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Abstract

Supply chain disturbances can lead to substantial increases in production costs. To mitigate

these risks, firms may take steps to reduce their reliance on volatile suppliers. We construct a

model of endogenous network formation to investigate how these decisions affect the structure

of the production network and the level and volatility of macroeconomic aggregates. When

uncertainty increases in the model, producers prefer to purchase from more stable suppliers,

even though they might sell at higher prices. The resulting reorganization of the network tends

to reduce macroeconomic volatility, but at the cost of a decline in aggregate output. The model

also predicts that more productive and stable firms have higher Domar weights—a measure of

their importance as suppliers—in the equilibrium network. We provide a basic calibration of

the model using U.S. data to evaluate the importance of these mechanisms.
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1 Introduction

Firms rely on complex supply chains to get the intermediate inputs that they need for pro-

duction. These chains can be disrupted by natural disasters, wars, trade barriers, changes in

regulations, congestion in transportation links, etc. Such shocks can propagate to the rest of the

economy through input-output linkages, resulting in aggregate fluctuations. However, firms may

mitigate this propagation by reducing their reliance on risky suppliers. In this paper, we study

how this kind of mitigating behavior affects an economy’s production network and macroeconomic

aggregates.

Supply chain disruptions are one of the key challenges that business executives face and are

responsible for substantial investments in risk-mitigation strategies (Ho et al., 2015). The COVID-

19 pandemic provides a stark illustration of how uncertainty can disrupt supply relationships.

Following the onset of the pandemic, many companies realized that their supply chains were more

vulnerable than previously thought. A recent survey revealed that seventy percent of firm managers

agreed that the pandemic pushed companies to favor higher supply-chain resiliency instead of simply

purchasing from the lowest-cost supplier. Many also reported plans to diversify their supply chains

across suppliers and geographies.1

To study how supply chain uncertainty affects firms’ sourcing decisions and how these decisions

affect the macroeconomy, we construct a model of endogenous network formation that builds on

Acemoglu and Azar (2020). In the model, firms produce differentiated goods that can be consumed

by a risk-averse representative household or used as intermediate inputs by other producers. Firms

can produce their goods using different production techniques. A technique is a production function

that specifies which intermediate inputs to use and how these inputs are to be combined. Techniques

can also differ in terms of productivity. When choosing a technique, a firm can marginally adjust

the importance of a supplier or drop that supplier altogether. Consequently, these decisions, when

aggregated, lead to changes in the production network along both the intensive and extensive

margins.

After selecting production techniques, firms are subject to random productivity shocks. They

can then adjust how much they produce and the quantity of inputs that they use, subject to the

constraints imposed by their selected technique. Competitive pressure between producers implies

that the productivity shocks, as they affect production costs, are reflected in prices.

Importantly, and in contrast with Acemoglu and Azar (2020), firms’ beliefs about the distri-

bution of sectoral productivities can influence their choice of production technique and, thus, the

structure of the network. Firms compare profits across different states of the world using the repre-

1Survey by Foley & Lardner LLP, available online at https://www.foley.com/-/media/files/insights/

publications/2020/09/foley-2020-supply-chain-survey-report-1.pdf. See also Wagner and Bode (2008) and
Zurich Insurance Group (2015) for other surveys documenting the importance of supply chain risks. Alessandria
et al. (2022) investigate the impact of supply chain disturbances in the context of the COVID pandemic.
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sentative household’s stochastic discount factor and, as such, they inherit the household’s attitude

toward risk. Consequently, while a firm would generally prefer to purchase from a more produc-

tive supplier, it might decide otherwise if this supplier is also riskier. Such a supplier would sell

at a lower price on average but it is also more likely to suffer from a large negative productivity

shock, in which case the price of its good would rise substantially. Potential customers consider this

possibility and balance concerns between average productivity and stability when choosing their

production techniques.

For example, consider a car manufacturer deciding what materials to use as inputs. If steel

prices are expected to increase or become more volatile, it may instead use carbon fiber for some

components. If the change is large enough, it may switch away from using steel altogether, in which

case the link between the car manufacturer and its steel supplier would disappear.

We prove that the unique equilibrium in this environment is efficient, so that the equilibrium

production network can be understood as resulting from a social planner maximizing the utility

of the representative household. That network optimally balances a higher level of expected GDP

against a lower variance, with the relative importance of these two objectives being determined by

the household’s risk aversion. This trade-off implies a novel mechanism through which uncertainty

can lower expected GDP. In the presence of uncertainty, firms prefer stable input prices and, as a

result, move toward safer suppliers even though they might be less productive. Through this flight

to safety process, less productive producers gain in importance, and aggregate productivity and

GDP fall as a result. On the other hand, this supply chain reshuffling leads to a more resilient

network that dampens the effect of shocks and reduces aggregate fluctuations.

We further show that in equilibrium the importance of a producer (measured by its sales share,

or Domar weight) is greater when its productivity has a higher expected value or a lower variance.

More broadly, the impact of beliefs on the economy depends crucially on substitution patterns

that describe whether the Domar weights of two sectors tend to move together or in opposite

directions after a change in the TFP process. These patterns depend on how technique choices

affect productivity and on the covariance matrix of the TFP shocks. For instance, if sectors i and

j are strongly positively correlated, the planner tends to make them move in opposite direction as

to avoid too much risk exposure. In that case, an increase in the expected productivity of sector i

is accompanied by a decline in the Domar weight of sector j.

Whether sectors are substitutes or complements also determines how the expected value and

the variance of GDP respond to shifts in beliefs. We characterize conditions under which these

changes are amplified or mitigated, compared to the fixed-network benchmark of Hulten’s theorem

(Hulten, 1978). We further show that when there is no uncertainty, Hulten’s theorem applies in

our setting even though the network is endogenous.

In some circumstances, the forces at work in the model can have counterintuitive implications

for how the productivity process affects aggregate quantities. While an increase in expected pro-
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ductivity or a decline in volatility always benefit welfare, their impact on expected GDP can be the

opposite of what one would expect. For instance, an increase in expected productivity can lead to

a decline in expected GDP, so that Hulten’s theorem is not a good guide to understanding changes

in GDP, even as a first-order approximation. To understand why, imagine a producer with (on

average) low but stable productivity. Its high output price makes it unattractive as a supplier. But

if its expected productivity increases, its risk-reward profile improves, and other producers might

begin to purchase from it. Doing so, they might move away from more productive but riskier pro-

ducers and, as a result, expected GDP might fall. We show that a similar mechanism also implies

that an increase in the volatility of a sector’s productivity can lead to a decline in the variance of

aggregate output.

We provide a basic calibration of the model using sectoral U.S. data. To isolate the impact

of uncertainty, we compare our calibrated model to an alternative economy in which firms are

unconcerned about risk when making sourcing decisions. Although this economy is similar to the

baseline model during normal times, significant differences appear during high-volatility periods,

such as the Great Recession. During that episode, firms responded to uncertainty by moving to

safer but less productive suppliers. These decisions led to a meaningful reduction in the volatility

of GDP, but the added stability came at the cost of an additional decline in expected GDP.

The model that we use for our quantitative analysis relies on some simplifying assumptions

for tractability reasons. To verify the robustness of our findings, we provide additional empirical

evidence that does not rely on the structure of the model. Taking advantage of rich firm-level U.S.

data, we find that, as in the model, higher uncertainty leads to a decline in Domar weights, and

that network connections involving riskier suppliers are more likely to break down. These results

are robust to using different measures of uncertainty and instruments from Alfaro et al. (2019) to

tease out exogenous variation in uncertainty.

Our work is related to a large literature that investigates the impact of uncertainty on macroeco-

nomic aggregates (Bloom, 2009, 2014; Bloom et al., 2018). We propose a novel mechanism through

which uncertainty can lower expected GDP. This mechanism operates through a flight to safety

process in which firms facing higher uncertainty switch to safer but less productive suppliers, lead-

ing to lower but less volatile GDP. In a recent paper, David et al. (2022) argue that uncertainty

may lead capital to flow to firms that are less exposed to aggregate risk, rather than to those

firms where it would be most productive. In their model, as in ours, uncertainty can lead to lower

aggregate output and measured TFP.2

There is a growing literature that studies how shocks propagate through production networks,

in the spirit of early contributions by Long and Plosser (1983), Dupor (1999) and Horvath (2000).

2Fernández-Villaverde et al. (2011) investigate the real impact of interest rate volatility for emerging economies.
Jurado et al. (2015) provide econometric estimates of time-varying macroeconomic uncertainty. Baker et al. (2016)
measure economic policy uncertainty based on newspaper coverage. Nieuwerburgh and Veldkamp (2006) and Fajgel-
baum et al. (2017) develop models in which uncertainty can have a long-lasting impact on economic aggregates.
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Acemoglu et al. (2012) derive conditions on input-output networks under which idiosyncratic shocks

result in aggregate fluctuations, even when the number of producers is large.3 Acemoglu et al. (2017)

and Baqaee and Farhi (2019a) describe conditions under which production networks can generate

fat-tailed aggregate output distributions. Foerster et al. (2011) and Atalay (2017) study the empir-

ical contributions of sectoral shocks for aggregate fluctuations. Carvalho and Gabaix (2013) argue

that the reduction in aggregate volatility during the Great Moderation (and its potential recent

undoing) can be explained by changes in the input-output network.4

In most of this literature, Hulten’s (1978) theorem applies, so that sales shares are a sufficient

statistic to predict the impact of microeconomic shocks on macroeconomic aggregates. In contrast,

since firms choose production techniques in the presence of uncertainty, Hulten’s theorem is not

a useful guide to how productivity affects expected GDP in our model.5 An increase in expected

sectoral productivity can even have a negative impact on expected GDP.

Our paper is not the first to study the endogenous formation of production networks. Ober-

field (2018) builds a model in which each firm selects a supplier to purchase from, and studies how

changes in the environment affect the production network. Our model is closely related to Acemoglu

and Azar (2020). As in that paper, we model endogenous network formation as a technique choice

problem in which firms do not internalize the impact of their supply chain decisions on equilibrium

objects. The key difference between the two models is in terms of timing. In Acemoglu and Azar

(2020) firms know the realization of the shock when choosing their technique, while in our model

that decision is made under uncertainty. As a result, in our setting uncertainty and beliefs influence

the structure of the network and economic aggregates. Taschereau-Dumouchel (2020), Acemoglu

and Tahbaz-Salehi (2020) and Elliott et al. (2022) study economies in which firms’ decisions to

operate or not shape the production network. Lim (2018) and Huneeus (2018) evaluate the impor-

tance of endogenous changes in the network for business cycle fluctuations. Dhyne et al. (2021)

build a model of endogenous network formation and international trade. Boehm and Oberfield

(2020) estimate a network formation model using Indian microdata to study misallocation in input

markets. Bernard et al. (2022) build a model of network formation to explain firm heterogeneity.

Grossman et al. (2023) consider how policy can improve resiliency in a model with endogenous

formation of supply links.6 A key distinguishing feature of our work is its focus on how uncertainty

affects the structure of the production network and macroeconomic aggregates.

3Production networks are one mechanism through which granular fluctuations can emerge (Gabaix, 2011).
4Other studies have looked at the importance of production networks outside the business cycle literature. Jones

(2011) investigates their importance to explain income differences between countries. Barrot and Sauvagnat (2016),
Boehm et al. (2019) and Carvalho et al. (2021) study the propagation of shocks after natural disasters.

5Baqaee and Farhi (2019a) investigate departures from Hulten’s theorem due to higher-order effects. Recent work
that has studied production networks under distortions, where Hulten’s theorem generally does not hold, includes
Baqaee (2018), Liu (2019), Baqaee and Farhi (2019b), Bigio and La’O (2020) and Caliendo et al. (2022).

6Atalay et al. (2011) show that a “preferential attachment” model can fit features of the U.S. firm-level production
network. Carvalho and Voigtländer (2014) build a rule-based network formation model to study the diffusion of
intermediate inputs. Kopytov (2023) studies financial interconnectedness and systemic risk under uncertainty.
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Several papers in the network literature endow firms with CES production functions, so that

the input-output matrix varies with factor prices. Our model generates endogenous changes in

the production network through a different mechanism, which is closer to Oberfield (2018) and

Acemoglu and Azar (2020). In contrast to the standard CES setup, our model allows links between

sectors to be created or destroyed. In addition, the existing literature using CES production network

models has not studied how uncertainty and beliefs shape production networks, and introducing

such mechanisms while keeping the model tractable is not straightforward.

The next section introduces our model of network formation under uncertainty. In Section 3,

we characterize the equilibrium when the network is fixed. We then investigate the firms’ technique

choice problem in Section 4 and consider the full equilibrium with a flexible network in Section

5. In Sections 6 and 7, we describe how the productivity process affects the production network,

welfare and GDP. In Section 8, we provide a basic calibration of the model. Section 9 provides

additional empirical evidence in support of the mechanisms. The last section concludes. All proofs

are in Appendix A and Supplemental Appendix D.

2 A model of endogenous network formation under uncertainty

We study the formation of production networks under uncertainty in a multi-sector economy.

Each sector is populated by a representative firm that produces a differentiated good that can

be used either as an intermediate input or for consumption. To produce, each firm must choose

a production technique, which specifies a set of inputs to use. Firms are owned by a risk-averse

representative household and are subject to sector-specific productivity shocks. Since firms choose

production techniques before these shocks are realized, the probability distribution of the shocks

affects the input-output structure of the economy.

2.1 Firms and production functions

There are n sectors, indexed by i ∈ {1, . . . , n}, each producing a differentiated good. In each

sector, there is a representative firm that behaves competitively so that equilibrium profits are

always zero. When this creates no confusion, we use sector i, product i and firm i interchangeably.

As in Oberfield (2018) and Acemoglu and Azar (2020), the representative firm in sector i has

access to a set of production techniques Ai. A technique αi ∈ Ai specifies the set of inputs that

are used in production, how these inputs are to be combined, and a productivity shifter Ai (αi).

We model these techniques as Cobb-Douglas technologies that can vary in terms of factor shares

and total factor productivity. It is therefore convenient to identify a technique αi ∈ Ai with the

intermediate input shares associated with that technique, αi = (αi1, . . . , αin), and to write the
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corresponding production function as

F (αi, Li, Xi) = eεiAi (αi) ζ (αi)L
1−

∑n
j=1 αij

i

n∏
j=1

X
αij

ij , (1)

where Li is labor and Xi = (Xi1, . . . , Xin) is a vector of intermediate inputs. The term εi is the

stochastic component of sector i’s total factor productivity. Finally, ζ (αi) is a normalization to

simplify future expressions.7

Since a technique αi corresponds to a vector of factor shares, we define the set of feasible

production techniques Ai for sector i as Ai =
{
αi ∈ [0, 1]n :

∑n
j=1 αij ≤ αi

}
, where 0 < 1−αi < 1

provides a lower bound on the share of labor in the production of good i. We denote by A the

Cartesian product A1 × · · · × An, such that an element α ∈ A, which corresponds to a choice

of inputs for each sector, fully characterizes the production network in this economy. The set A
allows firms to adjust the importance of a supplier at the margin or to not use a particular input

at all by setting the corresponding share to zero. The model is therefore able to capture network

adjustments along both the intensive and extensive margins.

The choice of technique influences the total factor productivity of sector i through Ai (αi). This

term is given by nature and represents how effective a combination of inputs is at producing a

given good. For instance, beach towels and flowers are not very useful when making a car, and a

technique that relies only on these inputs would have a low Ai. In contrast, a technique that uses

aluminum, steel, car engines, etc. would be associated with a higher productivity. When deciding

on its optimal production technique, firm i will take Ai into account, but it will also evaluate the

expected level and volatility of each input price.

We impose the following structure on Ai (αi).

Assumption 1. Ai (αi) is smooth and strictly log-concave.

This assumption is both technical and substantial in nature. The strict log-concavity ensures

that there exists a unique technique that solves the optimization problem of the firm. It also implies

that, for each sector i, there is a unique vector of ideal input shares α◦
i ∈ Ai that maximizes Ai

and that represents the most productive way to combine intermediate inputs to produce good i.

Without loss of generality, we normalize Ai (α
◦
i ) = 1 for all i.8

Example. One example of a function Ai (αi) that satisfies Assumption 1 is the quadratic form

logAi (αi) =
1

2
(αi − α◦

i )
⊤Hi (αi − α◦

i ) , (2)

7Namely, [ζ (αi)]
−1 =

(
1−

∑n
j=1 αij

)1−
∑n

j=1 αij ∏n
j=1 α

αij

ij . This normalization is useful to simplify the unit cost

expression, given by (8) below. ζ (αi) could instead be included in Ai (αi) without any impact on the model.
8We further assume for all i that ∇ logAi (α

◦
i ) = 0, where ∇ denotes the gradient. Since α◦

i maximizes Ai, this
assumption is potentially restrictive only if α◦

i /∈ int Ai. All the results go through without it except that an extra
term must be added to the approximation in Proposition 8.
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where Hi is a negative-definite matrix that is also the Hessian of logAi. Throughout the paper, we

will sometimes assume that Ai takes this form to more transparently describe the mechanisms at

work. We also use this functional form in the quantitative section of the paper.

The distribution of sectoral productivity shock εi in (1) is a key primitive of the model and an

important input into the firms’ technique choice problem. We collect these shocks in the vector

ε = (ε1, . . . , εn), which we assume to be normally distributed, ε ∼ N (µ,Σ).9 The vector µ

determines the expected level of sectoral productivities, while the covariance matrix Σ determines

both uncertainty about individual elements of ε and their correlations across industries. We assume

throughout that Σ is positive definite. The vector ε is the only source of uncertainty in this economy.

In equilibrium, ε will have a direct impact on prices, and its moments (µ,Σ) will affect expec-

tations about the price system. For instance, a sector with a high µi will have a low expected unit

cost and therefore the price of good i will be low in expectation. Similarly, a high Σii implies large

productivity shocks and a volatile price of good i. Since production techniques must be chosen

before ε is realized, the beliefs (µ,Σ) will affect the sourcing decisions of the firms.

We impose the restriction that the representative firm in sector i can only adopt one production

technique αi. Without this restriction, the firm would set up a continuum of individual plants, each

with its own technique, to cover the whole set Ai. After the realization of the productivity shocks,

the firm would only operate the plant that is best suited to the specific ε draw. All the other plants

would remain idle. In reality, we think that fixed costs would prevent the firm from setting up all

these plants. Information frictions might also impede the reallocation of sectoral demand to the

best suited technique. To avoid burdening the exposition of the model, we adopt this restriction in

an ad hoc fashion here, but provide a possible microfoundation for it in Supplemental Appendix E.

