$$

- Access to a larger set of inputs increases productivity q_{j}
- Access to cheaper inputs (lower $1 / q_{i}$) leads to a cheaper output
- Gains in productivity propagate downstream through supply chains

$$
q_{j}=z_{j} \theta_{j} A\left(\sum_{i=1}^{n} \Omega_{i j} q_{i}^{\varepsilon_{j}-1}\right)^{\frac{\alpha_{j}}{\varepsilon_{j}-1}}
$$

- Access to a larger set of inputs increases productivity q_{j}
- Access to cheaper inputs (lower $1 / q_{i}$) leads to a cheaper output
- Gains in productivity propagate downstream through supply chains

Key economic force: Gains from input variety

Social planner with exogenous θ

With q we can solve for all other quantities easily

Lemma

Aggregate consumption is

$$
C=Q\left(L-\sum_{j=1}^{n} \theta_{j} f_{j} L\right)
$$

where $Q \equiv\left(\sum_{j=1}^{n} \beta_{j} q_{j}^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$ is aggregate labor productivity.

Social planner with endogenous θ

Social planner with endogenous θ

Planner's problem \mathcal{P} can be expressed in terms of θ only

$$
\max _{\theta \in\{0,1\}^{n}} Q\left(L-\sum_{j=1}^{n} \theta_{j} f_{j} L\right)
$$

with

$$
q_{j}=z_{j} \theta_{j} A\left(\sum_{i=1}^{n} \Omega_{i j} q_{i}^{\varepsilon_{j}-1}\right)^{\frac{\alpha_{j}}{\varepsilon_{j}-1}}
$$

Trade-off: making firm j produce $\left(\theta_{j}=1\right)$

Social planner with endogenous θ

Planner's problem \mathcal{P} can be expressed in terms of θ only

$$
\max _{\theta \in\{0,1\}^{n}} Q\left(L-\sum_{j=1}^{n} \theta_{j} f_{j} L\right)
$$

with

$$
q_{j}=z_{j} \theta_{j} A\left(\sum_{i=1}^{n} \Omega_{i j} q_{i}^{\varepsilon_{j}-1}\right)^{\frac{\alpha_{j}}{\varepsilon_{j}-1}}
$$

Trade-off: making firm j produce $\left(\theta_{j}=1\right)$

- increases labor productivity of the network Q
-reduces the amount of 'toror into production' L- Deloffl

Social planner with endogenous θ

Planner's problem \mathcal{P} can be expressed in terms of θ only

$$
\max _{\theta \in\{0,1\}^{n}} Q\left(L-\sum_{j=1}^{n} \theta_{j} f_{j}\right)
$$

with

$$
q_{j}=z_{j} \theta_{j} A\left(\sum_{i=1}^{n} \Omega_{i j} q_{i}^{\varepsilon_{j}-1}\right)^{\frac{\alpha_{j}}{\varepsilon_{j}-1}}
$$

Trade-off: making firm j produce $\left(\theta_{j}=1\right)$

- increases labor productivity of the network Q
- reduces the amount of labor into production $L-\sum_{j=1}^{n} \theta_{j} f_{j} L$

Social planner with endogenous θ

Planner's problem \mathcal{P} can be expressed in terms of θ only

$$
\max _{\theta \in\{0,1\}^{n}} Q\left(L-\sum_{j=1}^{n} \theta_{j} f_{j} L\right)
$$

with

$$
q_{j}=z_{j} \theta_{j} A\left(\sum_{i=1}^{n} \Omega_{i j} q_{i}^{\varepsilon_{j}-1}\right)^{\frac{\alpha_{j}}{\varepsilon_{j}-1}}
$$

Trade-off: making firm j produce $\left(\theta_{j}=1\right)$

- increases labor productivity of the network Q
- reduces the amount of labor into production $L-\sum_{j=1}^{n} \theta_{j} f_{j} L$

Social planner with endogenous θ
"Hard" problem (MINLP — NP Hard)

1. Feasible set $\theta \in\{0,1\}^{n}$ is not convex
2. Objective function is not concave

Brute force approach: exhaustive search
Take a $\theta \in\{0,1\}$, iterate on q and evaluate the objective function

- 2^{n} vectors θ to try ($\approx 10^{6}$ configurations for 20 firms)
- Guaranteed to find correct solution but infeasible for n large
"Hard" problem (MINLP - NP Hard)

1. Feasible set $\theta \in\{0,1\}^{n}$ is not convex
2. Objective function is not concave

Brute force approach: exhaustive search

- Take a $\theta \in\{0,1\}^{n}$, iterate on q and evaluate the objective function
- 2^{n} vectors θ to try ($\approx 10^{6}$ configurations for 20 firms)
- Guaranteed to find correct solution but infeasible for n large

New solution approach: Find an alternative problem such that
P1 The alternative problem is easy to solve
P2 A solution to the alternative problem also solves \mathcal{P}

Reshaping \mathcal{P}

Consider the relaxed and reshaped problem \mathcal{R}

$$
\max _{\theta \in\{0,1\}^{n}} Q\left(L-\sum_{j=1}^{n} \theta_{j} f_{j} L\right)
$$

with

$$
q_{j}=z_{j} \theta_{j} A\left(\sum_{i=1}^{n} \Omega_{i j} q_{i}^{\varepsilon_{j}-1}\right)^{\frac{\alpha_{j}}{\varepsilon_{j}-1}}
$$

Reshaping \mathcal{P}

Consider the relaxed and reshaped problem \mathcal{R}

$$
\max _{\theta \in[0,1]^{n}} Q\left(L-\sum_{j=1}^{n} \theta_{j} f_{j} L\right)
$$

with

$$
q_{j}=z_{j} \theta_{j} A\left(\sum_{i=1}^{n} \Omega_{i j} q_{i}^{\varepsilon_{j}-1}\right)^{\frac{\alpha_{j}}{\varepsilon_{j}-1}}
$$

Parameters $a_{j}>0$ and $b_{i j}$ reshape the objective function away from optimum (i.e. when $0<\theta_{j}<1$)

- For $b_{i j}:\left\{\theta_{i}=0\right\} \Rightarrow\left\{q_{i}=0\right\}$ and $\left\{\theta_{i}=1\right\} \Rightarrow\left\{\theta_{i}^{b_{i j}}=1\right\}$

For $A \subset\left[n 11^{n}\right.$ a. and bi. do not affact the value of the mlammari's objective function

Reshaping \mathcal{P}

Consider the relaxed and reshaped problem \mathcal{R}

$$
\max _{\theta \in[0,1]^{n}} Q\left(L-\sum_{j=1}^{n} \theta_{j} f_{j} L\right)
$$

with

$$
q_{j}=z_{j} \theta_{j}^{a_{j}} A\left(\sum_{i=1}^{n} \Omega_{i j} \theta_{i}^{b_{i j}} q_{i}^{\varepsilon_{j}-1}\right)^{\frac{\alpha_{j}}{\varepsilon_{j}-1}}
$$

Parameters $a_{j}>0$ and $b_{i j}$ reshape the objective function away from optimum (i.e. when $0<\theta_{j}<1$) - Enc a. if Δ - $\left\{0.17\right.$ than $\Delta^{a_{j}}-\theta$ - For $b_{i j}:\left\{\theta_{i}=0\right\} \Rightarrow\left\{q_{i}=0\right\}$ and $\left\{\theta_{i}=1\right\} \Rightarrow\left\{\theta_{i}^{b_{i j}}=1\right\}$ For $A \in S n 1^{n}$ a. and h.i. do not affect the walue of the mlamen's objective function

Reshaping \mathcal{P}

Consider the relaxed and reshaped problem \mathcal{R}

$$
\max _{\theta \in[0,1]^{n}} Q\left(L-\sum_{j=1}^{n} \theta_{j} f_{j} L\right)
$$

with

$$
q_{j}=z_{j} \theta_{j}^{a_{j}} A\left(\sum_{i=1}^{n} \Omega_{i j} \theta_{i}^{b_{i j}} q_{i}^{\varepsilon_{j}-1}\right)^{\frac{\alpha_{j}}{\varepsilon_{j}-1}}
$$

Parameters $a_{j}>0$ and $b_{i j}$ reshape the objective function away from optimum (i.e. when $0<\theta_{j}<1$)

- For a_{j} : if $\theta_{j} \in\{0,1\}$ then $\theta_{j}^{a_{j}}=\theta_{j}$
- For $b_{i j}:\left\{\theta_{i}=0\right\} \Rightarrow\left\{q_{i}=0\right\}$ and $\left\{\theta_{i}=1\right\} \Rightarrow\left\{\theta_{i}^{b_{i j}}=1\right\}$

For $\theta \in\{0,1\}^{n}, a_{j}$ and $b_{i j}$ do not affect the value of the planner's objective function

How to pick a_{j} and $b_{i j}$?

We are free to pick a_{j} and $b_{i j}$ to help us solve \mathcal{R}

- Increase the concavity of \mathcal{R} to remove local maxima
- But too much concavity might create new maximum in the middle of $[0,1]^{n}$

Economic intuition: first-order condition of \mathcal{R} with respect to θ_{j}

But thinking at the margin is misleading!

- We want the planner to compare the whole discrete change between $\theta=0$ and $\theta=1$

How to pick a_{j} and $b_{i j}$?

We are free to pick a_{j} and $b_{i j}$ to help us solve \mathcal{R}

- Increase the concavity of \mathcal{R} to remove local maxima
- But too much concavity might create new maximum in the middle of $[0,1]^{n}$

Economic intuition: first-order condition of \mathcal{R} with respect to θ_{j} without reshaping

$$
\lambda_{j} c_{j}+\sum_{k=1}^{n} \lambda_{j} x_{j k}-\sum_{i=1}^{n} \lambda_{i} x_{i j}-w l_{j}-w \theta_{j} f_{j} L=\theta_{j} \Delta \mu_{j},
$$

But thinking at the margin is misleading!

- 'Me want 'the planner to compare 'the whole discrete change between $\theta=0$ and $0=1$

The parameters a_{j} and $b_{i j}$ change the perceived value of good j when determining θ_{j}

```
How to pick aj and b}\mp@subsup{b}{ij}{}\mathrm{ ?
```

We are free to pick a_{j} and $b_{i j}$ to help us solve \mathcal{R}

- Increase the concavity of \mathcal{R} to remove local maxima
- But too much concavity might create new maximum in the middle of $[0,1]^{n}$

Economic intuition: first-order condition of \mathcal{R} with respect to θ_{j} without reshaping

$$
\lambda_{j} c_{j}+\sum_{k=1}^{n} \lambda_{j} x_{j k}-\sum_{i=1}^{n} \lambda_{i} x_{i j}-w l_{j}-w \theta_{j} f_{j} L=\theta_{j} \Delta \mu_{j},
$$

But thinking at the margin is misleading!

- We want the planner to compare the whole discrete change between $\theta=0$ and $\theta=1$

The parameters a_{j} and $b_{i j}$ change the perceived value of good j when determining θ_{j}

How to pick a_{j} and $b_{i j}$?