2.2 Household preferences

A risk-averse representative household supplies one unit of labor inelastically and chooses a

consumption vector C = (C1, . . . , Cn) to maximize

u

((
C1

β1

)β1
× · · · ×

(
Cn
βn

)βn)
, (3)

where βi > 0 for all i and
∑n

i=1 βi = 1. We refer to Y =
∏n
i=1

(
β−1
i Ci

)βi as aggregate consumption

or, equivalently in this setting, GDP. The utility function u (·) is CRRA with a coefficient of relative

risk aversion ρ ≥ 1.10 The household makes consumption decisions after uncertainty is resolved

9This assumption is common in the literature but implies that an increase in the variance Σii of a sector i has
a beneficial impact on its expected TFP. Through this channel the adverse effect of an increase in uncertainty is
mitigated. A common way to correct for this effect is to remove half of the variance of ε from its mean. Supplemental
Appendix H describes why such a correction is problematic in our model and discusses other potential corrections.

10The case 0 < ρ < 1 is straightforward to characterize but is somewhat unnatural since the household then seeks
to increase the variance of log consumption. Indeed, when log Y is normal, maximizing E

[
(1− ρ)−1 Y 1−ρ

]
amounts
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and so in each state of the world it faces the budget constraint

n∑
i=1

PiCi ≤ 1, (4)

where Pi is the price of good i, and the wage is used as the numeraire.

Firms are owned by the representative household and maximize expected profits discounted by

the household’s stochastic discount factor11

Λ = u′ (Y ) /P , (5)

where P =
∏n
i=1 P

βi
i is the price index. The stochastic discount factor captures how much an extra

unit of the numeraire contributes to the utility of the household in different states of the world.

From the optimization problem of the household it is straightforward to show that

y = −β⊤p, (6)

where y = log Y , p = (logP1, . . . , logPn) and β = (β1, . . . , βn). Log GDP is thus the negative of

the sum of log prices weighted by the consumption shares β. Intuitively, as prices decrease relative

to wages, the household can purchase more goods, and aggregate consumption increases.

2.3 Unit cost minimization

We solve the problem of a given representative firm in two stages. In the first stage, the firm

decides which production technique to use. Importantly, this choice is made before the random

productivity vector ε is realized. In contrast, consumption, labor and intermediate inputs are

chosen (and their respective markets clear) in the second stage, after the realization of ε. This

timing captures the fact that production techniques take time to adjust, as they might involve

retooling a plant, teaching new processes to workers, negotiating contracts with new suppliers, etc.

We begin by solving the second stage problem. Under a given technique αi, the cost minimiza-

tion problem of a firm in sector i is

Ki (αi, P ) = min
Li,Xi

Li + n∑
j=1

PjXij

 , subject to F (αi, Li, Xi) ≥ 1. (7)

The solution to this problem implicitly defines the unit cost of production Ki (αi, P ), which plays

to maximizing E [log Y ]− 1
2
(ρ− 1)V [log Y ] such that ρ ≶ 1 indicates whether the household likes uncertainty in log

consumption or not. This is a consequence of the usual increase in the mean of a log-normal variable from an increase
in the variance of the underlying normal variable. See Supplemental Appendix H for a version of the model in which
we correct for this term.

11See Supplemental Appendix C.1 for the derivation of equations (5) and (6).
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an important role in our analysis. Since, for a given αi, the firm operates a constant returns to

scale technology, Ki does not depend on the scale of the firm and is only a function of the (relative)

prices P = (P1, . . . , Pn). We show in Appendix C.2 that the production function (1) implies that

Ki (αi, P ) =
1

eεiAi (αi)

n∏
j=1

P
αij

j , (8)

which is the standard Cobb-Douglas unit cost function. Equation (8) states that the cost of

producing one unit of good i is equal to the geometric average of the individual input prices

(weighted by their respective shares) adjusted for sectoral total factor productivity.

2.4 Technique choice

Given an expression for Ki, the first stage of the representative firm’s problem is to pick a

technique αi ∈ Ai to maximize expected discounted profits, that is,

α∗
i ∈ arg max

αi∈Ai

E [ΛQi (Pi −Ki (αi, P ))] , (9)

where Qi is the equilibrium demand for good i, and where the profits in different states of the world

are weighted by the household’s stochastic discount factor Λ. The representative firm takes P , Qi

and Λ as given, and so the only term in (9) over which it has any control is the unit cost Ki (αi, P ).

The firm thus selects the technique αi ∈ Ai that minimizes the expected discounted value of the

total cost of goods sold QiKi (αi, P ), while taking into consideration that final consumption goods

are valued differently across different states of the world, as captured by Λ.12 Because profits are

discounted by Λ, firms effectively inherit the risk attitude of the representative household.

2.5 Equilibrium conditions

In equilibrium, competitive pressure pushes prices to be equal to unit costs, so that

Pi = Ki (αi, P ) for all i ∈ {1, . . . , n} . (10)

For a given network α ∈ A, this equation, together with (8), allows us to fully characterize the

price system as a function of the random productivity shocks ε.13

An equilibrium is defined by the optimality conditions of both the household and the firms

12As usual, the presence of the stochastic discount factor in the firm problem comes from the implicit assumption
that there are complete markets in this economy. Since agents can trade state-ε contingent claims, state prices reflect
the marginal utility of the household in each state.

13Even without imposing that production techniques are Cobb-Douglas, the system (10) yields a unique price
vector P under standard assumptions. But the Cobb-Douglas structure implies that we can write the distribution of
P in closed form, which allows us to characterize the technique choice problem in a tractable way.
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holding simultaneously, together with the usual market clearing conditions.

Definition 1. An equilibrium is a choice of technique α∗ = (α∗
1, . . . , α

∗
n) and a stochastic tuple

(P ∗, C∗, L∗, X∗, Q∗) such that

1. (Optimal technique choice) For each i ∈ {1, . . . , n}, the technique choice α∗
i ∈ Ai solves (9)

given prices P ∗, demand Q∗
i and the stochastic discount factor Λ∗ given by (5).

2. (Optimal input choice) For each i ∈ {1, . . . , n}, factor demands per unit of output L∗
i /Q

∗
i and

X∗
i /Q

∗
i are a solution to (7) given prices P ∗ and the chosen technique α∗

i .

3. (Consumer maximization) The consumption vector C∗ maximizes (3) subject to (4) given

prices P ∗.

4. (Unit cost pricing) For each i ∈ {1, . . . , n}, P ∗
i solves (10) where Ki (α

∗
i , P

∗) is given by (8).

5. (Market clearing) For each i ∈ {1, . . . , n},

C∗
i +

n∑
j=1

X∗
ji = Q∗

i = Fi (α
∗
i , L

∗
i , X

∗
i ) , and

n∑
i=1

L∗
i = 1. (11)

Conditions 2 to 5 correspond to the standard competitive equilibrium conditions for an econ-

omy with a fixed production network. They imply that firms and the household optimize in a

competitive environment and that all markets clear given equilibrium prices. Condition 1 empha-

sizes that production techniques, and hence the production network represented by the matrix α∗,

are equilibrium objects that depend on the primitives of the economy.

It is straightforward to extend the model along several dimensions without losing tractability.

For instance, the model can accommodate disturbances that happen at the link level instead of at

the sectoral level. To do so, we can simply think of a link between two producers as a fictitious

“transport” sector that is also subject to shocks. It is also straightforward to extend the model to

include multiple primary factors or wedges between unit costs and prices. We work out this last

extension in Supplemental Appendix K. In Supplemental Appendix L, we also consider additional

sources of uncertainty in terms of 1) household preferences, 2) labor supply, and 3) distortions (e.g.

due to government policies). We find that these sources of uncertainty either do not matter for the

equilibrium network, matter only if they interact with the productivity shocks ε, or have a similar

impact to the uncertainty about ε.

On the other hand, certain ingredients are essential to keep the model tractable. Here, the key

challenge comes from the fact that technique choices affect equilibrium prices which in turn affect

technique choices. The log-linearity implied by the Cobb-Douglas aggregators in (1) and (3) are

needed to keep the equilibrium beliefs tractable. While this implies a unit elasticity of substitution

in the production function (1), this elasticity only captures the response of intermediate inputs to
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realized prices conditional on a chosen production technique. Since firms’ expectations affect their

technique choice, the model is able to handle richer substitution patterns between expected prices

and intermediate input shares, as we explore in more details in Section 6.

3 Equilibrium prices and GDP in a fixed-network economy

Before analyzing how the equilibrium production network responds to changes in the produc-

tivity process, it is useful to first establish how prices and GDP behave under a fixed network. To

this end, we first define two objects that will play a central role in our analysis.

The first is the Leontief inverse L (α) = (I − α)−1, which can also be written as the geometric

sum L (α) = I + α + α2 + . . . . An element i, j of L (α) captures the importance of sector j as an

input in the production of good i by taking into account direct and indirect connections between

the two sectors in the production network.

We also define the Domar weight ωi of sector i as the ratio of its sales to nominal GDP, such that

ωi =
PiQi

P⊤C
. As we show in the proof of Corollary 1, the vector of Domar weights ω = (ω1, . . . , ωn) is

equal to ω⊤ = β⊤L (α) > 0 in the model. Domar weights combine the preferences of the household

with the Leontief inverse to provide an overall measure of the importance of a sector as a supplier.

They are constant in a fixed-network economy but vary when firms are free to adjust sourcing

decisions.

With these definitions in hand, we present a first result that links the vector of sectoral pro-

ductivities with prices and GDP.

Lemma 1. Under a given network α, the vector of log prices is given by

p (α) = −L (α) (ε+ a (α)) , (12)

and log GDP is given by

y (α) = ω (α)⊤ (ε+ a (α)) , (13)

where a (α) = (logAi (αi) , . . . , logAn (αn)).

Lemma 1 describes how prices and GDP depend on 1) the productivity vector ε+ a (α) and 2)

the production network α. Since all the elements of ω (α) and L (α) are non-negative, an increase in

productivity has a negative impact on log prices and a positive impact on log GDP when the network

is fixed. Intuitively, as firms become more productive, their unit costs decline, and competition

forces them to sell at lower prices. From the perspective of GDP, higher productivity implies that

the available labor can be transformed into more consumption goods.

The lemma makes clear that production techniques α matter for prices and GDP through two

distinct channels. They have a direct impact on the productivity shifters a(α) because different
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techniques have different productivities. In addition, α affects prices and GDP through its impact

on the Leontief inverse and the Domar weights. The matrix L (α) = I+α+α2+ . . . in (12) implies

that the price of good i depends not only on i’s productivity, but also on the productivity of its

suppliers, and on the productivity of their suppliers, and so on. These higher-order connections

also matter for GDP and thus the impact of sectoral productivity on aggregate output depends on

the sector’s importance, as captured by its Domar weight.

Lemma 1 also shows that p and y are linear functions of the productivity vector ε and, as a

result, inherit the normality of ε. The first and second moments of y can thus be written as

E [y (α)] = ω (α)⊤ (µ+ a (α)) and V [y (α)] = ω (α)⊤Σω (α) . (14)

We conclude this section with a simple corollary, already known in the literature, that describes

the impact of beliefs on the mean and the variance of log GDP under a fixed production network.

In what follows, we use partial derivatives to emphasize that the network α is kept fixed.

Corollary 1. For a fixed production network α, the following holds.

1. The impact of a change in expected TFP µi on the moments of log GDP is given by

∂ E [y]

∂µi
= ωi, and

∂V [y]

∂µi
= 0.

2. The impact of a change in volatility Σij on the moments of log GDP is given by14

∂ E [y]

∂Σij
= 0, and

∂V [y]

∂Σij
= ωiωj .

The first part of the corollary demonstrates that for a fixed production network, Hulten’s (1978)

celebrated theorem also holds in expectational terms. That is, the change in expected log GDP

following a change in the expected productivity of a sector i is equal to that sector’s sales share ωi.

The second part of the corollary establishes a similar result for a change in Σ. It shows that the

impact of an increase in the volatility of a sector’s TFP on the variance of log GDP is equal to the

square of that sector’s sales share. This result also applies to a change in covariance, in which case

the increase in V [y] is equal to the product of the two industries’ sales shares. Since Domar weights

are always positive, an increase in covariance always leads to higher aggregate volatility. Intuitively,

positively correlated shocks are unlikely to offset each other, and their expected aggregate impact is

therefore larger. Finally, the Corollary shows that when the network is fixed, the covariance matrix

Σ has no impact on E [y]. It follows that whenever we discuss the response of expected log GDP

14Whenever we take derivatives with respect to off-diagonal elements of Σ, we simultaneously change Σij and Σji

to preserve the symmetry of Σ, and divide the result by two.
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to a change in uncertainty, the mechanism must operate through the endogenous reorganization of

the network.

Corollary 1 emphasizes that for a fixed network knowing the sales shares of every industry is

sufficient to compute the impact of changes in µ and Σ on the moments of log GDP. In Section 7,

we show that this is no longer true when firms can adjust their input shares in response to changes

in the distribution of sectoral productivity. In fact, when the network is free to adjust, an increase

in an element of µ can even lead to a decline in expected log GDP.

4 Firm decisions

In the previous section, we described prices under a given network. Here, we use that information

to characterize the problem of the representative firm in sector i that must choose a technique

αi ∈ Ai. It is convenient to work with the log of the stochastic discount factor λ (α∗) = log Λ (α∗)

and the log of the unit cost ki (αi, α
∗) = logKi (αi, P

∗ (α∗)), where α∗ denotes the equilibrium

network. These quantities are normally distributed in equilibrium.

Using this notation, we can reorganize the problem of the firm (9) as15

α∗
i ∈ arg min

αi∈Ai

E [ki (αi, α
∗)] + Cov [λ (α∗) , ki (αi, α

∗)] . (15)

The objective function in (15) captures how beliefs and uncertainty affect the production network.

Its first term implies that the firm prefers to adopt techniques that provide, in expectation, a lower

unit cost of production. Taking the expected value of the log of (8), we can write this term as

E [ki (αi, α
∗)] = −µi − ai (αi) +

n∑
j=1

αij E [pj ] ,

so that, unsurprisingly, the firm prefers techniques that have high productivity ai and that rely on

inputs that are expected to be cheap.

The second term in (15) captures the importance of aggregate risk for the firm’s deci-

sion. It implies that the firm prefers to have a low unit cost in states of the world in which

the marginal utility of consumption is high. As a result, the coefficient of risk aversion ρ of

the household indirectly determines how risk-averse firms are. We can expand this term as

Cov [λ, ki] = Corr [λ, ki]
√
V [λ]

√
V [ki], which implies that the firm tries to minimize the correla-

tion of its unit cost with λ. Furthermore, since prices and GDP tend to move in opposite directions

(see Lemma 1), Corr [λ, ki] is typically positive, and so firms seek to minimize the variance of their

unit cost.16 This has several implications for their choice of suppliers. To see this, we can use (8)

15We show how to derive this equation as part of the proof of Lemma 2.
16If i’s productivity shock is strongly negatively correlated with that of the other sectors, it can be that
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to write

V [ki (αi, α
∗)] =

n∑
j=1

α2
ij V [pj ] +

∑
j ̸=k

αijαik Cov [pj , pk] + 2Cov

−εi, n∑
j=1

αijpj

+Σii. (16)

The variance of the unit cost can thus be decomposed into four channels. The first term implies

that the firm prefers inputs that have stable prices. The second term implies that the firm avoids

techniques that rely on inputs with positively correlated prices and, instead, prefers to diversify

its set of suppliers and adopt inputs whose variation in prices offset each other. The third term

implies that the firm prefers inputs whose prices are positively correlated with its own productivity

shocks. When the firm experiences a negative shock, the price of its inputs are then more likely to

be low, reducing the expected increase in its unit cost. Finally, the last term captures the fact that

a more volatile productivity εi contributes to a more volatile unit cost.

Risk-adjusted prices

At an equilibrium network α∗, we can simplify the technique choice problem of the firm by

introducing a risk-adjusted version of sectoral prices.

Lemma 2. In equilibrium, the technique choice problem of the representative firm in sector i is

α∗
i ∈ arg max

αi∈Ai

ai (αi)−
n∑
j=1

αijRj (α
∗) , (17)

where

R (α∗) = E [p (α∗)] + Cov [p (α∗) , λ (α∗)] (18)

is the vector of equilibrium risk-adjusted prices, and where

E [p (α∗)] = −L (α∗) (µ+ a (α∗)) and Cov [p (α∗) , λ (α∗)] = (ρ− 1)L (α∗) Σ [L (α∗)]⊤ β.

This lemma shows that all the equilibrium information needed for the firm’s problem is contained

in the vector of risk-adjusted prices R. This quantity provides an overall measure of the desirability

of an input that depends on its expected price and on how its price covaries with the stochastic

discount factor. This latter term implies that goods that are cheap when aggregate consumption

is low are particularly attractive as inputs.

Lemma 2 implies that the TFP shifter ai plays a crucial role in determining how a change in

risk-adjusted prices affects firm i’s chosen input shares. To see this, we can take the first-order

Corr [λ, ki] < 0, in which case i seeks to be more volatile to insure the household in states of low consumption.
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condition for an interior solution of problem (17) and use the implicit function theorem to write

∂αij
∂Rk

=
[
H−1
i (αi)

]
jk
, (19)

where H−1
i is the inverse of the Hessian matrix of ai and where [·]jk denotes its element j, k. This

equation implies that if a good k becomes marginally more expensive or more risky (higher Rk),

firm i responds by changing its share αik of good k by
[
H−1
i (αi)

]
kk
. Since ai is strictly concave

by Assumption 1, the diagonal elements of H−1
i are negative, and so a higher Rk always leads to

a decline in αik. The size of that decline depends on the curvature of ai.
17

Whether the increase in Rk leads to a decline or an increase in the share of other inputs j ̸= k

depends on whether the shares of j and k are complements or substitutes in the production of good

i. If
[
H−1
i

]
jk
> 0 we say that they are substitutes, and in that case a higher risk-adjusted price Rk

leads to an increase in αij . As the firm decreases αik, the incentives embedded in ai to increase

αij get stronger, and the firm substitutes αij for αik. In contrast, if
[
H−1
i

]
jk
< 0 we say that the

shares of j and k are complements, and an increase in Rk leads to a decline in αij . One sufficient

condition for a Hessian matrix Hi to feature complementarities for all sectors is [Hi]jk ≥ 0 for all

j ̸= k.18

This notion of substitution and complementarity embedded in H−1
i applies ex-ante, before

uncertainty is realized, and when firms can adjust their input shares. It is not to be confused with

the usual elasticity of substitution between goods, which would be computed ex-post, once the

shares are fixed, and which equals one in our setup given the Cobb-Douglas nature of production.