We are free to pick a_{j} and $b_{i j}$ to help us solve \mathcal{R}

- Increase the concavity of \mathcal{R} to remove local maxima
- But too much concavity might create new maximum in the middle of $[0,1]^{n}$

Economic intuition: first-order condition of \mathcal{R} with respect to θ_{j} with reshaping

$$
\left(1+a_{j}\right) \lambda_{j} c_{j}+\sum_{k=1}^{n}\left(1+a_{j}+b_{j k}\right) \lambda_{j} x_{j k}-\sum_{i=1}^{n} \lambda_{i} x_{i j}-w l_{j}-w \theta_{j} f_{j} L=\theta_{j} \Delta \mu_{j},
$$

But thinking at the margin is misleading!

- We want the planner to compare the whole discrete change between $\theta=0$ and $\theta=1$

The parameters a_{j} and $b_{i j}$ change the perceived value of good j when determining θ_{j}

How to pick a_{j} and $b_{i j}$?

What is the full gain in utility from operating ρ ?

$$
\Delta C=\int_{0}^{c_{j}} \frac{\partial C}{\partial c_{j}} d \tilde{c}_{j}=\int_{0}^{c_{j}} \beta_{j}^{\frac{1}{\sigma}} \tilde{c}_{j}^{-\frac{1}{\sigma}} C^{\frac{1}{\sigma}} d \tilde{c}_{j}=\frac{\sigma}{\sigma-1} c_{j} \underbrace{\frac{\partial C}{\partial c_{j}}}_{\lambda_{j}}
$$

The benefit of operating j should be proportional to $\frac{\sigma}{\sigma-1}$. Similar reasoning for $b_{i j}$.
and verify that these parameter values are helpful

What is the full gain in utility from operating ρ ?

$$
\Delta C=\int_{0}^{c_{j}} \frac{\partial C}{\partial c_{j}} d \tilde{c}_{j}=\int_{0}^{c_{j}} \beta_{j}^{\frac{1}{\sigma}} \tilde{c}_{j}^{-\frac{1}{\sigma}} C^{\frac{1}{\sigma}} d \tilde{c}_{j}=\frac{\sigma}{\sigma-1} c_{j} \underbrace{\frac{\partial C}{\partial c_{j}}}_{\lambda_{j}}
$$

The benefit of operating j should be proportional to $\frac{\sigma}{\sigma-1}$. Similar reasoning for $b_{i j}$.

From now on set

$$
a_{j}=\frac{1}{\sigma-1} \quad \text { and } \quad b_{i j}=\frac{1}{\varepsilon_{j}-1}-\frac{1}{\sigma-1}
$$

and verify that these parameter values are helpful

P1: Under some conditions the reshaped problem \mathcal{R} is easy to solve

Proposition

Let $\varepsilon_{j}=\varepsilon$ and $\alpha_{j}=\alpha$ for all j. If $\Omega_{i j}=d_{i} e_{j}$ for some vectors d and e then the KKT conditions are necessary and sufficient to characterize a solution to \mathcal{R}.

Define $\bar{\Omega}=\omega(\mathbb{1}-I)$ where $\mathbb{1}$ is the all-one matrix, I the identity and $\omega>0$.

Proposition
Iet $\pi=\sigma$, for $=/ l j$. Suppose that the $\{\beta\}\}$. N are not too far from each other and that the matrix Ω is close enough to $\bar{\Omega}$. Then there exists a threshold $\bar{f}>0$ such that if $f_{j}<\bar{f}$ for all j the KKT conditions are necessary and sufficient to characterize a solution to \mathcal{R}

P1: Under some conditions the reshaped problem \mathcal{R} is easy to solve

Proposition

Let $\varepsilon_{j}=\varepsilon$ and $\alpha_{j}=\alpha$ for all j. If $\Omega_{i j}=d_{i} e_{j}$ for some vectors d and e then the KKT conditions are necessary and sufficient to characterize a solution to \mathcal{R}.

Define $\bar{\Omega}=\omega(\mathbb{1}-I)$ where $\mathbb{1}$ is the all-one matrix, I the identity and $\omega>0$.

Proposition
I et $\pi=\sigma$, for $\exists l \mid$. Suppose that the $\{\beta\}$. are not too far from each other and that the matrix Ω if close enough to $\bar{\Omega}$. Then there exists a threshold $\bar{f}>0$ such that if $f_{j}<\bar{f}$ for all j the KKT conditions are necessary and sufficient to characterize a solution to \mathcal{R}

These two propositions only provides sufficient conditions

- Later: robustness

P 1 : Under some conditions the reshaped problem \mathcal{R} is easy to solve

Proposition

Let $\varepsilon_{j}=\varepsilon$ and $\alpha_{j}=\alpha$ for all j. If $\Omega_{i j}=d_{i} e_{j}$ for some vectors d and e then the KKT conditions are necessary and sufficient to characterize a solution to \mathcal{R}.

Define $\bar{\Omega}=\omega(\mathbb{1}-I)$ where $\mathbb{1}$ is the all-one matrix, I the identity and $\omega>0$.

Proposition

Let $\sigma=\varepsilon_{j}$ for all j. Suppose that the $\left\{\beta_{j}\right\}_{j \in \mathcal{N}}$ are not too far from each other and that the matrix Ω is close enough to $\bar{\Omega}$. Then there exists a threshold $\bar{f}>0$ such that if $f_{j}<\bar{f}$ for all j the KKT conditions are necessary and sufficient to characterize a solution to \mathcal{R}.

These two propositions only provides sufficient conditions
-Later: robustness

P 1 : Under some conditions the reshaped problem \mathcal{R} is easy to solve

Proposition

Let $\varepsilon_{j}=\varepsilon$ and $\alpha_{j}=\alpha$ for all j. If $\Omega_{i j}=d_{i} e_{j}$ for some vectors d and e then the KKT conditions are necessary and sufficient to characterize a solution to \mathcal{R}.

Define $\bar{\Omega}=\omega(\mathbb{1}-I)$ where $\mathbb{1}$ is the all-one matrix, I the identity and $\omega>0$.

Proposition

Let $\sigma=\varepsilon_{j}$ for all j. Suppose that the $\left\{\beta_{j}\right\}_{j \in \mathcal{N}}$ are not too far from each other and that the matrix Ω is close enough to $\bar{\Omega}$. Then there exists a threshold $\bar{f}>0$ such that if $f_{j}<\bar{f}$ for all j the KKT conditions are necessary and sufficient to characterize a solution to \mathcal{R}.

These two propositions only provides sufficient conditions

- Later: robustness

P2: \mathbf{A} solution to \mathcal{R} also solves \mathcal{P}

Proposition

If $\theta^{*} \in\{0,1\}^{n}$ solves \mathcal{R}, then θ^{*} also solves \mathcal{P}

But why would a solution to \mathcal{R} be in $\{0,1\}^{n}$? First-order condition of \mathcal{R} with respect to θ_{j}

- Under ($*$) the marginal benefit of θ_{j} only depends on θ_{j} through aggregates Ff and G

Proposition

If $\theta^{*} \in\{0,1\}^{n}$ solves \mathcal{R}, then θ^{*} also solves \mathcal{P}

But why would a solution to \mathcal{R} be in $\{0,1\}^{n}$? First-order condition of \mathcal{R} with respect to θ_{j}

$$
\text { Marginal Benefit }\left(\theta_{j}, F_{j}(\theta)\right)-\text { Marginal } \operatorname{Cost}\left(\theta_{j}, G_{j}(\theta)\right)=\bar{\mu}_{j}-\underline{\mu}_{j}
$$

- Under (\star) the marginal benefit of θ_{j} only depends on θ_{j} through aggregates F_{j} and G_{j}

P2: A solution to \mathcal{R} also solves \mathcal{P}

Proposition

If $\theta^{*} \in\{0,1\}^{n}$ solves \mathcal{R}, then θ^{*} also solves \mathcal{P}

But why would a solution to \mathcal{R} be in $\{0,1\}^{n}$? First-order condition of \mathcal{R} with respect to θ_{j}

$$
\text { Marginal Benefit }\left(X_{j}, F_{j}(\theta)\right)-\text { Marginal } \operatorname{Cost}\left(\not \mathcal{L}_{j}, G_{j}(\theta)\right)=\bar{\mu}_{j}-\underline{\mu}_{j}
$$

- Under (\star) the marginal benefit of θ_{j} only depends on θ_{j} through aggregates F_{j} and G_{j}
- For large connected network: $\left\{F_{j}, G_{j}\right\} \rightarrow$ independent of θ_{j}

P2: A solution to \mathcal{R} also solves \mathcal{P}

Proposition

If $\theta^{*} \in\{0,1\}^{n}$ solves \mathcal{R}, then θ^{*} also solves \mathcal{P}

But why would a solution to \mathcal{R} be in $\{0,1\}^{n}$? First-order condition of \mathcal{R} with respect to θ_{j}

- Under (\star) the marginal benefit of θ_{j} only depends on θ_{j} through aggregates F_{j} and G_{j}
- For large connected network: $\left\{F_{j}, G_{j}\right\} \rightarrow$ independent of θ_{j}

Example with two firms

Relaxed problem without reshaping

Problem: V is not concave
\Rightarrow First-order conditions are not sufficient
\Rightarrow Numerical algorithm can get stuck in local maxima

Example with two firms

Relaxed problem without reshaping

Problem: V is not concave
\Rightarrow First-order conditions are not sufficient
\Rightarrow Numerical algorithm can get stuck in local maxima

Example with two firms

Relaxed problem with reshaping

Problem: V is now (quasi) concave
\Rightarrow First-order conditions are necessary and sufficient
\Rightarrow Numerical algorithm converges to global maximum

Tests on Small Networks

For small networks we can solve \mathcal{P} directly using exhaustive search and compare to solution of \mathcal{R}

n	With reshaping		Without reshaping	
	Correct θ	Error in C	Correct θ	Error in C
8	99.9\%	0.001\%	86.5\%	0.791\%
10	99.9\%	0.001\%	85.2\%	0.855\%
12	99.9\%	0.001\%	84.5\%	0.903\%
14	99.9\%	0.001\%	84.0\%	0.926\%
- Notes Mreak. by \rightarrow Homo. firms Mink by lint Marge networks				

The errors come from

1. firms that are particularly isolated
2. two θ configurations with almost same output

Tests with calibrated parameters

Same parameters as calibration

Table 1: Testing the reshaping approach for n large

| | With reshaping | | | Without reshaping | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n | Correct θ | Error in C | | Correct θ | Error in C |
| 1000 | 99.9% | $<0.001 \%$ | | 66.5% | 0.56% |

Notes: Parameters as in the calibrated economy. We simulate 100 different matrices Ω and, for each Ω, draw 100 productivity vectors z. We run the procedure described in the appendix on each of them and report average results. $x<0.001 \%$ indicates that $x>0$ but that proper rounding would yield 0 .

Economic Forces

Gains from input variety create complementarities

Operating a firm increases the incentives to operate its neighbors in Ω.

Gains from input variety create complementarities

Operating a firm increases the incentives to operate its neighbors in Ω.

Gains from input variety create complementarities

Operating a firm increases the incentives to operate its neighbors in Ω.

- Impact of operating 2 on the incentives to operate 1 and 3

Gains from input variety create complementarities

Operating a firm increases the incentives to operate its neighbors in Ω.