While (19) is only valid at an interior solution of the firm’s problem, the forces that it captures

are also at work when some of the constraints embedded in αi ∈ Ai bind. But these constraints

can also increase the degree of substitution between input shares. Suppose, for instance, that the

minimum labor share constraint
∑n

l=1 αil ≤ αi binds, and that the risk-adjusted price of good j

falls. To increase the share of good j, a firm in sector i would have to lower its share of some other

input, say k, to avoid violating the constraint. In this case the shares of j and k would behave as

substitutes in the production of good i.

Example: Substitutability and complementarity in partial equilibrium

To show how the substitution patterns embedded in ai affect technique choices, we can revisit

the car manufacturer example from the introduction. Suppose that this manufacturer primarily

uses steel (input 1) to produce cars, and that it relies on equipment (input 2) such as milling

machines and lathes to transform raw steel into usable components. As before, the manufacturer

17The inverse Hessian frequently appears when doing comparative statics using the implicit function theorem. See
for instance Chapter 17.G in Mas-Colell et al. (1995). See Supplemental Appendix C.3 for the derivation of (19).

18In this case −Hi is an M-matrix and therefore inverse-positive. Intuitively, [Hi]jk ≥ 0 implies that a higher αij

increases the TFP benefit of raising αik.
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also has the option to purchase carbon fiber (input 3) to replace steel components if needed. It

would be natural to endow this manufacturer (sector i = 4) with a TFP shifter function of the form

a4 (α4) = −
4∑
j=1

κj
(
α4j − α◦

4j

)2 − ψ1 (α41 − α42)
2 − ψ2 [(α41 + α43)− (α◦

41 + α◦
43)]

2 , (20)

where κj > 0, ψ1 > 0 and ψ2 > 0. From the second term, we see that any increase in the share α41

of steel would incentivize the firm to increase the share α42 of steel machinery as well. Inputs 1 and

2 are therefore complements in the production of cars. In contrast, the third term implies that any

increase in the share α41 of steel would make it optimal to reduce the share α43 of carbon fiber,

and so the shares of inputs 1 and 3 are substitutes. These patterns can be confirmed by computing

the inverse Hessian of a4 directly and inspecting the off-diagonal terms. The parameters ψ1 > 0

and ψ2 > 0 determine the strength of these substitution-complementarity patterns.

Figure 1 shows what happens to the production technique chosen by this car manufacturer if the

risk-adjusted price of steel increases. In panel (a) the increase in R1 comes from a higher expected

price E [p1], while in panel (b) the price of steel becomes more volatile (higher V [p1]). Naturally,

when the risk-adjusted price of steel rises, the manufacturer relies less on steel in production, and

α41 falls. Since steel machinery is only useful when steel is used in production, the share α42 falls as

well. If the increase in R1 is large enough, the manufacturer severs the link with its steel and steel

machinery suppliers completely so that both α41 = α42 = 0. At the same time, as steel becomes

more expensive in risk-adjusted terms, the firm finds a carbon fiber supplier and progressively

increases the share αi3.

Figure 1: Impact of rising the risk-adjusted price of steel
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E [p2] = −0.05, E [p3] = 0.05, and V [p2] = V [p3] = 0.1. Panel (a): V [p1] = 0. Panel (b): E [p1] = 0.05.
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5 Equilibrium existence, uniqueness and efficiency

In the previous section we characterized how an individual firm’s technique choice depends

on risk-adjusted prices. However, prices are equilibrium objects that depend on the production

network and, therefore, on the choices made by other firms. In this section, we consider the full

equilibrium mapping and show that there exists a unique equilibrium and that it is efficient. To

prove these results, we rely on the problem of the social planner, and on the fact that the set of

equilibria coincides with the set of efficient allocations.

5.1 The efficient allocation

There is a representative household in the economy, and so finding the set of Pareto efficient

allocations amounts to solving the problem of a social planner that maximizes the utility function

(3) subject to the resource constraints (11). The following lemma characterizes production networks

that solve that problem.

Lemma 3. An efficient production network α∗ solves

W := max
α∈A

W (α, µ,Σ) ,

where W is a measure of the welfare of the household, and where

W (α, µ,Σ) := E [y (α)]− 1

2
(ρ− 1)V [y (α)] , (21)

is welfare under a given network α.19

Lemma 3 follows directly from the fact that an efficient network must maximize the expected

utility of the representative household. It further shows that the household favors networks as-

sociated with high expected log GDP E [y (α)] and low aggregate uncertainty V [y (α)]. The risk

aversion parameter ρ determines the relative importance of these two terms.

Recasting household welfare in terms of Domar weights

Since Domar weights play a crucial role in determining the expected value and the variance of

GDP, it will be useful to recast the problem of the social planner in the space of ω. Using (14), we

can write the objective function (21) as

ω⊤µ+ ω⊤a (α)− 1

2
(ρ− 1)ω⊤Σω. (22)

19W is a convenient monotone transformation of the expected utility of the household, such that
E
[
Y 1−ρ

]
(1− ρ)−1 = exp ((1− ρ)W) (1− ρ)−1, and we adopt it as our measure of welfare. If we denote the ex-

pected utility of the household by W, we can write (W′ −W) / |W| ≈ (ρ− 1) (W ′ −W) so that it is straightforward
to convert changes in welfare between measures.
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The only term in this expression that does not depend exclusively on ω is ω⊤a (α), which corre-

sponds to the contribution of the TFP shifter functions (a1, . . . , an) to aggregate TFP. We want

to write this object in terms of ω alone. For that purpose, notice that several networks α are

consistent with a given Domar weight vector ω, but that not all of them are equivalent in terms

of welfare. Indeed, to achieve a given ω the planner will only select the network α that maximizes

welfare, which amounts to maximizing ω⊤a (α).

Formally, consider the optimization problem

ā (ω) := max
α∈A

ω⊤a (α) , (23)

subject to the definition of the Domar weights given by ω⊤ = β⊤L (α). We refer to the value

function ā as the aggregate TFP shifter function. It provides the maximum value of TFP ω⊤a (α)

that can be achieved under the constraint that the Domar weights must be equal to some given

vector ω. We denote by α (ω) the solution to (23). Since both ā (ω) and α (ω) depend exclusively

on the TFP shifter functions (a1, . . . , an) and on the preference vector β, these two functions will

be invariant, for a given ω, to the changes in beliefs (µ,Σ) that we consider in the next sections.

Example. We can solve explicitly for ā (ω) and α (ω) under the quadratic TFP shifter function

specified in (2). At an interior solution α ∈ intA, the optimal production network α (ω) that solves

(23) for a given vector of Domar weights ω is20

αi (ω)− α◦
i = H−1

i

 n∑
j=1

ωjH
−1
j

−1ω − β −
n∑
j=1

ωjα
◦
j

 , (24)

for all i, and the associated value function ā is

ā (ω) =
1

2

n∑
i=1

ωi (αi (ω)− α◦
i )

⊤Hi (αi (ω)− α◦
i ) . (25)

From (24), it is straightforward to show that the gradients ∇ai of the TFP shifter functions are

all equal to each other such that ∇ai = ∇aj for all i, j.21 It follows that at an interior solution,

input shares must be such that the marginal TFP benefit [∇ai]k of increasing αik is equal across

all sectors i.

We can use ā (ω) to recast the planner’s problem in the space of Domar weights.

20See Supplemental Appendix C.4 for the full derivation.
21It is clear from (24) that Hi (αi − α◦

i ) = Hj

(
αj − α◦

j

)
for all i, j. Furthermore, since ai (α) is a quadratic

function given by (2), we have that ∇ai = Hi (αi − α◦
i ), where ∇ai =

dai
dαi

denotes the gradient vector of ai.
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Corollary 2. The efficient Domar weight vector ω∗ solves

W = max
ω∈O

ω⊤µ+ ā (ω)︸ ︷︷ ︸
E[y]

−1

2
(ρ− 1)ω⊤Σω︸ ︷︷ ︸

V[y]

, (26)

where O =
{
ω ∈ Rn+ : ω ≥ β and 1 ≥ ω⊤ (1− ᾱ)

}
and ā (ω) is given by (23).

The set O contains the vectors ω that are feasible given the restriction that the corresponding

network α (ω) must belong to A. The first inequality in its definition follows from αij ≥ 0 for all i, j.

The second inequality, where 1 denotes the n× 1 all-one column vector, follows from
∑

j αij ≤ ᾱi

for all j.

One key advantage of the optimization problem (26) over (21) is that its choice variable is

a vector instead of a matrix. This makes the comparative static results presented in the next

section simpler and more transparent. In addition, the recast objective function (26) has attractive

properties, as the following lemma shows.

Lemma 4. The objective function of the planner’s problem (26) is strictly concave. Furthermore,

there is a unique vector of Domar weights ω∗ that solves that problem, and there is a unique

production network α (ω∗) associated with that solution.

This lemma shows that there is a unique efficient network in this economy. It also implies that

first-order conditions are sufficient to characterize that network, such that we can easily solve for

it using standard numerical methods.

5.2 Fundamental properties of the equilibrium

Having characterized the problem of the social planner, we can go back to the equilibrium and

establish some of its basic properties. The following proposition follows from the fact that there

are no frictions or externalities in the environment and that all markets are competitive.

Proposition 1. There exists a unique equilibrium, and it is efficient.

The proof of this proposition establishes that the set of equilibria coincides with the set of

efficient allocations. Since by Lemma 4 there is a unique efficient allocation, it follows that there

is also a unique equilibrium.

Proposition 1 implies that we can investigate the properties of the equilibrium by solving the

problem of the social planner directly. This will prove useful when characterizing how the equilib-

rium network and aggregate quantities respond to changes in the productivity process.
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6 Beliefs and the production network

In this section, we characterize how beliefs (µ,Σ) affect the equilibrium production network. We

begin with a general result that describes how a change in a sector’s risk or expected TFP impacts

its own Domar weight. We then provide an expression that characterizes how the full vector of

Domar weights responds to a marginal change in (µ,Σ). Finally, we investigate how beliefs affect

the structure of the underlying production network α. As we only consider the equilibrium network

from now on, we lighten the notation by dropping the superscript ∗ when referring to equilibrium

variables.

6.1 Domar weights

Corollary 1 implies that Domar weights are key objects to understand how changes in beliefs

(µ,Σ) affect the expected level and the variance of GDP. In a fixed-network environment, these

weights are constant and do not respond to changes in beliefs. In contrast, when the network is

endogenous, they are equilibrium objects that vary with (µ,Σ). The next proposition describes the

relationship between these quantities.

Proposition 2. The Domar weight ωi of sector i is (weakly) increasing in µi and (weakly) decreas-

ing in Σii.

This proposition can be understood from both the perspective of an individual producer and

from the perspective of the social planner. Individual producers rely more on sectors whose prices

are low and stable. As a result, these sectors are more important suppliers and their Domar

weights are larger. From the planner’s perspective, recall from (13) that the Domar weight of a

sector captures its contribution to log GDP. Since the planner wants to increase and stabilize GDP,

it naturally increases the importance of more productive (larger µi) and less volatile (smaller Σii)

sectors in the production network.

Risk-adjusted productivity shocks

Proposition 2 describes how the Domar weight of a sector responds to a change in its own TFP

process, and it holds generally. At an interior equilibrium, we can also characterize how any change

in beliefs affects the full vector ω. For that purpose, we introduce a risk-adjusted version of the

productivity vector ε defined as

E = µ︸︷︷︸
E[ε]

− (ρ− 1)Σω︸ ︷︷ ︸
Cov[ε,λ]

. (27)

The vector E captures how higher exposure to the productivity process ε affects the representative

household’s utility. It depends on how productive each sector i is in expectation, and on how its
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εi covaries with the stochastic discount factor λ. If we denote by 1i the column vector with a 1 as

ith element and zeros elsewhere, we can write

∂E
∂µi

= 1i, (28)

such that an increase in µi makes sector i more attractive. It however leaves the risk-adjusted TFP

of other sectors unchanged. Similarly, for a change in Σij , we can compute

∂E
∂Σij

= −1

2
(ρ− 1) (ωj1i + ωi1j) , (29)

such that an increase in variance Σii, by adding aggregate risk to the economy, decreases the risk-

adjusted TFP of sector i. The intensity of that effect depends on the risk aversion of the household

ρ and, through ωi, on the importance of i as a supplier. Similarly, an increase in covariance Σij ,

i ̸= j, decreases the risk-adjusted TFP of both sectors i and j. Again, this effect is stronger

when the household is more risk averse. In what follows, we refer to a change that increases E as

beneficial, and to a change that decreases E as adverse.

Using the definition of E , we can write the first-order condition of the planner’s problem (26)

at an interior solution as

∇ā (ω) + E = 0, (30)

where ∇ā is the gradient of the aggregate TFP shifter function ā. This first-order condition shows

that the planner balances the benefit of a sector in terms of risk-adjusted TFP against its impact

on the aggregate TFP shifter.

Response of the Domar weight vector to changes in beliefs

The first-order condition (30) allows us to characterize how the entire vector of Domar weights

responds to any change in the productivity process in a unified way. Applying the implicit function

theorem to (30) yields the following result.

Proposition 3. Let γ denote either the mean µi or an element of the covariance matrix Σij. If

ω ∈ intO, then the response of the equilibrium Domar weights to a change in γ is given by

dω

dγ
= −H−1︸ ︷︷ ︸

propagation

× ∂E
∂γ︸︷︷︸

impulse

, (31)

where the n× n negative definite matrix H is given by

H = ∇2ā+
dE
dω
, (32)
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and where the matrix ∇2ā is the Hessian of the aggregate TFP shifter function ā, and dE
dω =

−dCov[ε,λ]
dω = − (ρ− 1)Σ is the Jacobian matrix of the risk-adjusted TFP vector E.22

The response of the Domar weights to a change in beliefs, as given by (31), can be decomposed

into an impulse component and a propagation component. The impulse captures the direct impact

of the change on risk-adjusted TFP. It is simply given by the partial derivative of E with respect

to the moment of interest (see (28) and (29) above). This impulse is then propagated through H−1

to capture its full equilibrium effect on the Domar weights.

Just as H−1
i captured local substitution patterns between inputs in the problem of firm i, H−1

captures global, economy-wide substitution patterns between sectors. If H−1
ij < 0, we say that i

and j are global complements. If instead H−1
ij > 0, we say that i and j are global substitutes.

The following corollary justifies this terminology by showing that the sign of H−1
ij is sufficient

to characterize how Domar weights respond to a change in the productivity process.

Corollary 3. If ω ∈ intO, then the following holds.

1. An increase in the expected value µi or a decline in the variance Σii leads to an increase in

ωj if i and j are global complements, and to a decline in ωj if i and j are global substitutes.

2. An increase in the covariance Σij, i ̸= j, leads to a decline in ωk if k is global complement

with i and j, and to an increase in ωk if k is global substitute with i and j.

This corollary shows that if sectors are global complements they tend to move together after a

change in beliefs. If they are substitutes instead, they tend to move in opposite directions. Indeed,

by Proposition 2, a beneficial change to a sector i leads to an increase in its Domar weight ωi. This

direct effect then contributes to further adjustments of the Domar weights through H−1. Corollary

3 shows that for sectors that are complements with i, this indirect effect leads to an increase in

their Domar weights. When they are substitutes, ωj declines instead.

It is clear from (32) that global substitution patterns are determined by the shape of the TFP

shifter functions (a1, . . . , an) through ∇2ā (ω), and by the household’s risk perception through

− (ρ− 1)Σ. We will explore these two channels in turn.

Σ and global substitution patterns

The following lemma describes how an increase in covariance Σij between any two sectors affects

the degree of global substitution between them.

22This proposition focuses on an interior equilibrium, such that ω ∈ intO, but this restriction can be satisfied
even if some shares αij are equal to zero. Indeed, for ωj ≥ βj to bind, it must be that αij = 0 for all i. Furthermore,
Proposition 3 can be extended to include some binding constraints. When ωi ≥ βi binds, ωi is not affected by a
marginal change in beliefs. We can therefore exclude these constrained Domar weights from the application of the
implicit function theorem. It follows that a version of (31) holds for unconstrained Domar weights, as we show in
Supplemental Appendix F.
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Lemma 5. An increase in the covariance Σij induces stronger global substitution between i and j,

in the sense that
∂H−1

ij

∂Σij
> 0.

Intuitively, if the correlation between εi and εj becomes larger, the planner has stronger incen-

tives to lower ωj after an increase in ωi in order to reduce aggregate risk. From (32), we see that

the strength of that diversification mechanism depends on the household’s risk aversion through ρ.

∇2ā and global substitution patterns

The curvature of the aggregate TFP shifter function ā, as captured by its Hessian ∇2ā, also

contributes to global substitution patterns. Intuitively, if a higher ωi raises the marginal TFP

benefit of increasing ωj , sectors i and j tend to move together, which pushes these sectors to be

global complements. Clearly, the local TFP shifter functions (a1, . . . , an) play a key role in shaping

ā such that the local substitution patterns matter for the global ones. The next lemma establishes

sufficient conditions under which local complementarities translate into global complementarities.

Lemma 6. Suppose that all input shares are (weak) local complements in the production of all

goods, that is
[
H−1
i

]
kl

≤ 0 for all i and all k ̸= l. If α ∈ intA, there exists a scalar Σ̄ > 0 such

that if ∥Σ∥ ≤ Σ̄, all sectors are global complements, that is H−1
ij < 0 for all i ̸= j.

This result shows that if all input shares are local complements, then sectors are also global

complements, if the covariance matrix Σ is small enough. This last condition ensures that the

substitution forces from diversification that are described in Lemma 5 do not dominate the com-

plementarities coming from the TFP shifters (a1, . . . , an).