- Impact of operating 2 on the incentives to operate 1 and 3
- $\theta_{2}=1 \rightarrow q_{2}$ is larger if 1 operates
- Upstream and downstream complementarities in operating decisions Cascades of firm shutdowns
- Stronger with low elasticity of substitution ε and higher input share α

Gains from input variety create complementarities

Operating a firm increases the incentives to operate its neighbors in Ω.

- Impact of operating 2 on the incentives to operate 1 and 3
- $\theta_{2}=1 \rightarrow q_{2}$ is larger if 1 operates
$\theta_{2}=1 \rightarrow q_{3}$ is larger if 3 operates
- Upstream and downstream complementarities in operating decisions

Cascades of firm shutdowns

Gains from input variety create complementarities

Operating a firm increases the incentives to operate its neighbors in Ω.

- Impact of operating 2 on the incentives to operate 1 and 3
- $\theta_{2}=1 \rightarrow q_{2}$ is larger if 1 operates
- $\theta_{2}=1 \rightarrow q_{3}$ is larger if 3 operates
- Upstream and downstream complementarities in operating decisions
\rightarrow Cascades of firm shutdowns
- Stronger with low elasticity of substitution ε and higher input share α

Complementarities lead to clustering

Proposition

Operating a group of firms is more beneficial when there are more potential connections between them.

Figure 1: Clustering with three random draws of productivity z

Large impact of small shock

Non-convex economy: a small shock can trigger a large reorganization

But welfare is barely affected (Theorem of the Maximum)

Large impact of small shock

Non-convex economy: a small shock can trigger a large reorganization

But welfare is barely affected (Theorem of the Maximum)

The role of elasticities

Quantitative Exploration

Network data

Two datasets that cover the U.S. economy

- Compustat
- Public firms must self-report important customers ($>10 \%$ of sales)
- Cohen and al (2008) and Atalay et al (2011) use fuzzy-text matching algorithms to build the network
- Includes public and private firms, and less important relationships
- Data from 10-K. 10-Q. annual reports. investor presentations. websit press releases, etc

Network data

Two datasets that cover the U.S. economy

- Compustat
- Public firms must self-report important customers ($>10 \%$ of sales)
- Cohen and al (2008) and Atalay et al (2011) use fuzzy-text matching algorithms to build the network
- Factset Revere
- Includes public and private firms, and less important relationships
- Data from 10-K, 10-Q, annual reports, investor presentations, websites, press releases, etc

Network data

Two datasets that cover the U.S. economy

- Compustat
- Public firms must self-report important customers ($>10 \%$ of sales)
- Cohen and al (2008) and Atalay et al (2011) use fuzzy-text matching algorithms to build the network
- Factset Revere
- Includes public and private firms, and less important relationships
- Data from $10-\mathrm{K}, 10-\mathrm{Q}$, annual reports, investor presentations, websites, press releases, etc

	Years	Firms/year	Links/year
Compustat			
\quad Atalay et al (2001)	$1976-2009$	1,300	1,500
\quad Cohen and Frazzini (2006)	$1980-2004$	950	1,100
Factset	$2003-2016$	13,000	46,000

Parameters

Focus on the shape of the network and limit heterogeneity across firms

```
Parameters from the literature
- \(\alpha_{j}=0.5\) to fit share of intermediate (Jorgenson et al 1987, Jones 2011)
- - - - 5 avamame of antimatar (Droda at al 2nng)
- \(\log z_{i t}\) is AR1 with \(\log z_{i t} \sim\) iid \(\mathcal{N}\left(0,0.39^{2}\right)\) (Bartelsman et al, 2013), \(\rho_{z}=0.81\) (Foster et al,
    2008)
    - \(f \times-\) - \(5 \%\) to fit employment in management occupations
    - \(n=1000\) for high precision while limiting computations
```

Unobserved matrix Ω
- Picked to match the observed in-degree distribution
- Generate thousands of random Ω 's and report averages

Parameters

Focus on the shape of the network and limit heterogeneity across firms
Parameters from the literature

- $\alpha_{j}=0.5$ to fit share of intermediate (Jorgenson et al 1987, Jones 2011)
- $\sigma=\varepsilon_{j}=5$ average of estimates (Broda et al 2006)
- $\log z_{i t}$ is AR 1 with $\log z_{i t} \sim \operatorname{iid} \mathcal{N}\left(0,0.39^{2}\right)$ (Bartelsman et al, 2013), $\rho_{z}=0.81$ (Foster et al, 2008)
- $f_{j} \times n=5 \%$ to fit employment in management occupations
- $n=1000$ for high precision while limiting computations

Unobserved matrix Ω

- Picked to match the observed in-degree distribution
- Generate thousands of random Ω 's and report averages

Parameters

Focus on the shape of the network and limit heterogeneity across firms
Parameters from the literature

- $\alpha_{j}=0.5$ to fit share of intermediate (Jorgenson et al 1987, Jones 2011)
- $\sigma=\varepsilon_{j}=5$ average of estimates (Broda et al 2006)
- $\log z_{i t}$ is AR 1 with $\log z_{i t} \sim \operatorname{iid} \mathcal{N}\left(0,0.39^{2}\right)$ (Bartelsman et al, 2013), $\rho_{z}=0.81$ (Foster et al, 2008)
- $f_{j} \times n=5 \%$ to fit employment in management occupations
- $n=1000$ for high precision while limiting computations

Unobserved matrix Ω

- Picked to match the observed in-degree distribution
- Generate thousands of random Ω 's and report averages

Shape of the network

What does an optimally designed network looks like?

- Compare optimal and random networks
- Differences highlights how efficient allocation shapes the network

Efficient network has

- greater fraction of highly connected firms
- more clustering among firms

Shape of the network

What does an optimally designed network looks like?