Lemma 6 also shows that sectors are global complements even if the local TFP shifters are

neutral in the sense that
[
H−1
i

]
kl

= 0 for all i and all k ̸= l. This suggests that the equilibrium

forces of the model, on their own, create global complementarities between sectors. To understand

why, suppose that a sector i becomes more attractive, for instance due to an increase in µi. Any

other sector j that relies either directly or indirectly on i (Lji > 0) would benefit from that change,

and also become more attractive. By itself, this triggers an increase in Domar weights throughout

the network and a shift away from labor. Through this mechanism, the model generates global

complementarities between sectors, even under TFP shifter functions that do not feature local

complementarities.

We also consider how local substitution can lead to global substitution. To do so, it is convenient

to parametrizeHi to be able to tractably adjust the strength of local substitution. For that purpose,

let

H−1
i =


−1 s

n−1 . . . s
n−1

s
n−1 −1

...
...

. . . s
n−1

s
n−1 . . . s

n−1 −1

 , (33)
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where we impose − (n− 1) < s < 1 to guarantee that H−1
i is negative definite. When s < 0 all

input shares are complements in the production of good i, and when s > 0 they are substitutes. The

next lemma describes sufficient conditions under which local substitution imply global substitution.

Lemma 7. Suppose that all the TFP shifter functions (a1, . . . , an) take the form (2), with α◦
i = α◦

j

for all i, j, and that H−1
i is of the form (33) for all i. If α ∈ intA, there exists a scalar Σ̄ > 0 and

a threshold 0 < s̄ < 1 such that if ∥Σ∥ ≤ Σ̄ and s > s̄, then all sectors are global substitutes, that

is H−1
ij > 0 for all i ̸= j.

This result shows that global substitution emerges if local substitution forces are sufficiently

strong (s sufficiently close to 1) to overcome the natural forces of the model that push for comple-

mentarity between sectors. Again, this result requires that ∥Σ∥ ≤ Σ̄ to limit the complementarity

forces that could arise, for instance, from two sectors that are strongly negatively correlated.

An approximate equation for the equilibrium Domar weights

Propositions 2 and 3 describe how the equilibrium Domar weights respond to a marginal change

in beliefs but they are silent about which sectors will have large or small Domar weights in equilib-

rium. Given the structure of the TFP shifter function ā, solving the planner’s problem (26) for ω

must in general be done using numerical methods. We can however derive approximate equations

for ω using a Taylor expansion of ∇ā. The ideal shares α◦, as they lead to the highest values of

the TFP shifters (a1, . . . , an), provide a natural point around which to do this approximation. De-

note by ω◦ = [L (α◦)]⊤ β the vector of Domar weights associated with α◦. Then, if the equilibrium

network ω is close to ω◦, we can write

∇ā (ω) ≈ ∇ā (ω◦) +∇2ā (ω◦) (ω − ω◦) . (34)

This approximation is accurate if, for instance, the cost of deviating from the ideal shares embedded

in the local TFP shifters is large. We work out that case formally in Supplemental Appendix I.

With this approximation, the first-order condition (30) becomes linear in ω, and we can solve

for the equilibrium Domar weights.

Lemma 8. If ω intO, the equilibrium Domar weights are approximately given by

ω = ω◦ − [H◦]−1 E◦ +O
(
∥ω − ω◦∥2

)
, (35)

where the superscript ◦ indicates that H and E are evaluated at ω◦.

This proposition provides an approximate expression for the equilibrium Domar weights in

terms of the global substitution patterns embedded in [H◦]−1 and the expected attractiveness of all

sectors, as captured by the risk-adjusted productivity E◦. Suppose that a sector i is endowed with a
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productivity process εi that is high in expectation or that has a low covariance with the stochastic

discount factor. In this case, E◦
i is large and, since the diagonal elements of [H◦]−1 are negative, ωi

tends to be larger than ω◦
i .

23 In addition, the large E◦
i contributes to increasing the Domar weights

of all sectors that are global complements with i, and to decreasing the Domar weights of sectors

that are global substitutes with it.

6.2 The production network

In the previous section, we described how a change in beliefs affects the vector of Domar

weights. While Domar weights are key objects that influence aggregate outcomes, they do not

provide a complete description of the underlying production network. In this section, we extend

our analysis and characterize how beliefs affect the individual links in the equilibrium network α.

Proposition 4. If α ∈ intA, there exists a scalar Σ̄ > 0 such that if ∥Σ∥ ≤ Σ̄ the following holds.

1. (Complementarity) Suppose that input shares are local complements in the production of good

i, that is
[
H−1
i

]
kl
< 0 for all k ̸= l. Then a beneficial change to k (∂Ek/∂γ > 0) increases

αij for all j.

2. (Substitution) Suppose that the conditions of Lemma 7 about the TFP shifters (a1, . . . , an)

hold. Then there exists a threshold 0 < s̄ < 1 such that if s > s̄, a beneficial change to k

(∂Ek/∂γ > 0) decreases αij for all i and all j ̸= k, and increases αik for all i.

Point 1 shows that if all inputs are local complements in the production of good i, all shares αij

tend to move together. After a beneficial change to a given sector k, firms in sector i increase their

reliance on k which, through complementarity, leads to an increase in i’s reliance on other sectors

as well. If instead local substitution forces are sufficiently strong (point 2), a beneficial change to

the productivity process of firm k still leads to a higher reliance on sector k, but in this case the

forces embedded in Hi push for a decline in other shares. The proof of Proposition 4 also provides

an explicit expression for the derivative dαij/dγ in terms of the gradient of α (ω) and of dω/dγ.

An approximate equation for the equilibrium production network

As for the Domar weights, one must in general use numerical methods to find the equilibrium

network α. We can, however, derive an approximation for the equilibrium production network

when the cost of deviating from the ideal shares α◦ is large. Specifically, let ai (αi) = κ̄ × âi (αi)

and suppose that α◦
i ∈ intAi. The parameter κ̄ > 0 captures how costly it is for the firms to

deviate from α◦ in terms of TFP loss. When κ̄ is large, we can use perturbation theory to derive

an approximate equation for α (Judd and Guu, 2001; Schmitt-Grohé and Uribe, 2004).

23Recall that H−1 is negative definite by Proposition 3.
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Lemma 9. If α ∈ intA, the equilibrium input shares in sector i are approximately given by

αi = α◦
i + κ̄−1

(
Ĥ◦
i

)−1
R◦ +O

(
κ−2

)
, (36)

where Ĥ◦
i is the Hessian of âi at α

◦
i , and where the vector of risk-adjusted prices at α◦ is given by

R◦ = −L◦µ+ (ρ− 1)L◦Σω◦.

Recall from (19) that H−1
i describes how a marginal change in R affects αi in the problem of

firm i. The approximation (36) captures the same forces. It shows that the deviation of αi from α◦
i

depends, approximately, on the vector of risk-adjusted prices R evaluated at the ideal shares α◦.

Intuitively, when it is costly for firms to deviate from α◦, we can evaluate the equilibrium prices as

if firms chose α◦ and use these prices to compute the sourcing decisions of the firm. By Lemma 9,

these decisions provide a first-order approximation of the true equilibrium network.24

Example: cascading link destruction

To illustrate what type of network adjustments the model can generate, we consider an example

in which a small change in the volatility of a single sector can push multiple producers to sequentially

switch to safer suppliers, creating a cascade of adjustments. Consider the economy depicted in

Figure 2. As indicated by the arrows, firms in sectors 1 to 3 can source inputs from two potential

suppliers. The model is parametrized such that the shares of these suppliers are local substitutes.

Firms in sectors 4 to 7, in contrast, can only use labor in production.

Figure 2: Cascading impact of a change in Σ44

1

5 6 7

432

(a) Low uncertainty about ε4

1

5 6 7

432

(b) High uncertainty about ε4

Notes: Arrows represent the movement of goods: there is a solid blue arrow from j to i if αij > 0. Dashed gray arrows indicate
αij = 0. a is as in (69) in the appendix with κij = 0 if there is a potential link between two firms and infinity otherwise.
α◦
ij = 0.5 if there is a potential link, and 0 otherwise. µ = 0 except for µ4 = 0.1. In the left figure, Σ = 0. In the right figure

Σ = 0 except Σ44 = 1. The risk aversion of the household is ρ = 2. βi = 1/n for all i.

When uncertainty about sector 4 is sufficiently low (Σ44 → 0; left panel), sectors 1 to 3 rely,

directly or indirectly, on sector 4 as a supplier. As Σ44 increases (right panel), firms in sector 3,

24See Supplemental Appendix I for more details and for second-order approximations for key model quantities.
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seeking a more stable supply of goods, switch to using good 7 as an input instead. But this change

implies a higher risk-adjusted price for sector 3, which makes firms in sector 2 want to use good 6

in production instead of good 2. The same logic then applies to firms in sector 1. A change in the

uncertainty of a single sector can thus lead to a cascading movement to safety that affects far-away

sectors.

We can interpret this cascading network adjustment through the lens of Lemma 9. Differenti-

ating the expression with respect to Σ44 yields

dαij
dΣ44

= κ̄−1 (ρ− 1)ω◦
4

[(Ĥ◦
i

)−1
]
jj

L◦
j4︸ ︷︷ ︸

direct effect of Σ44 on j

+
∑
l ̸=j

[(
Ĥ◦
i

)−1
]
jl

L◦
l4


︸ ︷︷ ︸

indirect effect of Σ44
through other suppliers l ̸=j

+O
(
κ̄−2

)
. (37)

Equation (37) states that if a firm j relies on sector 4 as an input (either immediate or distant, such

that L◦
j4 > 0), an increase in Σ44 makes j less attractive. This direct effect pushes αij down (recall

that
[
H−1
i

]
jj
< 0 by the concavity of ai). There is also an indirect effect that operates through

the second term in (37). If another sector l ̸= j also relies on 4 (L◦
l4 > 0), then an increase in Σ44

makes l less attractive as well. This indirect channel can lead to either a decrease or an increase in

αij , depending on whether j and l are complements or substitutes in the production of i; that is,

whether
[
(H◦

i )
−1
]
jl
is negative or positive.

Sector 1, for instance, has two potential suppliers, sectors 2 and 5, with associated shares α12

and α15. The direct effect of an increase in uncertainty Σ44 on α12 is strongly negative since sector

2 relies heavily on 4 (large L◦
24). The indirect effect through sector 5 is however zero since sector

5 does not rely on sector 4 in production (L◦
54 = 0). Furthermore, the contribution through the

indirect effect of all other sectors is also zero since sector 1 never uses them in production and hence[
(H◦

1 )
−1
]
2l
= 0 for l ̸= 2 and l ̸= 5. It follows that (37) predicts a decline in α12, and this is indeed

what we see in Figure 2.

Instead, if we consider the response of α15, the direct effect is absent because sector 5 does not

rely on sector 4 (L◦
54 = 0). Since sector 2 is 1’s only other possible connection, only the indirect

effect through that sector remains. The relevant term here is
[
(H◦

1 )
−1
]
52
L◦
24, which is positive

because L◦
24 > 0, and the shares of goods 5 and 2 are substitutes in the production of good 1,[

(H◦
1 )

−1
]
52
> 0. Therefore, an increase in Σ44 leads to a larger α15. The same logic applies to the

responses of firms 2 and 3, thus explaining the cascading effect illustrated in Figure 2.25

25Lemma 9 assumes that α ∈ intA, which is not the case in Figure 2, but it still captures the main forces that
push the shares in response to changes in (µ,Σ) and is therefore informative about the response of the network.
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7 Implications for GDP and welfare

Above, we analyzed how the production network responds to changes in beliefs (µ,Σ), but what

ultimately matters for welfare is the level and the variance of GDP. In this section, we describe

how these objects are affected by changes in (µ,Σ) when the network is endogenous.

7.1 Beliefs and welfare

The next result compares how beliefs affect our measure of welfare, defined in (21), under a

flexible and a fixed network.

Proposition 5. Let γ denote either the mean µi or an element of the covariance matrix Σij. Under

an endogenous network, welfare responds to a marginal change in γ as if the network were fixed at

its equilibrium value α∗, that is

dW (µ,Σ)

dγ
=
∂W (α∗, µ,Σ)

∂γ
.

This proposition is a direct consequence of the envelope theorem: Since the equilibrium net-

work is welfare-maximizing, any marginal movement around that network must have no impact on

welfare. It follows that as beliefs change, their impact on the production network does not affect

welfare at the margin.

While this proposition shows that the flexibility of the network plays no role for the response of

welfare to a marginal change in beliefs, this is generally not true for non-infinitesimal changes. In

that case, shifts in (µ,Σ) that are beneficial to welfare are amplified, compared to the fixed-network

benchmark, while changes that are harmful are dampened (see Proposition 2). Indeed, if we denote

by α∗ (µ,Σ) the equilibrium production network under (µ,Σ) and by W (α, µ,Σ) welfare under a

network α, we can write that the difference in welfare after a change in beliefs from (µ,Σ) to (µ′,Σ′)

satisfies the inequality

W
(
µ′,Σ′)−W (µ,Σ)︸ ︷︷ ︸

Change in welfare under a flexible network

≥W
(
α∗ (µ,Σ) , µ′,Σ′)−W (α∗ (µ,Σ) , µ,Σ)︸ ︷︷ ︸
Change in welfare under a fixed network

. (38)

This result follows directly from the fact that a flexible network provides an extra margin of adjust-

ment to the planner and thus cannot leave the household worse off than under a fixed network.26

We can also use Proposition 5 to show that the impact of a change in (µ,Σ) on W is completely

determined by the equilibrium Domar weights and the coefficient of relative risk aversion ρ.

26We provide a proof of this result in Supplemental Appendix C.5.
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Corollary 4. The impact of an increase in µi on welfare is given by

dW
dµi

= ωi, (39)

and the impact of an increase in Σij on welfare is given by

dW
dΣij

= −1

2
(ρ− 1)ωiωj . (40)

This proposition follows directly from Corollary 1 and Proposition 5. Its first part provides a

Hulten-like result for welfare in an endogenous network economy: Equation (39) states that the

impact of an increase in µi on welfare is equal to the Domar weight ωi of the affected sector. Since

Domar weights are positive, increasing µi always has a positive impact on welfare. The second part

of the proposition provides a similar result for an increase in uncertainty or covariance. In this

case, the impact of the change is proportional to the product of the relevant Domar weights, and

an increase in Σij lowers welfare when ρ > 1. Intuitively, with a higher Σii, the economy features

more uncertainty which the household dislikes. Similarly, when sectoral shocks are more positively

correlated, they offset each other less, such that the volatility of consumption increases and welfare

falls.

7.2 Beliefs and GDP

Under an endogenous network, changes in beliefs also affect GDP through their impact on the

production network. In this section, we analyze this link explicitly, starting with a general result

that describes how GDP reacts to the presence of uncertainty.

Proposition 6. The presence of uncertainty lowers expected log GDP, in the sense that E [y] is

largest when Σ = 0.

This proposition follows directly from Lemma 3. Without uncertainty (Σ = 0), the variance

V [y] of log GDP is zero for all networks α ∈ A. The social planner then maximizes E [y] only.

When, instead, the productivity vector ε is uncertain (Σ ̸= 0), the planner also seeks to lower V [y]

which necessarily lowers expected log GDP in equilibrium.

Proposition 6 establishes a novel mechanism through which uncertainty reduces expected log

GDP. To understand that mechanism, consider the technique choice problem from the firm’s per-

spective. When there is no uncertainty, firms do not worry about risk and move toward cheaper

suppliers, which tend to be the most productive ones, and toward techniques with higher TFP. As

a result, the aggregate economy is maximally productive, and E [y] is large. When some suppli-

ers become risky, customers worry about a possible increase in input costs and start purchasing

from more stable but less productive suppliers. As a result, the aggregate economy becomes less

productive on average and expected log GDP falls.
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The endogenous response of the network is essential for the result of Proposition 6. Indeed,

in our model uncertainty affects expected log GDP only through the endogenous response of the

network. If the shares α were fixed, uncertainty would have no impact on E [y].

Response of GDP to a marginal change in beliefs

The previous proposition states that expected GDP is maximized in the absence of any un-

certainty, but we can also consider the impact of a marginal change in beliefs on the moments of

GDP. To do so, we first provide a result that connects the responses of E [y] and V [y] under an

endogenous network to their counterparts under a fixed network.

Corollary 5. Let γ denote either the mean µi or an element of the covariance matrix Σij. The

equilibrium response to a change in beliefs γ must satisfy

dE [y]

dγ
− ∂ E [y]

∂γ︸ ︷︷ ︸
Excess response of E[y]

=
1

2
(ρ− 1)

(
dV [y]

dγ
− ∂V [y]

∂γ

)
︸ ︷︷ ︸
Excess response of V[y]

. (41)

The left-hand side of (41) is the response of E [y] to the change in γ in the flexible-network

economy (full derivatives) in excess of its fixed-economy response (partial derivatives). The right-

hand side involves the same quantity for V [y]. Corollary 5 is a direct consequence of Proposition

5. Since the response of welfare to a marginal change in beliefs must be the same under a flexible

and a fixed network, a larger increase in E [y] under a flexible network must come at the cost of a

larger increase in the variance V [y]. This fundamental tension between E [y] and V [y] comes from

the fact that the equilibrium network was efficient before the change in the productivity process

and already optimally traded off increasing E [y] against reducing V [y].

We now turn to a key result, which describes how GDP responds to marginal changes in beliefs.

Proposition 7. If ω ∈ intO, the following holds.

1. The impact of an increase in µi on log GDP is given by

dE [y]

dµi
= ωi︸︷︷︸

Fixed network

− (ρ− 1)ω⊤ΣH−1 ∂E
∂µi

, and
dV [y]

dµi
= 0︸︷︷︸

Fixed network

−2ω⊤ΣH−1 ∂E
∂µi

.

2. The impact of an increase in Σij on log GDP is given by

dE [y]

dΣij
= 0︸︷︷︸

Fixed network

− (ρ− 1)ω⊤ΣH−1 ∂E
∂Σij

, and
dV [y]

dΣij
= ωiωj︸︷︷︸

Fixed network

−2ω⊤ΣH−1 ∂E
∂Σij

.

The first part of Proposition 7 describes how log GDP responds to an increase in µi. On impact,

sector i becomes more productive, which has a direct effect of ωi on E [y]. This is the standard
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Hulten’s theorem effect that occurs when the network is kept fixed (Corollary 1). When the network

is flexible, a reorganization also occurs to take advantage of the new µ. Corollary 5 implies that

this excess response of E [y] can be computed from the excess response of V [y], such that

dE [y]

dµi
− ∂ E [y]

∂µi
∝ dV [y]

dµi
− ∂V [y]

∂µi
= 2ω⊤Σ︸ ︷︷ ︸

dV[y]

dω⊤

×
(
−H−1 ∂E

∂µi

)
︸ ︷︷ ︸

dω
dµi

−0,

where we used (14) and Proposition 3 to compute dV [y] /dµi, and where ∂V [y] /∂µi = 0 by

Corollary 1. It follows that the response of the moments of log GDP to a change in µi depends on

how that change affects the Domar weights (−H−1∂E/∂µi) and on how that movement in Domar

weights influences the variance of log GDP (2ω⊤Σ).

A similar reasoning applies for changes in Σij (point 2 of the proposition). On impact, a higher

Σij leads to an increase in V [y] by the fixed-network term ωiωj , and the ensuing reorganization of

the network can amplify or dampen that direct effect. If V [y] increases by more than ωiωj , welfare

maximization implies that E [y] must also increase, as the result shows.

The role of risk and of the global substitution patterns

For a given equilibrium, one can compute the expressions in Proposition 7 to fully characterize

how GDP would respond to a change in beliefs. This response, in turn, depends on the risk structure

Σ of the economy and on the global substitution patterns embedded in H−1. We now explore these

two channels more thoroughly.

We can readily characterize the impact of beliefs when there is no uncertainty.

Corollary 6. Without uncertainty (Σ = 0) the moments of GDP respond to changes in beliefs as

if the network were fixed, such that

dE [y]

dµi
=
∂ E [y]

∂µi
= ωi, and

dV [y]

dΣij
=
∂V [y]

∂Σij
= ωiωj .

When Σ = 0, the Domar weights are sufficient to characterize the behavior of GDP, even though

the production network is flexible and can respond to changes in beliefs. It follows that uncertainty

is essential for the economy to depart from Hulten’s theorem. Intuitively, without uncertainty,

the network maximizes expected log GDP, such that at an interior equilibrium dE [y] /dα = 0. It

follows that even if the network responds to a marginal change in beliefs, this reorganization has no

impact on E [y]. Corollary 6 shows that this logic also applies when the equilibrium is not interior.

In contrast, when there is uncertainty, whether a change in beliefs amplifies or dampens the

fixed-network effect depends crucially on the global substitution patterns embedded in H−1. The

next result describes what happens when sectors are global complements.
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Corollary 7. Suppose that ω ∈ intO. There exists a threshold Σ̄ < 0 such that if Σkl > Σ̄ for all

k, l, then the following holds.

1. If all sectors are global complements with sector i, that is H−1
ik < 0 for k ̸= i, then

dE [y]

dµi
> ωi, and

dV [y]

dµi
> 0.

2. If all sectors are global complements with sectors i and j, that is H−1
ik < 0 and H−1

jk < 0 for

k ̸= i, j, then
dE [y]

dΣij
< 0, and

dV [y]

dΣij
< ωiωj .

The first part of the corollary shows that under global complementarities expected log GDP

responds to expected TFP by more than when the network is fixed. Effectively, the network is

reorganized to amplify the positive impact of the change in beliefs on E [y]. Intuitively, after

the increase in µi the Domar weight of sector i increases (Proposition 2). Because of the global

complementarities, this causes all the other Domar weights to rise as well (Corollary 3). As long as

the covariances Σij are not too negative, this simultaneous increase in Domar weights pushes the

variance of log GDP up. From Proposition 7 it then follows that E [y] increases by more than ωi.

A similar mechanism explains the impact of a change in Σii and Σij on the moments of GDP, but

in this case the economy responds by less than predicted by Hulten’s theorem.

We can also explore how GDP responds to changes in beliefs under global substitutabilities.

Corollary 8. Suppose that ω ∈ intO. Then there exist thresholds Σ > 0 and Σ̄ > 0 such that,

1. If all sectors are global substitutes with sector i, that is H−1
ik > 0 for k ̸= i, and sector i is

not too risky while other sectors are sufficiently risky in the sense that Σji < Σ for all j and

Σjk > Σ̄ for all j, k ̸= i, then

dE [y]

dµi
< ωi, and

dV [y]

dµi
< 0.

2. If all sectors are global substitutes with sectors i and j, that is H−1
ik > 0 and H−1

jk > 0 for

k ̸= i, j, and sectors i and j are not too risky while other sectors are sufficiently risky in the

sense that Σli < Σ and Σlj < Σ for all l, and Σlk > Σ̄ for all l, k ̸= i and l, k ̸= j, then

dE [y]

dΣij
> 0, and

dV [y]

dΣij
> ωiωj .

After an increase in µi, the Domar weight of sector i increases (Proposition 2) which pushes V [y]

up, but if Σii is small, this increase in V [y] is also small. Because other sectors are global substitutes
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with i, the increase in ωi leads to a decline in all the other Domar weights. If the variances of those

sectors are large relative to Σii, this decline in Domar weights leads to a substantial decrease in

V [y]. By the logic of Proposition 7, this implies that E [y] must increase by less than its fixed-

network term ωi. Through a similar mechanism, an increase in Σii leads to an increase in V [y]

that is larger than under a fixed network. In this case, E [y] increases in response to the higher Σii,

such that uncertainty can be beneficial to expected log GDP at the margin.27

Counterintuitive implications of changes in beliefs

Corollaries 7 and 8 establish sufficient conditions under which the response of GDP to beliefs

can be larger or smaller than predicted by Hulten’s theorem in the fixed-network economy. But the

endogenous adjustment of the network can also have more extreme consequences: In some cases,

an increase in µ can lead to a decline in E [y] and an increase in Σ can lead to a decline in V [y].

To understand why, consider a producer with (on average) low but stable productivity. The high

price of its good makes it unattractive as a supplier. But if its expected productivity increases, its

risk-reward profile improves, and other producers might begin to purchase from it. Doing so, they

might move away from more productive—but also riskier—producers and expected GDP might fall

as a result. A similar mechanism implies that an increase in the volatility of a sector’s productivity

can lead to a decline in V [y]. In what follows, we provide an example that explicitly illustrates

how such counterintuitive effects may arise.

In the economy depicted in Figure 3, sectors 4 and 5 use only labor to produce, while sectors

1 to 3 can also use goods 4 and 5 as inputs. The local TFP shifter functions are such that for

i ∈ {1, 2, 3} the shares of goods 4 and 5 are either local substitutes with
[
H−1
i

]
45
> 0 in panels (a)

to (c), or local complements with
[
H−1
i

]
45
< 0 in panels (d) to (f). Sector 4 is more productive

and volatile than sector 5 (µ4 > µ5 and Σ44 > Σ55).

Consider the impact of a positive shock to µ5 when inputs 4 and 5 are substitutes. The solid

blue lines in panels (a) to (c) illustrate the impact of this change, and point O represents the

economy before the change. As we can see, the initial increase in µ5 has a negative impact on

expected log GDP. To understand why, notice that for a small increase in µ5, sector 5 is still less

productive (in expectation) than sector 4, but it now offers a better risk-reward trade-off. As a

result, sectors 1 to 3 increase their shares of good 5 and, since 4 and 5 are substitutes, reduce their

shares of good 4. But since µ4 > µ5 this readjustment leads to a fall in E [y] for a small increase in

µ5. At the same time, V [y] also declines because sector 5 is less volatile than sector 4, in line with

Proposition 7. The implied changes in E [y] and V [y] thus have opposite impacts on welfare. By

Corollary 4, the overall effect on welfare must be positive though, and this is indeed confirmed in

panel (c). Naturally, as µ5 keeps increasing, E [y] eventually starts to increase as well.

27This does not contradict Proposition 6 as Corollary 8 only applies at the margin when Σjk > Σ̄ > 0 for all
j, k ̸= i. Eliminating uncertainty altogether would still lead to an increase in E [y].
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To emphasize the role of the endogenous network for this mechanism, Figure 3 also shows the

effect of the same increase in µ5 when the network is kept fixed (dashed red lines). From Corollary

1, the marginal impact of µ5 on expected log GDP is equal to its Domar weight, and increasing

µ5 has a positive impact on E [y]. At the same time, V [y] is unaffected by changes in µ. While

an increase in µ5 is welfare-improving in this case, the effect is less pronounced than in the flexible

network economy. Indeed, in the latter case the equilibrium network adjusts precisely to maximize

the beneficial impact of the change in beliefs on welfare, as implied by (38).

We can use a small variation of this economy to illustrate how an increase in an element of

Σ can lower the variance of log GDP, and simultaneously lower welfare. Start again from the

economy in the left column of Figure 3 (point O) but suppose that inputs 4 and 5 are complements

in the production of goods 1 to 3. Consider an increase in the volatility of sector 5. In response,

sectors 1 to 3 start to rely less on sector 5. But since inputs 4 and 5 are complements, sectors 1

to 3 also reduce their shares of input 4, thus increasing the overall share of labor which is a safe

input. As a result, the variance of log GDP declines (panel e). Expected log GDP also goes down

by Proposition 7 (panel d). The combined effect on welfare is negative, as predicted by Corollary

4 (panel f). In this case, the reorganization of the network mitigates the adverse effect of the

increase in volatility on welfare. Instead, if the network is fixed, an increase in Σ55 does not affect

expected log GDP but leads to an increase in the variance of log GDP. As a result, welfare drops

substantially more than under an endogenous network, as implied by (38).

Figure 3: The non-monotone impact of beliefs on GDP

1

5 4

3

2

(a) Impact of µ5 on E [y] (b) Impact of µ5 on V [y] (c) Impact of µ5 on W

(d) Impact of Σ55 on E [y] (e) Impact of Σ55 on V [y] (f) Impact of Σ55 on W

Notes. There is an arrow from j to i if αij > 0. Household: ρ = 2.5 and β1 = β2 = β3 = 1
3
− ϵ, β4 = β5 = 3

2
ϵ, where

ϵ > 0 is very small. µ = (0.1, 0.1, 0.1, 0.1,−0.08), Σ is diagonal, with diag (Σ) = (0.2, 0.2, 0.2, 0.2, 0.02). a is as in (2) with
α◦
14 = α◦

15 = α◦
24 = α◦

25 = α◦
34 = α◦

35 = 0.25; all other α◦
ij are zero. H4 = H5 are matrices with −50 on the diagonal.

H1 = H2 = H3 with [H1]11 = [H1]22 = [H1]33 = −50, [H1]44 = [H1]55 = −2. In panels (a)-(c), µ5 goes from −0.08 to 0.1; 4
and 5 are substitutes, [H1]45 = −1.9. In panels (d)-(f), Σ55 goes from 0.02 to 0.2; 4 and 5 are complements, [H1]45 = 1.9.
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8 A basic calibration of the model

The analysis above highlights the economic forces that determine how the production network,

GDP and welfare respond to changes in the productivity process. Clearly, the model is too stylized

to capture all the fluctuations in the production network observed in reality, and other mechanisms,

not present in our model, may also be important in practice. With that caveat in mind, we present

in this section results from a basic calibration of the model to the United States economy to get a

sense of the quantitative potential of our main mechanisms.

Below, we first describe how the model is parameterized and briefly go over which features of the

US economy the model matches well, and in what dimensions it falls short. Finally, we explore how

beliefs shape the production network and investigate how the changing structure of the network

influences aggregate output and welfare in our stylized model. We keep the analysis succinct but

provide more details in Appendix B.

8.1 Parametrization

The Bureau of Economic Analysis (BEA) provides U.S. sectoral input-output tables for n = 37

sectors at an annual frequency from 1948 to 2020. From these data, we compute the input shares

αijt of each sector in each year t, the average consumption expenditure share of each sector βi, and

sectoral TFP measured as the Solow residual.

To calibrate the model, we need to make explicit assumptions about the process for TFP. For the

endogenous productivity shifter Ai (αit) we adopt a particular version of form (2) which includes

a diagonal component for Hi are a penalty for deviating from an ideal labor share (see (69) in

the appendix). We set the ideal shares (α◦
1, . . . , α

◦
n) equal to the time average of the input shares

observed in the data. The exogenous sectoral productivity process εt is assumed to follow a random

walk with drift,

εt = γ + εt−1 + ut, (42)

where γ is an n × 1 vector of deterministic drifts and ut ∼ iid N (0,Σt) is a vector of shocks.

We further assume that firms know γ and εt−1 at time t, so that the conditional mean and the

covariance of beliefs are given by µt = γ + εt−1 and Σt. Importantly, we allow uncertainty Σt to

vary over time and estimate it from TFP data using a rolling window that puts more weight on

more recent observations.

We use a simple moment-matching strategy to pin down the 1) relative risk aversion parameter

ρ of the household, 2) the TFP shifter functions Hi and 3) the time-varying beliefs (µt,Σt). We

describe this procedure in Appendix B.

The calibrated coefficient of relative risk aversion ρ̂ is 4.3, which is similar to values used or

estimated in the macroeconomics literature. Our procedure also provides time-series for the vector
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µt and the matrix Σt, and we aggregate these variables across sectors to obtain economy-wide

measures of the expected value µ̄t and the variance Σ̄t of aggregate TFP. As we might expect,

these measures are cyclical, with µ̄t falling and Σ̄t rising during recessions. Overall, our measure of

aggregate uncertainty Σ̄t has been relatively stable since 1980, with occasional sharp spikes, most

notably during the Great Recession of 2007–2009 (see Figure 5 in Appendix B.3).

We next assess how well the calibrated model fits key moments in the data. As we have

seen above, the Domar weights, and how they react to changes in µt and Σt, are central for the

mechanisms of the model. The model is able to roughly replicate features of the empirical Domar

weights, with a cross-sectional correlation between the time-averaged Domar weights in the model

and in the data of 0.96. However, the average Domar weight in the model (0.03) is lower than its

data counterpart (0.05).28 Overall, the model can account for about 40% of the over-time standard

deviation of Domar weights, which indicates that other mechanisms, such as technological progress

that might expand the set of available techniques, might be at work in reality.

The mechanisms of the model predict that a decline in the expected productivity of a sector

µi, or an increase in its variance Σii, should push firms to reduce the importance of that sector as

an input provider, leading to a decline in its Domar weight. Reassuringly, these correlations are

visible in the data, where Corr (ωjt, µjt) = 0.1, and Corr (ωjt,Σjjt) = −0.4. The calibrated model

is also able to roughly match these correlations, and the corresponding numbers are 0.1 and −0.3.

8.2 The production network, welfare and output

To evaluate the quantitative potential of an endogenous production network for welfare and

GDP, we compare the calibrated model to two sets of alternative economies. First, we compare

our baseline model to an economy in which the network is kept completely fixed at its sample

average. This exercise therefore informs us about the overall impact of changes in the structure of

the production network. We then investigate the role of uncertainty alone in shaping the production

network. We do so by considering 1) an economy in which production techniques are chosen as

if Σt = 0,29 and 2) a perfect-foresight economy in which firms observe the realization of εt before

making technique choices (the “known εt” economy).30 In both cases, uncertainty is irrelevant for

decisions, and so these exercises allow us to isolate the impact of uncertainty on the production

network and, through that channel, on macroeconomic aggregates.

We find that expected log GDP in the “fixed network” economy is 2.1% lower than in our

baseline calibration with a flexible network. Intuitively, as some sectors become more productive

28We explain in Appendix B that this discrepancy can be explained by our choice to target consumption growth
instead of GDP growth in the estimation.

29Specifically, we set Σ = 0 when solving the problem of the social planner (21) for the equilibrium network α∗.
We then reintroduce uncertainty when computing the moments of GDP and welfare.

30One interpretation is that adopting a new technique is immediate, so that firms can wait to pick the best
technique for a particular εt draw. Techniques and intermediate input choices are thus made simultaneously and
conditional on observed prices.
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over time, the goods that they produce become cheaper, and firms would like to rely more on them.

With a flexible network this is possible, and the aggregate economy becomes more productive as a

result. The difference in welfare between the two models is about 2.1% as well.

When we isolate the role of uncertainty, however, these numbers become smaller. In line with

the theory, the baseline economy is on average less productive and less volatile than under the “as if

Σt = 0” alternative but the numbers are small, on the order of 0.01% for E [y] and 0.10% for V [y].

This suggests that, for most of the sample period, uncertainty is sufficiently low that firms simply

buy their inputs from the most productive suppliers without much concern for any risk involved.31

The differences between our calibrated economy and the “no uncertainty” alternatives are how-

ever larger during high-uncertainty episodes like the Great Recession.32 The top row of Figure 4

shows that expected log GDP in the baseline economy is about 0.25% lower in 2009 than in the

alternative “as if Σt = 0” economy. Because of the large increase in uncertainty, firms adjust their

production techniques toward safer but less productive suppliers to avoid potentially large increases

in costs. The result in terms of aggregate volatility is visible in the top-right panel, where we see

that log GDP is about 2.4% less volatile in 2009 in the baseline economy. Interestingly, realized log

GDP, shown in the left-bottom panel, is substantially higher in the baseline economy than in the

“as if Σt = 0” alternative. Essentially, firms took out an insurance against particularly bad TFP

draws and opted for safer suppliers. When these fears were realized, this insurance policy paid off

so that the baseline economy fared about 2.7% better in terms of realized log GDP compared to

the alternative.

The right-bottom panel provides the same information for the “known εt” alternative. In this

case, beliefs (µt,Σt), and in particular uncertainty, play no role in shaping the network and, from

the planner’s problem, the optimal network is simply the one that maximizes (realized) consump-

tion. It follows that realized consumption (or GDP) is always larger than in the baseline model.

Unsurprisingly, the difference is particularly pronounced during episodes of high uncertainty, when

knowing εt provides a larger advantage, and reaches a high of 3% during the Great Recession.33

Overall, our findings suggest that, while uncertainty might have a limited impact on the economy

on average, it may play a larger role in shaping the production network during high-uncertainty

periods, with consequences for expected and realized GDP, as well as for welfare. Given the stylized

nature of the model, these findings should be interpreted with caution. The model abstracts from

other forces that might affect the production network, such as changes in demand and technological

31As in Lucas (1987), the utility cost of business cycles is on average small in our model and the planner does not
want to sacrifice much in terms of the level of GDP for a reduction in its volatility. We provide the same moments
for the “known εt” economy in Supplemental Appendix B.4.

32The differences between our calibrated and fixed-network economies are also particularly large during volatile
periods, when adjusting the network is most beneficial. In Supplemental Appendix J.3, we show that allowing the
network to adjust leads to large gains in expected GDP during the Great Recession.