- Compare optimal and random networks
- Differences highlights how efficient allocation shapes the network

	Power law exponents		Clustering coefficient
Network	In-degree	Out-degree	
Efficient	0.97	0.92	3.45
Random	1.18	1.15	2.08

Efficient network has

- greater fraction of highly connected firms
- more clustering among firms

[^0]
Cascades of shutdowns

For each firm in each year

- Look at all neighbors upstream and downstream
- Regress the share of neighbors that exit on whether the original firm exits (and some controls)

Cascades of shutdowns

For each firm in each year

- Look at all neighbors upstream and downstream
- Regress the share of neighbors that exit on whether the original firm exits (and some controls)

Resilience of firms

Size of cascades and probability of exit by degree of firm

	Size of cascades			Probability of exit	
	Data	Model		Data	Model
Average firm	0.9	1.1		11.8%	11.3%
High-degree firm	3.1	4.3		2.5%	1.7%

Notes: Size of cascades refers to firm exits up to and including the third neighbors. High degree means above the 90th percentile.

- Highly-connected firms are hard to topple but upon shutting down they create large cascades

Resilience of firms

Size of cascades and probability of exit by degree of firm

	Size of cascades			Probability of exit	
	Data	Model		Data	Model
Average firm	0.9	1.1		11.8%	11.3%
High-degree firm	3.1	4.3		2.5%	1.7%

Notes: Size of cascades refers to firm exits up to and including the third neighbors. High degree means above the 90th percentile.

- Highly-connected firms are hard to topple but upon shutting down they create large cascades

Aggregate fluctuations

Static model but z shocks move output and the structure of network together

Table 2: Correlations with aggregate output

	Model	Datasets		
		Factset	Compustat	
				AHRS
		CF		
Power law exponents	-0.53	-0.87	-0.35	-0.12
In-degree distribution	-0.63	-0.97	-0.31	-0.11
Out-degree distribution	0.60	0.76	0.18	0.11
Global clustering coefficient				

- Recessions: too costly to organize clusters around most productive firms

Aggregate fluctuations

Static model but z shocks move output and the structure of network together

Table 2: Correlations with aggregate output

	Model	Datasets		
		Factset	Compustat	
			AHRS	CF
Power law exponents				
In-degree distribution	-0.53	-0.87	-0.35	-0.12
Out-degree distribution	-0.63	-0.97	-0.31	-0.11
Global clustering coefficient	0.60	0.76	0.18	0.11

- Recessions: too costly to organize clusters around most productive firms

Aggregate fluctuations

Static model but z shocks move output and the structure of network together

Table 2: Correlations with aggregate output

	Model	Datasets		
		Factset	Compustat	
				AHRS
		CF		
Power law exponents				
In-degree distribution	-0.53	-0.87	-0.35	-0.12
Out-degree distribution	-0.63	-0.97	-0.31	-0.11
Global clustering coefficient	0.60	0.76	0.18	0.11

- Recessions: too costly to organize clusters around most productive firms

Aggregate fluctuations

$$
Y=Q\left(L-\sum_{j} \theta_{j} f_{j} L\right)
$$

Table 3: Standard deviations of log aggregates

	Output			
	Y	\approx	Labor Prod. Q	Prod. labor $L-\sum_{j} f_{j} \theta_{j}$
Optimal network	0.10		0.10	
Fixed network	0.12	0.12	0.009	

- Volatility of output about 20% smaller when network evolves endogenously
- The difference comes from changes in the structure of the network
- Average output is also 11% lower

Aggregate fluctuations

$$
Y=Q\left(L-\sum_{j} \theta_{j} f_{j} L\right)
$$

Table 3: Standard deviations of log aggregates

	Output			
	Y	\approx	Labor Prod. Q	Prod. labor $L-\sum_{j} f_{j} \theta_{j}$
Optimal network	0.10		0.10	
Fixed network	0.12		0.12	0.009

- Volatility of output about 20% smaller when network evolves endogenously
- The difference comes from changes in the structure of the network
- Average output is also 11% lower

Conclusion

Summary

- Model of network formation through entry/exit of firms
- Complementarities lead to clustering of activity and cascades
- Calibration captures empirical cascades and correlation between network and output
- Reorganization of network leads to smaller fluctuation

In the paper: inefficient allocations

- Reshaping can also solve those equilibrium
- Different upstream/downstream complementarities
- More rigid networks

Appendix

Stable equilibrium

- Definitions
- A contract between i and j is a quantity shipped $x_{i j}$ and a payment $T_{i j}$.
- An arrangement is a contract between all possible pairs of firms.
- A coalition is a set of firms J.
- A deviation for a coalition J consists of

1. dropping any contracts with firms not in J and,
2. altering any contract involving two firms in J.

- A dominating deviation is a deviation such that no firm is worse off and one firm is better off.
- An allocation is feasible if $c_{j}+\sum_{k} x_{j k} \leq y_{j}$ and $\sum_{j} l_{j}+\theta_{j} f_{j} L \leq L$.

Stable equilibrium

- Firm j maximize profits

$$
\pi_{j}=p_{j} c_{j}-w l_{j}+\sum_{i=1}^{n} T_{j i}-\sum_{i=1}^{n} T_{i j}-\theta_{j} w f_{j} L
$$

subject to $c_{j}+\sum_{k=1}^{n} x_{j k} \leq y_{j}$ and $c_{j}=\beta_{j} C\left(p_{j} / P\right)^{-\sigma}$.
Definition
A stable equilibrium is an arrangement $\left\{x_{i j}, T_{i j}\right\}_{i, j \in \mathcal{N}^{2}}$, firms' choices $\left\{p_{j}, c_{j}, l_{j}, \theta_{j}\right\}_{j \in \mathcal{N}}$ and a wage w such that:
the household maximizes
firms maximize
markate clanar
there are no dominating deviations by any coalition, and
the equilibrium allocation is feasible

Stable equilibrium

- Firm j maximize profits

$$
\pi_{j}=p_{j} c_{j}-w l_{j}+\sum_{i=1}^{n} T_{j i}-\sum_{i=1}^{n} T_{i j}-\theta_{j} w f_{j} L
$$

subject to $c_{j}+\sum_{k=1}^{n} x_{j k} \leq y_{j}$ and $c_{j}=\beta_{j} C\left(p_{j} / P\right)^{-\sigma}$.