33Since εt is known in this exercise, E [y] = W = y and V [y] = 0 and, so we do not report these moments in
Figure 4. Alternatively, one can compute E [y], V [y] and W before εt is known but still assuming that the production
network is chosen optimally for the given realized draw of εt. We report these moments in Appendix B.4.
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progress that would expand the set of production techniques. Similarly, the production function

might not be Cobb-Douglas in reality, in which case changes in prices would affect Domar weights.

We also made the implicit assumption that it takes one year (the frequency of our data) for firms

to change production techniques. While this assumption might be reasonable for some sectors, it is

likely that the time it takes to retool a factory varies significantly by industry, or even depending

on what the new and the old techniques are.34 While we believe that the mechanisms that we

explore in this paper would still be present in a richer model, more work would be needed to fully

assess their importance.

Figure 4: The role of uncertainty in the postwar period

First row: “as if Σt = 0” as the alternative

(a) Difference in expected log GDP [%] (b) Difference in expected st. dev. of log GDP [%]

Left column: “as if Σt = 0” as alternative Right column: “known εt” as alternative

(c) Difference in realized log GDP [%] (d) Difference in realized log GDP [%]

Notes: The differences between the series implied by the baseline model (without tildes) and the two alternatives (marked by
tildes): the “as if Σt = 0” alternative (panels (a) to (c)) and the “known εt” alternative (panel (d)). All economies are hit by
the same shocks that are filtered out from the TFP data under our baseline model. All differences are expressed in percentage
terms. Expected log GDP E[y] and expected standard deviation of log GDP

√
V[y] are evaluated before εt is realized.

9 Model-free evidence for the mechanisms

The model proposed in this paper relies on simplifying assumptions for tractability. In this

section, we present additional evidence in support of the main mechanisms of the model that does

not rely on this structure. Through firm-level regressions that closely follow Alfaro, Bloom, and Lin

(2019) we document that 1) higher uncertainty about a firm leads to a decline in its Domar weight,

and 2) network connections involving riskier suppliers are more likely to break down. We test

these predictions at the firm level to take advantage of the abundance of data and of instrumental

variables that are available at this level of aggregation. Supplemental Appendix G describes the

34In the car industry, General Motors took about one year to retool a factory for electric vehicle production (Lutz,
2021), but it took Ford eight weeks to switch from using steal to aluminum for the body of the F-150 (Dean, 2015).
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data and the instruments in detail.

9.1 Uncertainty and Domar weights

We first test the model’s prediction that Domar weights decrease with uncertainty. We use

annual U.S. data from 1963 to 2016 provided by Compustat. Our main variables of interest are a

firm’s Domar weight, constructed by dividing its sales by nominal GDP, and a measure of its stock

price volatility, which we use as a proxy for uncertainty.35 We then regress the change in Domar

weight on the change in stock price volatility. The results are presented in the first column of

Table 1. In column (2), we follow Alfaro et al. (2019) and address potential endogeneity concerns

by instrumenting stock price volatility with industry-level exposure to ten aggregate sources of

uncertainty shocks. In column (3), we use option prices to back out an implied measure of future

volatility. In all cases, we find a negative and significant relationship between uncertainty and

Domar weights. The effect is also economically large with a decline in Domar weight of about

18% following a doubling in firm-level volatility (roughly a 3.3 standard deviation volatility shock),

according to the IV estimates. Overall, these results provide evidence that higher uncertainty leads

to lower Domar weights, in line with the predictions of our theoretical model.

Table 1: Domar weights and uncertainty

Change in Domar weight
(1): OLS (2): IV (3): IV

∆Volatilityi,t−1 −0.058∗∗∗ −0.137∗∗∗ −0.218∗∗∗

(0.004) (0.034) (0.073)

1st moment 10IVi,t−1 No Yes Yes
Type of volatility Realized Realized Implied
Fixed effects Yes Yes Yes
Observations 112,563 27,380 17,151
F -statistic — 14.2 9.8

Notes: Table presents OLS and 2SLS annual regression results of firm-level volatility. The dependent variable is the growth rate in Domar weight.
Supplier ∆Volatilityi,t−1 is the 1-year lagged change in firm-level volatility. Realized volatility is the 12-month standard deviation of daily stock

returns from CRSP. Implied volatility is the 12-month average of daily (365-day horizon) implied volatility of at-the-money-forward call options
from OptionMetrics. As in Alfaro et al. (2019), “we address endogeneity concerns on firm-level volatility by instrumenting with industry-level
(3SIC) non-directional exposure to 10 aggregate sources of uncertainty shocks. These include the lagged exposure to annual changes in expected
volatility of energy, currencies, and 10-year treasuries (as proxied by at-the-money forward-looking implied volatilities of oil, 7 widely traded
currencies, and TYVIX) and economic policy uncertainty from Baker et al. (2016). [...] To tease out the impact of 2nd moment uncertainty
shocks from 1st moment aggregate shocks we also include as controls the lagged directional industry 3SIC exposure to changes in the price of
each of the 10 aggregate instruments (i.e., 1st moment return shocks). These are labeled 1st moment 10IVt−1.” See Alfaro et al. (2019) for more
details about the data and the construction of the instruments. All specifications include year×industry (2SIC) fixed effects. Standard errors (in
parentheses) are clustered at the industry (3SIC) level. F -statistics are Kleibergen-Paap. ∗,∗∗ ,∗∗∗ indicate significance at the 10%, 5%, and 1%
levels, respectively.

35Ersahin et al. (2022) use textual analysis of earning conference calls to measure firm-level supply chain risk, and
find that it is positively correlated with stock price volatility. They also find that firms respond to higher supply
chain risks by switching to a wider range of less risky suppliers.
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9.2 Uncertainty and link destruction

We conduct a similar exercise, this time at the firm-to-firm relationship level, to investigate

whether higher supplier uncertainty is associated with a higher likelihood of link destruction. We

proceed by combining the uncertainty data described above with data from 2003 to 2016 about

firm-level supply relationships provided by Factset. We then regress a dummy variable that equals

one in the last year of a relationship on the change in the supplier’s stock price volatility. The

results are presented in column (1) of Table 2. As in the last exercise, column (2) uses industry-

level sensitivity to aggregate shocks as instruments, and column (3) uses implied volatility from

option prices as a measure of uncertainty. In all cases, we find a positive and statistically significant

relationship between supplier volatility and the end of supply relationships, which is consistent with

buyers moving away from riskier suppliers. The effect is also economically large with a doubling

in volatility associated with a 12 percentage point increase in the likelihood that a relationship is

destroyed, according to the IV estimates.

Table 2: Link destruction and supplier volatility

Dummy for last year of supply relationship
(1): OLS (2): IV (3): IV

∆Volatilityt−1 of supplier 0.026∗∗ 0.097∗∗∗ 0.144∗∗

(0.012) (0.035) (0.063)

1st moment 10IVt−1 of supplier No Yes Yes
Type of volatility Realized Realized Implied
Fixed effects Yes Yes Yes
Observations 35,629 35,620 26,195
F -statistic — 22.9 10.39

Notes: Table presents OLS and 2SLS annual regression results of firm-level volatility. The dependent variable is a dummy variable that equals
one in the last year of a supply relationship and zero otherwise. We limit the sample to relationships that have lasted at least five years.
The IV estimates remain significant when relationships of other lengths are considered. Supplier ∆Volatilityt−1 is the 1-year lagged change in
supplier-level volatility. Realized volatility is the 12-month standard deviation of daily stock returns from CRSP. Implied volatility is the 12-month
average of daily (365-day horizon) implied volatility of at-the-money-forward call options from OptionMetrics. As in Alfaro et al. (2019), “we
address endogeneity concerns on firm-level volatility by instrumenting with industry-level (3SIC) non-directional exposure to 10 aggregate sources
of uncertainty shocks. These include the lagged exposure to annual changes in expected volatility of energy, currencies, and 10-year treasuries
(as proxied by at-the-money forward-looking implied volatilities of oil, 7 widely traded currencies, and TYVIX) and economic policy uncertainty
from Baker et al. (2016). [...] To tease out the impact of 2nd moment uncertainty shocks from 1st moment aggregate shocks we also include as
controls the lagged directional industry 3SIC exposure to changes in the price of each of the 10 aggregate instruments (i.e., 1st moment return
shocks). These are labeled 1st moment 10IVt−1.” See Alfaro et al. (2019) for more details about the data and the construction of the instruments.
All specifications include year×customer×supplier industry (2SIC) fixed effects. Standard errors (in parentheses) are two-way clustered at the
customer and the supplier industry (3SIC) levels. F -statistics are Kleibergen-Paap. ∗,∗∗ ,∗∗∗ indicate significance at the 10%, 5%, and 1% levels,
respectively.

10 Conclusion

We construct a model in which agents’ beliefs about productivity affect the structure of the

production network and, through that channel, macroeconomic aggregates such as output and

welfare. We prove that the unique equilibrium is efficient, and that it is characterized by a trade-

off between the expected level and the volatility of GDP. We also prove that the presence of
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uncertainty, through its effect on the network, unambiguously lowers expected log GDP. When

calibrated to the United States economy, the model predicts that the impact of uncertainty on the

network can potentially have a sizable effect on GDP and welfare during periods of high uncertainty

such as the Great Recession.

The model is tractable and can serve as a framework to study various related questions. For

instance, with adjustments, our closed economy model could be adapted to study uncertainty about

international supply chains. Such a model could inform recent policy discussions about onshoring

by spelling out both the benefits and the costs of reallocating production to locations with lower

geopolitical risk. It would also be natural to extend our analysis to a model calibrated to firm-level

data, and to allow firms to enter and exit. However, such an extension would be more involved, as

it would necessitate moving away from the perfect competition framework proposed here. Finally,

we believe that in reality dynamic considerations might play an important role when firms are

deciding to create relationships with suppliers, and so a dynamic version of our model could be a

worthwhile extension.
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Online Appendix

A Proofs

A.1 Proof of Lemma 1

Lemma 1. Under a given network α, the vector of log prices is given by

p (α) = −L (α) (ε+ a (α)) , (12)

and log GDP is given by

y (α) = ω (α)⊤ (ε+ a (α)) , (13)

where a (α) = (logAi (αi) , . . . , logAn (αn)).

Proof. Combining the unit cost equation (8) with the equilibrium condition (10) and taking the

log we find that, for all i,

pi = −εi − ai (αi) +
n∑
j=1

αijpj , (43)

where ai (αi) = log (Ai (αi)) . This is a system of linear equations whose solution is (12). The

log price vector is also normally distributed since it is a linear transformation of normal random

variable. Combining with (6) yields (13).

A.2 Proof of Corollary 1

The proof of Corollary 1 is Supplemental Appendix D.

A.3 Proof of Lemma 2

Lemma 2. In equilibrium, the technique choice problem of the representative firm in sector i is

α∗
i ∈ arg max

αi∈Ai

ai (αi)−
n∑
j=1

αijRj (α
∗) , (17)

where

R (α∗) = E [p (α∗)] + Cov [p (α∗) , λ (α∗)] (18)

is the vector of equilibrium risk-adjusted prices, and where

E [p (α∗)] = −L (α∗) (µ+ a (α∗)) and Cov [p (α∗) , λ (α∗)] = (ρ− 1)L (α∗) Σ [L (α∗)]⊤ β.

Proof. We first consider the stochastic discount factor. Equation (76) in Appendix C.1 shows that
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aggregate consumption can be written as a function of prices. Combining that equation with (5)

we can write λ = log (Λ) as

λ (α∗) = − (1− ρ)
n∑
i=1

βipi (α
∗) . (44)

Taking the log of (8) yields

ki (αi, α
∗) = − (εi + a (αi)) +

n∑
j=1

αijpj (α
∗) . (45)

Both λ (α∗) and ki (αi, α
∗) are normally distributed since they are linear combinations of ε and the

log price vector, which is normally distributed by Lemma 1.

Turning to the firm problem 9, we can write

α∗
i ∈ arg min

αi∈Ai

E

[
Λ
β⊤L (α∗)1i

Pi
Ki (αi, P )

]
,

where we have used (78). We can drop β⊤L (α∗)1i > 0 since it is a deterministic scalar that does

not depend on αi. Rewriting this equation in terms of log quantities yields

α∗
i ∈ arg min

αi∈A
Eexp [λ (α∗)− pi (α

∗) + ki (αi, α
∗)] ,

where we emphasize that λ and pi depend only on the equilibrium technique choice α∗. The terms

λ (α∗), pi (α
∗) , and ki (αi, α

∗) are normally distributed. We can therefore use the expression for

the expected value of a lognormal distribution and write

α∗
i ∈ arg min

αi∈A
exp

{
E [λ (α∗)− pi (α

∗) + ki (αi, α
∗)] +

1

2
V [λ (α∗)− pi (α

∗) + ki (αi, α
∗)]

}
.

Taking away the exponentiation, as it is a monotone transformation, and E [λ (α∗)− qi (α
∗)] since

it does not affect the minimization yields

α∗
i ∈ arg min

αi∈A
E [ki (αi, α

∗)] +
1

2
V [λ (α∗)− pi (α

∗) + ki (αi, α
∗)] . (46)

This expression can be written as

α∗
i ∈ arg min

αi∈A
E [ki (αi, α

∗)] +
1

2
V [λ (α∗)] +

1

2
V [ki (αi, α

∗)− pi (α
∗)]

+ Cov [λ (α∗) , ki (αi, α
∗)] + Cov [λ (α∗) ,−pi (α∗)] ,

where we can drop V [λ (α∗)] and Cov [λ (α∗) ,−pi (α∗)] as they do not affect the minimization.
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Finally, we can expand V [ki (αi, α
∗)− pi (α

∗)] to get

α∗
i ∈ arg min

αi∈A
E [ki (αi, α

∗)] +
1

2
E
[
(ki (αi, α

∗)− pi (α
∗)− E [ki (αi, α

∗)− pi (α
∗)])2

]
+Cov [λ (α∗) , ki (αi, α

∗)] .

Taking the first-order condition with respect to αik, we find

1

2
E

[
2 (ki (αi, α

∗)− pi (α
∗)− E [ki (αi, α

∗)− pi (α
∗)])

(
dki (αi, α

∗)

dαik
− E

[
dki (αi, α

∗)

dαik

])]
+E

[
dki (αi, α

∗)

dαik

]
+Cov

[
λ (α∗) ,

dki (αi, α
∗)

dαik

]
+ γi − χik = 0,

where γi ≥ 0 is the Lagrange multiplier on
∑n

j=1 αij ≤ αi and χik ≥ 0 is the multiplier on αik ≥ 0.

At an equilibrium, α = α∗ and ki (α
∗
i , α

∗) = pi (α
∗), and so

E

[
dki (α

∗
i , α

∗)

dαik

]
+Cov

[
λ (α∗) ,

dki (α
∗
i , α

∗)

dαik

]
+ γ∗i − χ∗

ik = 0

describes the equilibrium choice of firm i. Notice that this equilibrium first-order condition can

also come from the problem

α∗
i ∈ arg min

αi∈A
E [ki (αi, α

∗)] + Cov [λ (α∗) , ki (αi, α
∗)] .

Finally, note that

arg min
αi∈A

E [ki (αi, α
∗)] + Cov [λ (α∗) , ki (αi, α

∗)] = arg min
αi∈A

−µi − ai (αi) +
n∑
j=1

αij E [pj ]

+ Cov

λ (α∗) ,−εi − ai (αi) +
n∑
j=1

αijpj


= arg min

αi∈A
−ai (αi) +

n∑
j=1

αij E [pj ]

+ Cov [λ (α∗) ,−εi] +
n∑
j=1

αij Cov [λ (α
∗) , pj ]

= arg min
αi∈A

−ai (αi) +
n∑
j=1

αijRj (α
∗) ,

which completes the proof.
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A.4 Proof of Lemma 3

Lemma 3. An efficient production network α∗ solves

W ≡ max
α∈A

W (α, µ,Σ) ,

where W is a measure of the welfare of the household, and where

W (α, µ,Σ) ≡ E [y (α)]− 1

2
(ρ− 1)V [y (α)] , (21)

is welfare under a given network α.

Proof. Since we only have one agent in the economy, any Pareto efficient allocation must maximize

the utility of the representative household. Under a given network and a given productivity shock

ε the first welfare theorem applies, and the equilibrium is efficient. The consumption chosen by the

planner is therefore given by (13). It follows that the efficient production network must solve

max
α∈A

E [u (Y )] = max
α∈A

1

1− ρ
E [exp ((1− ρ) log Y )]

= max
α∈A

1

1− ρ
exp

(
(1− ρ) E [log Y ] +

1

2
(1− ρ)2V [log Y ]

)
(47)

= max
α∈A

E [log Y ]− 1

2
(ρ− 1)V [log Y ]

where we have used the fact that log Y is normally distributed.

A.5 Proof of Corollary 2

Corollary 2. The efficient Domar weight vector ω∗ solves

W = max
ω∈O

ω⊤µ+ ā (ω)︸ ︷︷ ︸
E[y]

−1

2
(ρ− 1)ω⊤Σω︸ ︷︷ ︸

V[y]

, (26)

where O =
{
ω ∈ Rn+ : ω ≥ β and 1 ≥ ω⊤ (1− ᾱ)

}
and ā (ω) is given by (23).

Proof. Using (14) and the definition of Domar weights, the original planning problem (21) can be

written

W = max
α∈A,ω

ω⊤µ+ ω⊤a (α)− 1

2
(ρ− 1)ω⊤Σω,

subject to β⊤ (I − α)−1 = ω⊤, which is equivalent to

max
ω∈O

ω⊤µ+

[
max
α∈A

ω⊤a (α)

]
− 1

2
(ρ− 1)ω⊤Σω,
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where the inner problem is subject to β⊤ (I − α)−1 = ω⊤ and where we can limit the feasible set of

the outside problem to O since for ω /∈ O the inner constraints could never be satisfied. This last

problem is the same as (26) because, by (23), ā (ω) = maxα∈A ω
⊤a (α) subject to β⊤ (I − α)−1 =

ω⊤.

A.6 Proof of Lemma 4

Lemma 4. The objective function of the planner’s problem (26) is strictly concave. Furthermore,

there is a unique vector of Domar weights ω∗ that solves that problem, and there is a unique

production network α (ω∗) associated with that solution.