Definition 1

A stable equilibrium is an arrangement $\left\{x_{i j}, T_{i j}\right\}_{i, j \in \mathcal{N}^{2}}$, firms' choices $\left\{p_{j}, c_{j}, l_{j}, \theta_{j}\right\}_{j \in \mathcal{N}}$ and a wage w such that:

1. the household maximizes,
2. firms maximize,
3. markets clear,
4. there are no dominating deviations by any coalition, and
5. the equilibrium allocation is feasible.

- Labor allocation

$$
I=\left[\left(I_{n}-\Gamma\right) \operatorname{diag}\left(\frac{1}{1-\alpha}\right)\right]^{-1}\left(\beta \circ\left(\frac{q}{Q}\right)^{\circ(\sigma-1)} \frac{Y}{Q}\right)
$$

- Output

$$
\left(1-\alpha_{j}\right) y_{j}=q_{j} l_{j}
$$

- Consumption

$$
c_{j}=\beta_{j}\left(\frac{q_{j}}{w}\right)^{\sigma} Y
$$

- Intermediate goods flows

$$
x_{i j} \lambda_{i}^{\varepsilon_{j}}=\lambda_{j}^{\varepsilon_{j}} \alpha_{j}\left(A z_{j} \theta_{j}\left(\frac{\lambda_{j}}{w}\right)^{1-\alpha_{j}}\right)^{\frac{\varepsilon_{j}-1}{\alpha_{j}}} \delta_{i j} \Omega_{i j}^{\varepsilon_{j}} y_{j} .
$$

Tests Details

Aggregates parameters

- $\sigma \in\{4,6,8\}$
- $\log \left(z_{k}\right) \sim \operatorname{iid} \mathcal{N}\left(0,0.25^{2}\right)$
- Ω randomly drawn such that firms have on average $3,4,5,6,7$ or 8 potential incoming connections
- The corresponding average number of active incoming connections is 2.1, 3.0, 3.8, 4.5,5.3, and 5.8, respectively.
- For each non-zero: $\Omega_{i j} \sim$ iid $U([0,1])$

Individual parameters

- $f_{j} \sim \operatorname{iid} U([0,0.2 / n])$
- $\alpha_{j} \sim$ iid $U([0.25,0.75])$
- $\varepsilon_{j} \sim \operatorname{iid} U([4, \sigma])$
- $\beta_{j} \sim \operatorname{iid} U([0,1])$

For each possible combination of aggregate parameters, 200 networks Ω and productivity vectors z are drawn. An economy is kept in the sample only if the first-order conditions yield a solution for which θ

Breakdown by Ω

		Firms with correct θ		
n	Reshaping?	All Ω 's	More connected Ω 's	Less connected Ω 's
8	Yes	99.8%	99.9%	99.6%
	No	88.2%	89.1%	87.4%
12	Yes	99.7%	99.9%	99.5%
	No	86.5%	87.3%	85.8%
	Yes	99.7%	99.9%	99.5%
	No	86.2%	87.0%	85.5%
	Yes	99.7%	99.9%	99.4%
	No	85.5%	86.1%	85.1%

- Less connected Ω : firms have 3,4 or 5 potential incoming connections
- More connected Ω : firms have 6,7 or 8 potential incoming connections

	Number of firms n			
	8	10	12	14
A. With reshaping				
Firms with correct θ	99.9%	99.8%	99.8%	99.8%
Error in output Y	0.001%	0.002%	0.002%	0.002%
B. Without reshaping				
Firms with correct θ	87.2%	85.8%	84.7%	83.8%
Error in output Y	0.71%	0.79%	0.85%	0.89%

Notes: Random networks with parameters $f \in\{0.05 / n, 0.1 / n, 0.15 / n\}, \sigma_{z}=0.25$, $\alpha \in\{0.45,0.5,0.55\}, \sigma \in\{4,6,8\}, \varepsilon \in\{4,6,8\}$ and networks Ω randomly drawn such that firms have on average $2,4,5,6,7$ to 8 potential incoming connections. Each non-zero $\Omega_{i j}$ is set to 1 . For each combination of the parameters, 200 different economies are created. For each economy, productivity is drawn from $\log \left(z_{k}\right) \sim$ iid $\mathcal{N}\left(0, \sigma_{z}^{2}\right)$. An economy is kept in the sample only if the first-order conditions yield a solution for which θ hits the bounds. More than 90% of the economies are kept in the sample.

Link by link

- Real firms: $f_{j}=0, \alpha_{j}=0.5, \sigma=\varepsilon_{j}=6$ and $\sigma_{z}=0.25$
- Link firms: $\beta_{j}=0$, only one input and one output, $f_{j} \sim$ iid $U([0,0.1 / n]), \alpha_{j} \sim$ iid $U([0.5,1])$, $\sigma_{z}=0.25$
- Ω : between any two real firm, there is a link firm with probability $p \in\{0.7,0.8,0.9\}$

Number of firms		With reshaping		Without reshaping	
Real firms m	Link firms $n-m$	Correct θ	Error in C	Correct θ	Error in C
3	up to 6	99.9%	0.001%	94.1%	0.17%
4	up to 12	99.7%	0.003%	91.3%	0.25%
5	up to 20	99.7%	0.006%	89.2%	0.31%

Large Networks

For large networks we cannot solve $\mathcal{P}_{S P}$ directly by trying all possible vectors θ

- After all the welfare-improving 1-deviations θ are exhausted:

	With reshaping			Without reshaping	
n	Correct θ	Error in C		Correct θ	Error in C
1000	$>99.9 \%$	$<0.001 \%$		68.9%	0.58%

Notes: 200 different Ω and z that satisfy the properties of the calibrated economy.

- No guarantee that the solution has been found but very few "obvious errors"

Link by link

- Same parameters as before
- After all the welfare-improving 1-deviation in θ are exhausted:

Number of firms	With reshaping		Without reshaping		
	Link firms $n-m$	Correct θ	Error in C	Correct θ	Error in C
10	up to 90	99.7%	0.005%	83.8%	0.46%
25	up to 600	99.9%	0.001%	80.5%	0.55%
40	up to 1560	$<99.9 \%$	$<0.001 \%$	79.5%	0.57%

- θ_{j} converges on $\{0,1\}$ for all j in about $60-85 \%$ of the tests
- Even without convergence small error in output and few errors in θ

Solution away from corners

- Sometimes the first-order conditions do not converge on a corner.
- Without excluding these simulations:

		Error in C		
n	Reshaping?	All Ω 's	More connected Ω 's	Less connected Ω 's
8	Yes	0.007%	$<0.001 \%$	0.014%
	No	0.683%	0.640%	0.726%
	Yes	0.013%	$<0.001 \%$	0.027%
12	No	0.781%	0.739%	0.823%
	Yes	0.008%	$<0.001 \%$	0.016%
	No	0.799%	0.744%	0.853%
	Yes	0.008%	0.001%	0.016%
	No	0.831%	0.801%	0.862%

Formal statement

Proposition 1

Let $\mathcal{J} \subset \mathcal{N}$ be a group of firms. Denote by $\theta^{+} \in\{0,1\}^{n}$ the operating vector when the firms in \mathcal{J} operate $\left(\theta_{j}^{+}=1\right.$ for $\left.j \in \mathcal{J}\right)$. Similarly, let $\theta^{-} \in\{0,1\}^{n}$ be the operating vector when the firms in \mathcal{J} do not operate $\left(\theta_{j}^{-}=0\right.$ for $\left.j \in \mathcal{J}\right)$. For all $j \notin \mathcal{J}$, assume $\theta_{j}^{+}=\theta_{j}^{-}$. Denote by Ω^{-}a network of potential connections and let Ω^{+}be identical to Ω^{-}except that it has an additional connection between two firms in \mathcal{J}. Then

$$
C_{\Omega^{+}}\left(\theta^{+}\right)-C_{\Omega^{+}}\left(\theta^{-}\right) \geq C_{\Omega^{-}}\left(\theta^{+}\right)-C_{\Omega^{-}}\left(\theta^{-}\right)
$$

where $C_{\Omega}(\theta)$ denotes consumption under the potential network Ω and the operating vector θ.

Clustering coefficient

- Ω is drawn randomly so that joint distribution of in-degree and out-degree is a bivariate power law of the first kind

$$
f\left(x_{\text {in }}, x_{\text {out }}\right)=\xi(\xi-1)\left(x_{\text {in }}+x_{\text {out }}-1\right)^{-(\xi+1)}
$$

where ξ is calibrated to 1.85 . The marginals for $x_{\text {in }}$ and $x_{\text {out }}$ follow power law with exponent ξ.

- Correlation between observed in-degree and out-degree
- Model: 0.67
- Data: 0.43

Calibrated Network

	Model	Datasets		
		Factset	Compustat	
PowRS	CF			
In-degree distribution	0.97	0.97	1.13	1.32
Out-degree distribution	0.92	0.83	2.24	2.22
Global clustering coefficient (normalized)	3.45	3.46	0.08	0.09

Notes: Global clustering coefficients are multiplied by the square roots of the number of nodes for better comparison.

Shape of Network

Figure 2: Model and Factset data for 2016

Clustering coefficient

- Triplet: three connected nodes (might be overlapping)
- Triangles: three fully connected nodes (3 triplets)

$$
\text { Clustering coefficient }=\frac{3 \times \text { number of triangles }}{\text { number of triplets }}
$$

Intuition

A given network θ^{k} is a function that maps $z \rightarrow Y_{k}(z)$

Intuition

A given network θ^{k} is a function that maps $z \rightarrow Y_{k}(z)$

Intuition

A given network θ^{k} is a function that maps $z \rightarrow Y_{k}(z)$

Intuition

A given network θ^{k} is a function that maps $z \rightarrow Y_{k}(z)$

Intuition

A given network θ^{k} is a function that maps $z \rightarrow Y_{k}(z)$

Intuition

A given network θ^{k} is a function that maps $z \rightarrow Y_{k}(z)$

Intuition

A given network θ^{k} is a function that maps $z \rightarrow Y_{k}(z)$

From extreme value theory $\operatorname{Var}(Y)=\operatorname{Var}$

Intuition

A given network θ^{k} is a function that maps $z \rightarrow Y_{k}(z)$

From extreme value theory $\operatorname{Var}(Y)=\operatorname{Var}$ $\left.\max _{2 n\}} Y_{k}\right)$

Intuition

A given network θ^{k} is a function that maps $z \rightarrow Y_{k}(z)$

From extreme value theory

$$
\operatorname{Var}(Y)=\operatorname{Var}\left(\max _{k \in\left\{1, \ldots, 2^{n}\right\}} Y_{k}\right)
$$

declines rapidly with n

[^0]: - Def. clust. coeff