Proof. We first show that the value function ā (ω) defined by (23) is strictly concave. Consider the

maximization problem

ā (ω) = max
α∈A

ω⊤a (α) ,

subject to β⊤ (I − α)−1 = ω⊤. Since I − α is always invertible for α ∈ A we can rewrite this

constraint as the affine relationship

α⊤ω = ω − β. (48)

Take two feasible points ω0 and ω1, and let α0 ∈ A and α1 ∈ A be their respective maximizers.

Consider the convex combination αt defined component-by-component as

αti =
ω0
i

ω0
i + ω1

i

α0
i +

ω1
i

ω0
i + ω1

i

α1
i .

We will show that αt is a feasible point for ωt = ω0+ω1

2 . First notice that αt ≥ 0 and that

∑
j

αtij =
ω0
i

ω0
i + ω1

i

∑
j

α0
ij +

ω1
i

ω0
i + ω1

i

∑
j

α1
ij ≤ ᾱi,

so that αt ∈ A. Next, since (48) holds for
(
α0, ω0

)
and

(
α1, ω1

)
, we can write

∑
j

ω0
jα

0
ji = ω0

i − βi, and
∑
j

ω1
jα

1
ji = ω1

i − βi.
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Summing these two equations up, we get

∑
j

(
ω0
jα

0
ji + ω1

i α
1
ji

)
= ω0

i + ω1
i − 2βi,

∑
j

ω0
j + ω1

j

2

(
ω0
j

ω0
j + ω1

j

α0
ji +

ω1
i

ω0
j + ω1

j

α1
ji

)
=
ω0
i + ω1

i

2
− βi,∑

j

ωtjα
t
ji = ωti − βi,

which implies that (48) holds for
(
αt, ωt

)
. Therefore, αt is a feasible point for ωt.

Consider the value function at ωt:

ā
(
ωt
)
= ā

(
ω0 + ω1

2

)
≥
∑
i

ωtia
(
αti
)
=
∑
i

ω0
i + ω1

i

2
ai

(
ω0
i

ω0
i + ω1

i

α0
i +

ω1
i

ω0
i + ω1

i

α1
i

)
,

where the inequality follows since αt might not be a maximizer for ωt. From the strict concavity

of ai, we find

ā
(
ωt
)
>
∑
i

ω0
i + ω1

i

2

(
ω0
i

ω0
i + ω1

i

ai
(
α0
i

)
+

ω1
i

ω0
i + ω1

i

ai
(
α1
i

))
=

1

2
ā
(
ω0
)
+

1

2
ā
(
ω1
)
.

This holds for any feasible ω0 and ω1, and so ā is midpoint strictly concave. By the Theorem of

Maximum ā is also continuous, and so ā is therefore strictly concave. It follows that the objective

function (26) is also strictly concave, which proves the first part of the statement.

Since the objective (26) is strictly concave, the feasible set is convex, there is a unique maximizer

so there is a unique solution ω∗ to the planner’s problem. Now, notice that the objective function

(23) is strictly concave since ai is strictly concave for all i. The feasible set (the intersection of (48)

and A) is convex so there is once again a unique maximizer. It follows that for each ω there is a

unique α that solves (23), and there is therefore a unique α∗ associated with ω∗.

A.7 Proof of Proposition 1

Proposition 1. There exists a unique equilibrium, and it is efficient.

Proof. For a given production network α and a given draw of the random TFP vector ε, the

economy is standard, and the equilibrium is unique. The first welfare theorem also applies and

so the allocation is efficient. We therefore only need to focus on the choice of network under

uncertainty. An equilibrium network α∗ ∈ A is fully characterized by a solution to (17) and where
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R (α∗) is given by (18) which can be written in terms of primitives as

R (α∗) = −L (α∗) (µ+ a (α∗))︸ ︷︷ ︸
E[p]

+(ρ− 1)L (α∗) Σ [L (α∗)]⊤ β︸ ︷︷ ︸
Cov(p,λ)

.

Since the objective function is strictly concave and the constraint set is defined by affine functions,

it follows that α∗ ∈ A is an equilibrium network if there exists Lagrange multipliers χeij ≥ 0 and

γei ≥ 0 such that 1) the first-order conditions of the firms

∂ai
∂αi

(α∗) + L (α∗) (µ+ a (α∗))− (ρ− 1)L (α∗) ΣL (α∗)⊤ β + χei − γei 1 = 0, (49)

evaluated at α∗ are satisfied, and 2) the complementary slackness conditions

−χeijα∗
ij = 0, (50)

γei

 n∑
j=1

α∗
ij − αi

 = 0, (51)

are satisfied for all i, j.

Next, consider the social planner’s problem given by (26) and subject to the constraints in

Corollary 2. By Lemma 4, the objective function is strictly concave and the constraint set is

defined by affine function. It follows that an allocation α ∈ A is efficient if there exist nonnegative

Lagrange multipliers χ̂ and γ̂ such that 1) the first-order conditions

µ+∇ā− (ρ− 1)Σω + χ̂− γ̂ (1− ᾱ) = 0, (52)

where ω⊤ = β⊤L (α) and where ∇ā is the derivative of the aggregate TFP shifter (23), are satisfied

and the 2) complementary slackness conditions

−χ̂i (ωi − βi) = 0, (53)

γ̂
(
ω⊤ (1− ᾱ)− 1

)
= 0, (54)

are satisfied for all i. To derive ∇ā, we can use the problem (23). The objective function of this

problem is strictly concave (see proof of Lemma 4) and the constraint set is convex.36 It follows

that the unique maximizer is characterized by the first-order condition

ωi
∂ai
∂αij

− ζjωi + χ̌ij − γ̌i = 0 ⇔ ζj =
∂ai
∂αij

+ χ̃ij − γ̃i, (55)

36Recall that the constraint set is given by α ∈ A and an affine function (48).

52



and the complementary slackness conditions

α⊤ω − ω + β = 0, (56)

−χ̌ijαij = 0, (57)

γ̌i

 n∑
j=1

αij − αi

 = 0, (58)

for all i, j and where χ̃ij =
χ̌ij

ωi
and γ̃i =

γ̌i
ωi
. Applying the envelope theorem to (23), we obtain

∇ā = a (α) + (I − α) ζ = a (α) + (I − α)

(
∂ai
∂αi

+ χ̃i − γ̃

)
,

where we use (55) to express ζ. Plugging this expression in (52), we get

µ+ a (α) + (I − α)

(
∂ai
∂αi

+ χ̃i − γ̃

)
− (ρ− 1)Σω + χ̂− γ̂ (1− ᾱ) = 0 ⇔

∂ai
∂αi

+ L (α) (µ+ a (α))− (ρ− 1)L (α) ΣL (α)⊤ β + χ̃i + L (α) χ̂− (γ̂L (α) (1− ᾱ) + γ̃) = 0, (59)

where the second line follows from the first by left-multiplying by L (α) = (I − α)−1.

Now, we will show that the equilibrium and efficiency conditions coincide. Suppose that we

have a solution to the planner’s problem (αp, ωp, χ̃, χ̂, γ̃, γ̂, ζ). Consider the candidate equilibrium

(αe, ωe, χe, γe) where αe = αp, ωe = ωp, χei = χ̃i + L (αp) χ̂ for all i, and γe = γ̂L (αp) (1− ᾱ) + γ̃.

First, note that since χ̃, γ̂, γ̃, γ̂ are nonnegative, so are χe,γe. Next, the candidate equilibrium

satisfies the first-order condition (49). The first complementary slackness condition (50) is also

satisfied. Indeed, suppose that αpij > 0, which implies that ωpi > βi, then χ̃ij = 0 and χ̂j = 0,

such that χeij = 0, and the condition is satisfied. If instead the constraint αpij ≥ 0 binds such

that χ̃ij > 0, we have χeij > 0. Furthermore, from the first-order condition (49) αeij = 0, so the

condition is satisfied. For the second complementary slackness condition (51), if
∑n

j=1 α
p
ij < αi for

some i then γ̃i = 0 and γ̂ = 0. It follows that γe = 0 and the condition is satisfied. If instead

the constraint binds such that
∑n

j=1 α
p
ij = αi for some i, then

∑n
j=1 α

e
ij = αi, and the second

complementary slackness condition (51) is satisfied. It follows that any efficient allocation can be

decentralized as an equilibrium allocation. Since we know that an efficient allocation exists (it is

the outcome of an optimization problem on a compact set), this proves that an efficient equilibrium

exists.

Suppose instead that we have an equilibrium (αe, ωe, χe, γe) where ωe = L (αe)⊤ β, and consider

the candidate efficient allocation (αp, ωp, χ̃, χ̂, γ̃, γ̂, ζ), where αp = αe, ωp = ωe, χ̃ = χe, χ̂ = 0, γ̃ =

γe, γ̂ = 0, ζ = −L (αe) (µ+ a (αe))+(ρ− 1)L (αe) ΣL (αe)⊤ β. Note that the first-order conditions

(59) of the planner are satisfied. Next, notice that the complementary slackness conditions (53)-
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(54) are always satisfied. Finally, the first-order conditions (55) and the complementary slackness

conditions (56)-(58) are also satisfied. For the condition (56), note that since ωe = L (αe)⊤ β we

have (αp)⊤ ωp−ωp+β = 0 and so the condition is satisfied. For the condition (57), if αeij > 0 then

χeij = χ̃ij = 0 and the condition is satisfied. If instead the constraint αeij ≥ 0 binds such that αeij = 0,

then αpij = 0 and the condition is also satisfied. Finally, for the condition (58), if
∑n

j=1 α
e
ij < ᾱi

then γei = 0 and so γ̃ = 0, so that the condition is satisfied. If instead
∑n

j=1 α
p
ij = ᾱi, it must

be that
∑n

j=1 α
e
ij = ᾱi, and so (58) is satisfied. We have therefore shown that any equilibrium

corresponds to an efficient allocation. By Lemma 4, the objective function of the planner is strictly

concave and its constraint set is convex. It follows that there is a unique efficient allocation and

therefore a unique equilibrium.

A.8 Proof of Proposition 2

Proposition 2. The Domar weight ωi of sector i is (weakly) increasing in µi and (weakly) decreas-

ing in Σii.

Proof. Note that by the maximum theorem applied to (26), ωi is a continuous function of µ and Σ.

We consider the comparative statics with respect to µi first. We proceed by contradiction. Suppose

that ωi is not an increasing function of µi. Then, by continuity of ωi as a function of µi, there

exists a point
(
µ0,Σ0

)
and an interval

(
µ0i , µ

1
i

)
such that ωi

(
µi, µ

0
−i,Σ

0
)
< ωi

(
µ0i , µ

0
−i,Σ

0
)
for any

µi ∈
(
µ0i , µ

1
i

)
. Denote the optimal network at (µ,Σ) by α∗ (µ,Σ). Now, consider an increase in µi

from µ0i to µ1i (holding other elements of µ0 and Σ0 fixed). From Corollary 4, we can write the

change in welfare as

W
(
µ1i , µ

0
−i,Σ

0
)
= W

(
µ0i , µ

0
−i,Σ

0
)
+

∫ µ1i

µ0i

ωi
(
µi, µ

0
−i,Σ

0
)
dµi.

Suppose instead that the network is fixed at its original value α∗ (µ0i , µ0−i,Σ0
)
. Equations (14) imply

that under a fixed network the change in µi affects welfare only through its impact on expected log

GDP. By Corollary 1, the change in welfare can thus be written as

W
(
α∗ (µ0i , µ0−i,Σ0

)
;µ1i , µ

0
−i,Σ

0
)
=W

(
α∗ (µ0i , µ0−i,Σ0

)
;µ0i , µ

0
−i,Σ

0
)
+ ωi

(
µ0i , µ

0
−i,Σ

0
) (
µ1i − µ0i

)
.

But since the initial network α∗ (µ0i , µ0−i,Σ0
)
is feasible at

(
µ1i , µ

0
−i,Σ

0
)
, welfare maximization im-

plies that W
(
µ1i , µ

0
−i,Σ

0
)
= W

(
α∗ (µ1i , µ0−i,Σ0

)
;µ1i , µ

0
−i,Σ

0
)
≥ W

(
α∗ (µ0i , µ0−i,Σ0

)
;µ1i , µ

0
−i,Σ

0
)
,

and so ∫ µ1i

µ0i

ωi
(
µi, µ

0
−i,Σ

0
)
dµi ≥ ωi

(
µ0i , µ

0
−i,Σ

0
) (
µ1i − µ0i

)
. (60)

Since we have assumed by contradiction that ωi
(
µi, µ

0
−i,Σ

0
)
< ωi

(
µ0i , µ

0
−i,Σ

0
)
for all µi ∈

(
µ0i , µ

1
i

)
,

it follows that
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∫ µ1i

µ0i

ωi
(
µi, µ

0
−i,Σ

0
)
dµi <

∫ µ1i

µ0i

ωi
(
µ0i , µ

0
−i,Σ

0
)
dµi = ωi

(
µ0i , µ

0
−i,Σ

0
) (
µ1i − µ0i

)
,

which contradicts (60). Therefore, ωi is an increasing function of µi.

For the second part of the proposition, recall that dW
dΣii

= −1
2 (ρ− 1)ω2

i by Corollary 4. Using

analogous steps, we can then establish the second part of this proposition.

A.9 Proof of Proposition 3

Proposition 3. Let γ denote either the mean µi or an element of the covariance matrix Σij. If

ω ∈ intO, then the response of the equilibrium Domar weights to a change in γ is given by

dω

dγ
= −H−1︸ ︷︷ ︸

propagation

× ∂E
∂γ︸︷︷︸

impulse

, (31)

where the n× n negative definite matrix H is given by

H = ∇2ā+
dE
dω
, (32)

and where the matrix ∇2ā is the Hessian of the aggregate TFP shifter function ā, and dE
dω =

dCov[ε,λ]
dω = − (ρ− 1)Σ is the Jacobian matrix of the risk-adjusted TFP vector E.

Proof. At an interior solution, the first-order conditions of (26) are

F (ω, µ,Σ) := µ+∇ā− (ρ− 1)Σω = 0,

where ∇ā is the gradient of ā. Differentiating with respect to ω, we find that

dF

dω
= ∇2ā− (ρ− 1)Σ,

where ∇2ā is the Hessian matrix of ā. From the implicit function theorem, it follows that

dω

dγ
= −

[
∇2ā− (ρ− 1)Σ

]−1 ∂F

∂γ
.

If γ = µi, we have
∂F

∂γ
=
∂F

∂µi
= 1i =

∂E
∂µi

,

where 1i is a column vector of zeros except for 1 at element i. If γ = Σij , we have

∂F

∂γ
=

∂F

∂Σij
= −1

2
(ρ− 1) (ωj1i + ωi1j) =

∂E
∂Σij

,
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where, if i ̸= j, we differentiate with respect to Σij and Σji simultaneously to preserve the symmetry

of the covariance matrix and divide by two to preserve the scale. Finally, in the proof of Lemma 4,

we show that ∇2ā is negative definite. It follows from (32) that H and its inverse are also negative

definite.

Proposition 3 can be extended to handle the case in which some of the constraints ωi ≥ βi

bind with strictly positive Lagrange multipliers. We show how this can be done in Supplemental

Appendix F.

A.10 Proofs of Corollary 3, Lemmas 5, 6 and 7, and of Proposition 4

These proofs are in Supplemental Appendix D.

A.11 Proof of Lemma 8

Lemma 8. If ω intO, the equilibrium Domar weights are approximately given by

ω = ω◦ − [H◦]−1 E◦ +O
(
∥ω − ω◦∥2

)
, (35)

where the superscript ◦ indicates that H and E are evaluated at ω◦.

Proof. At an interior solution, the first-order conditions of (26) are

µ+∇ā (ω)− (ρ− 1)Σω = 0. (61)

The first-order Taylor expansion of ∇ā (ω) around ω◦ is

∇ā (ω) = ∇ā (ω◦) +∇2ā (ω◦) (ω − ω◦) +O
(
∥ω − ω◦∥2

)
.

Plugging it into (61), we get

ω − ω◦ = −
[
∇2ā (ω◦)− (ρ− 1)Σ

]−1
[µ− (ρ− 1)Σω◦ +∇ā (ω◦)] +O

(
∥ω − ω◦∥2

)
.

From (32), we can write H◦ = ∇2ā (ω◦)− (ρ− 1)Σ. From (27), E◦ = µ− (ρ− 1)Σω◦. Therefore,

ω − ω◦ = − [H◦]−1 [E◦ +∇ā (ω◦)] +O
(
∥ω − ω◦∥2

)
.

Next, by the envelope theorem applied to (23) we find

∇ā (ω◦) = a (α◦) + (I − α◦) ζ = 0, (62)
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where ζ is the vector of Lagrange multipliers associated with the constraint α⊤ω◦ = ω◦ − β. To

find these multipliers, recall from (55) that the first-order conditions of the problem (23) are

ζi =
∂ai
∂αij

+ χ̃ij − γ̃i. (55)

Now recall that ∂ai
∂αij

(α◦
i ) = 0 for all i, j by the definition of α◦

i . It follows that if set αi = α◦
i

for all i and all the Lagrange multipliers χ̃ij , γ̃i equal to zero, then the first-order conditions and

complementary slackness conditions are satisfied, and by definition of ω◦,the constraint (α◦)⊤ ω◦ =

ω◦ − β is also satisfied. This is therefore the (unique) solution to that optimization problem. It

follows from (62) that ∇ā (ω◦) = a (α◦) = 0 where the last equality comes from our normalization.

A.12 Proof of Lemma 9

The proof of Lemma 9 is a special case of Proposition 9 in Supplemental Appendix I.

A.13 Proof of Proposition 5

Proposition 5. Let γ denote either the mean µi or an element of the covariance matrix Σij. Under

an endogenous network, welfare responds to a marginal change in γ as if the network were fixed at

its equilibrium value α∗, that is

dW (µ,Σ)

dγ
=
∂W (α∗, µ,Σ)

∂γ
.

Proof. Recall from Lemma 3 that the equilibrium α∗ solves the welfare-maximization problem

W (µ,Σ) = max
α∈A

W (α, µ,Σ) , (63)

where

W (α, µ,Σ) = E [y (α)]− 1

2
(ρ− 1)V [y (α)] , (64)

is welfare under a given network α and beliefs (µ,Σ). Both E [y] and V [y] depend on beliefs through

(14). Since the objective function (63) and its associated constraints are continuously differentiable

functions of α, and since the constraint α ∈ A does not depend on beliefs, the envelope theorem

immediately implies that
dW (µ,Σ)

dγ
=
∂W (α∗, µ,Σ)

∂γ
,

where the right-hand side is the change in welfare keeping the network constant at α∗.
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A.14 Proof of Corollary 4

Corollary 4. The impact of an increase in µi on welfare is given by

dW
dµi

= ωi, (39)

and the impact of an increase in Σij on welfare is given by

dW
dΣij

= −1

2
(ρ− 1)ωiωj . (40)

Proof. Combining (64) with Corollary 14, it is immediate to show that

∂W (α∗, µ,Σ)

∂µi
= ωi,

and
dW (α∗, µ,Σ)

dΣij
= −1

2
(ρ− 1)ωiωj .

Putting these expressions together with Proposition 5 yields the result.

A.15 Proof of Proposition 6

Proposition 6. The presence of uncertainty lowers expected log GDP, in the sense that E [y] is

largest when Σ = 0.

Proof. The proof follows from Corollary 3. From (14), define

Y (α, µ,Σ) = E [y (α)] = ω (α)⊤ (µ+ a (α)) , (65)

and

V (α, µ,Σ) = V [y (α)] = ω (α)⊤Σω (α) , (66)

as the expected value and the variance of log GDP under the network α and the beliefs (µ,Σ). Let

α∗ (µ,Σ) denote an optimal network (a solution to (21)) under the beliefs (µ,Σ).

Fix µ. We first establish that α∗ (µ, 0) maximizes Y (α, µ, 0). To see this, note that (66) implies

that V (α, µ, 0) = 0 for all pairs (α, µ). The problem (21) of the social planner with Σ = 0 can

therefore be written as

max
α∈A

Y (α, µ, 0)− 1

2
(ρ− 1)V (α, µ, 0) = max

α∈A
Y (α, µ, 0) = Y (α∗ (µ, 0) , µ, 0) ,

where the second equality comes from the definition of α∗ (µ, 0).
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Next, notice that

Y (α∗ (µ, 0) , µ, 0) ≥ Y (α∗ (µ,Σ) , µ, 0) = Y (α∗ (µ,Σ) , µ,Σ) , (67)

where the inequality comes from the fact that α∗ (µ, 0) maximizes Y (α, µ, 0), and the equality

comes from the fact that Y (α, µ,Σ), given by (65), does not explicitly depend on Σ. Since (67)

holds for any Σ, it follows that expected log GDP Y (α∗ (µ,Σ) , µ,Σ) is maximized at Σ = 0, which

is the desired result.

A.16 Proof of Corollary 5

The proof of Corollary 5 is in Supplemental Appendix I.

A.17 Proof of Proposition 7

Proposition 7. If ω ∈ intO, the following holds.

1. The impact of an increase in µi on log GDP is given by

dE [y]

dµi
= ωi︸︷︷︸

Fixed network

− (ρ− 1)ω⊤ΣH−1 ∂E
∂µi

, and
dV [y]

dµi
= 0︸︷︷︸

Fixed network

−2ω⊤ΣH−1 ∂E
∂µi

.

2. The impact of an increase in Σij on log GDP is given by

dE [y]

dΣij
= 0︸︷︷︸

Fixed network

− (ρ− 1)ω⊤ΣH−1 ∂E
∂Σij

, and
dV [y]

dΣij
= ωiωj︸︷︷︸

Fixed network

−2ω⊤ΣH−1 ∂E
∂Σij

.

Proof. Differentiating (14) with respect to µi yields

dV [y]

dµi
= 2ω⊤Σ

dω

dµi
,

which, together with (31), yields

dV [y]

dµi
= −2ω⊤ΣH−1 ∂E

∂µi
. (68)

Next, from (39) we find
dW
dµi

= ωi =
dE [y]

dµi
− 1

2
(ρ− 1)

dV [y]

dµi
,

which we can combine with the previous equation to get

dE [y]

dµi
= ωi − (ρ− 1)ω⊤ΣH−1 ∂E

∂µi
.
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Similarly, differentiating (14) with respect to Σij yields

dV [y]

dΣij
= ωiωj + 2ω⊤Σ

dω

dΣij
= ωiωj − 2ω⊤ΣH−1 ∂E

∂Σij
.

From (40), we can write

dW
dΣij

= −1

2
(ρ− 1)ωiωj =

dE [y]

dΣij
− 1

2
(ρ− 1)

dV [y (α)]

dΣij
,

which we can combine with the previous equation to find

dE [y]

dΣij
= − (ρ− 1)ω⊤ΣH−1 ∂E

∂Σij
.

A.18 Proof of Corollary 6

Corollary 6. Without uncertainty (Σ = 0) the moments of GDP respond to changes in beliefs as

if the network were fixed, such that

dE [y]

dµi
=
∂ E [y]

∂µi
= ωi, and

dV [y]

dΣij
=
∂V [y]

∂Σij
= ωiωj .

Proof. When Σ = 0, the problem of the planner (3) becomes

W = E [y (α∗)] = max
α∈A

E [y (α)] = max
α∈A

ω (α)⊤ (µ+ a (α)) .

The envelope theorem then implies that dE[y]
dµi

= ωi which proves the first part of the corollary.

The envelope theorem also implies dE[y]
dΣij

= 0 which leads to the second part of the corollary when

combined with Proposition 5 and Corollary 1.

A.19 Proofs of Corollaries 7 and 8

These proofs are in Supplemental Appendix D.

B Additional results related to the calibrated economy

In this appendix, we provide additional information about 1) the data used in the calibration

of Section 8, 2) our calibration strategy, 3) how well the model fits the data, 4) the quantitative

importance of the mechanism, and 5) robustness exercises.
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B.1 Data

The Bureau of Economic Analysis (BEA) provides sectoral input-output tables that allow us

to compute the intermediate input shares as well as the shares of final consumption expenditure

accounted for by different sectors. We rely on the harmonized tables constructed by Vom Lehn and

Winberry (2022) that provide consistent annual data for n = 37 sectors over the period 1948-2020.

Table 3 provides the list of the sectors included in this data set.

Table 3: The 37 sectors used in our analysis

Mining Utilities

Construction Wood products

Nonmetallic minerals Primary metals

Fabricated metals Machinery

Computer and electronic manufacturing Electrical equipment manufacturing

Motor vehicles manufacturing Other transportation equipment

Furniture and related manufacturing Misc. manufacturing

Food and beverage manufacturing Textile manufacturing

Apparel manufacturing Paper manufacturing

Printing products manufacturing Petroleum and coal manufacturing

Chemical manufacturing Plastics manufacturing

Wholesale trade Retail trade

Transportation and warehousing Information

Finance and insurance Real estate and rental services

Professional and technical services Management of companies and enterprises

Administrative and waste management services Educational services

Health care and social assistance Arts and entertainment services

Accommodation Food services

Other services

Notes: Sectors are classified according to the NAICS-based BEA codes. See Vom Lehn and
Winberry (2022) for details of the data construction.

From these data, we can compute the input shares αijt of each sector in each year t. The typical

share αij in the data has an average of 0.0128 and a standard deviation over time of 0.0048, for

a coefficient of variation of 0.37. We also use the input-output tables to compute sectoral total

factor productivity, following the procedure in Vom Lehn and Winberry (2022) closely. Specifically,

sectoral TFP is measured as the Solow residual, i.e. the residual that remains after removing the

contribution of input factors from a sector’s gross output. We make three departures from Vom Lehn

and Winberry (2022) in constructing the TFP series. First, to be consistent with our model, we

let the input shares αijt vary over time. Second, we do not smooth the resulting Solow residuals.

Finally, we update the time series to include the years up to 2020.

B.2 Calibration procedure

The three groups of parameters that we need to calibrate are 1) the household’s preferences, i.e.

the consumption shares β and the risk-aversion ρ, 2) the parameters of the TFP shifter function

(2), and 3) the processes for the exogenous sectoral productivity shocks, i.e. µt and Σt. Some of

these parameters can be computed directly from the data. The other ones are estimated using a
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combination of indirect inference and standard time-series methods. Below, we describe the exact

procedure used for each set of parameters.

Household preferences

Since the preference parameter βi corresponds to the household’s expenditure share of good i,

we pin down its value directly from the data by averaging the consumption share of good i over

time. The sectors with the largest consumption shares are “Real estate” (14%), “Retail trade”

(12%) and “Health care” (11%). See Appendix J.5 for a version of the calibrated economy with

time-varying β’s.

The relative risk aversion parameter ρ determines to what extent firms are willing to trade off

higher input prices for access to more stable suppliers. The literature uses a broad range of values

for ρ and it is unclear a priori which one is best for our application. We therefore estimate ρ using

a method of simulated moments (MSM) described below.

Endogenous productivity shifter

We specialize the TFP shifter function (2) to

logAi (αi) = a◦i −
n∑
j=1

κij
(
αij − α◦

ij

)2 − κi0

 n∑
j=1

αij −
n∑
j=1

α◦
ij

2

, (69)

where the last term can provide a penalty from deviating from an ideal labor share. We denote by

κ the matrix with typical element κij . This functional form takes as inputs the ideal shares α◦
ij , the

actual shares αijt, the coefficients κij and the constant a◦i . The ideal shares α◦
ij are set to the time

average of the input shares observed in the data.37 We set the constant a◦i equal to the average

TFP of sector i. The coefficients κij , which determine how costly it is to deviate from the ideal

shares in terms of productivity, are estimated using the MSM procedure described below. Without

any restrictions the matrix κ would have n × (n+ 1) = 1406 elements. To reduce the number of

free parameters to estimate, we restrict κ to be of the form κ = κiκj where κi is an n× 1 column

vector and κj is an 1× (n+ 1) row vector. The kth element of κi then scales the cost for producer

k of changing the share of any of its inputs, and the lth element in κj scales the cost of changing

the share of input l for any producer. We normalize the first element in κi to pin down the scale

of κi and κj . The matrix κ then contains only 2n = 74 free parameters to estimate.

37We experimented with an alternative calibration in which we include and estimate a j-specific shifter to α◦
ij .

The results are similar to our baseline calibration.
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Exogenous productivity process

The source of uncertainty in the model is the vector of productivity shocks εt ∼ N (µt,Σt). In

the calibrated model, we allow µt and Σt to vary over time to account for changes in the stochastic

process for εt over the sample period. To parameterize the evolution of µt and Σt, we first filter out

the endogenous productivity shifter Ai (αit) and the normalization term ζ (αit) from the measured

sectoral TFP, eεitAi (αit) ζ (αit), implied by the production function (1). We then estimate the

evolution of µt and Σt from the remaining component. To do so, we assume that εt follows a

random walk with drift,

εt = γ + εt−1 + ut, (42)

where γ is an n × 1 vector of deterministic drifts and ut ∼ iid N (0,Σt) is a vector of shocks. We

estimate γ by computing the average of the productivity growth rates ∆εt = εt − εt−1 over time.

When making decisions in period t, firms know the past realizations of εt so that the conditional

mean of εt is given by µt = γ + εt−1. The covariance Σt of the innovation ut is estimated using

a rolling window that puts more weight on more recent observations to allow for time-varying

uncertainty about sectoral productivity. Specifically, we estimate the covariance between sector i

and j at time t by computing Σijt =
∑t−1

s=1 ϕ
t−s−1uisujs, where 0 < ϕ < 1 is a parameter that

determines the relative weight of more recent observations. Its value is set to the sectoral average

of the corresponding parameters of a GARCH(1,1) model estimated on each sector’s productivity

innovation uit. In the calibrated economy, its value is ϕ = 0.47. Note that this procedure implies

that the time series for εt depends on the parameters of the TFP shifters. Therefore, the estimation

of the stochastic process for sectoral productivity has to be done jointly with the estimation of κ.

Matching model and data moments

We use an indirect inference approach and estimate the parameters Θ ≡ {ρ, κ} by minimizing

Θ̂ = argmin
Θ

(m (z)−m (Θ))⊤W (m (z)−m (Θ)) ,

where m (z) is a vector of moments computed from the data, and m (Θ) is the vector of corre-

sponding model-implied moments conditional on the parameters Θ. The moments that we target

are the time series of the production shares αijt, normalized by their average in the data, and the

demeaned time series of aggregate consumption growth, normalized by the average of its absolute

value in the data. We target consumption since the stochastic discount factor of the household is

central to the trade-off that firms face when choosing production techniques.38

38To strike a balance between matching both the shares and consumption growth reasonably well, the weighting
matrix W assigns a weight of

(
n2 × T

)−1
to the shares moments (recall that there are n2 shares time series, each

of length T ) and a weight of (T − 1)−1 to the consumption growth moment (the length of the consumption growth
time series is T − 1).
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We match n2×T +T −1 moments with only 2n+1 free parameters. The model is thus strongly

over-identified. We use particle swarm optimization to find the global minimizer Θ̂ (Kennedy and

Eberhart, 1995). The estimated coefficient of relative risk aversion ρ̂ is 4.27, which is similar to

values used or estimated in the macroeconomics literature.

B.3 The calibrated economy

We want our model to fit key features of the data that relate to 1) the structure of the production

network, 2) how the network responds to changes in beliefs, and 3) how this response affects

macroeconomic aggregates. As we have seen earlier, the Domar weights, and how they react to

changes in µt and Σt, play a central role for these mechanisms. In this section, we first describe

the evolution of µt and Σt in the calibrated economy. We then report unconditional moments of

the model-implied Domar weights and how they compare to the data. Finally, we look at the

relationship between the Domar weights and the beliefs µt and Σt and verify that the correlations

predicted by the mechanisms of the model are present in the data.

Evolution of beliefs in the data

Our estimation procedure provides a time-series for µt and Σt. To illustrate the overall evolution

of beliefs over our sample period, we compute two measures that capture the aggregate impact of

changes in µt and Σt. The first measure is the Domar-weighted average growth in the conditional

mean of productivity, defined as

∆µ̄t =
n∑
j=1

ωjt∆µjt. (70)

We use the Domar weights ωjt in this equation to properly reflect the importance of a sector for

GDP, as implied by (13). The solid blue line in Figure 5 shows the evolution of ∆µ̄t over the sample

period. As expected, ∆µ̄t tends to go below zero during NBER recessions and is positive during

expansions.

To describe how aggregate uncertainty evolves in the calibrated economy, we also compute the

within-period perceived standard deviation of log GDP. From (14), this can be written as

σyt =
√

V [y] =
√
ω⊤
t Σtωt. (71)

The red dashed line in Figure 5 represents the evolution of σyt over the sample period. While

uncertainty is on average relatively low, especially during the Great Moderation era, spikes are

clearly visible in the earlier years and, in particular, during the Great Recession of 2007-2009.39

39σyt pertains only to uncertainty about the stochastic part of TFP ε. As such, it does not capture overall economic
uncertainty, which might also be affected by changes in employment, investment, monetary and fiscal policy, etc.
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Figure 5: Domar-weighted TFP and uncertainty changes

Notes: Solid blue line: Domar-weighted average growth in the conditional mean of productivity, ∆µ̄t =
∑n

j=1 ωjt∆µjt. Red

dashed line: Domar-weighted conditional variance of productivity, σyt =
√
ω⊤
t Σtωt. Shaded areas represent NBER recessions.

Unconditional Domar weights

Figure 6 shows the average Domar weight of each sector in the data (blue bars) and in the model

(black line). The sectors with the highest Domar weights in the data are “Real estate”, “Food and

beverage”, “Retail trade”, “Finance and insurance” and “Health care”. According to our theory

(Corollary 4), changes in the expected level and variance of productivity in those sectors will have

the largest effects on welfare.

The cross-sectional correlation between the average Domar weights in the model and in the

data is 0.96, so that the calibrated model fits this important feature of the production network

well. However, the average Domar weight in the model (0.032) is lower than its counterpart in the

data (0.047). This is because the estimation also targets aggregate consumption growth. Given the

observed variation in TFP, if the model were to match the Domar weights perfectly, consumption

would be too volatile compared to the data. Under our calibration, the volatility of consumption

growth in the model is 2.73%, close to its data target of 2.65% (row (6) of Table 4).40

The model can account for about 40% of the observed average standard deviation of the Domar

weights over time, as shown in row (2) of Table 4. Row (3) also reports that the coefficient of

variation of the Domar weights in the model is 0.07 compared to 0.11 in the data. Once we take

into account their relative scale, the model can thus account for a sizable portion of the variation

in a key moment that characterizes the production network.41

40Since there is no investment and that the only primary factor of production (labor) is in fixed supply, consumption
and aggregate TFP are equal in the model. It follows that we cannot match the volatility of both quantities and the
model somewhat overpredicts TFP volatility (see Table 4). Including an investment margin in the model, so that
GDP no longer equals consumption, might improve the fit of the Domar weights while keeping consumption growth
in the model as volatile as in the data.

41One reason why the Domar weights are less volatile in the model than in the data is that we assume that the
{Ai}ni=1 functions are time invariant. In reality, technological changes might affect the shape of these functions which
would translate into additional variation in the Domar weights.
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Figure 6: Sectoral Domar weights in the data and the model

Notes: The Domar weights are computed for each sector in each year and then averaged over all time periods.

Table 4: Domar weights, consumption and TFP in the model and in the data

Statistic Data Model

(1) Average Domar weight ω̄j 0.047 0.032
(2) Standard deviation σ (ωj) 0.0050 0.0021
(3) Coefficient of variation σ (ωj) /ω̄j 0.107 0.067
(4) Corr (ωjt, µjt) 0.08 0.08
(5) Corr (ωjt,Σjjt) −0.37 −0.31
(6) Consumption growth volatility 2.65% 2.73%
(7) TFP growth volatility 1.83% 2.73%

Notes: For each sector, we compute the time series of its Domar weight ωjt, as well as its standard
deviation σ(ωj) and its mean ω̄j . Rows (1) and (2) report cross-sectional averages of these statistics.
Row (3) is the ratio of rows (2) and (1). Each period, we compute cross-sectional correlations of
the Domar weights ωjt with µjt and Σjjt (mean and variance of exogenous TFP εjt). Rows (4)
and (5) report time-series averages of these correlations. Rows (6) and (7) compare consumption
growth and TFP growth volatilities across the model and the data. The TFP data comes from
Fernald (2014) and is not adjusted for capacity utilization.

Domar weights and beliefs

One of the key mechanisms of the model predicts that a decline in the expected productivity of

a sector, or an increase in its variance, should lead firms to reduce the importance of that sector

as an input provider, leading to a decline in its Domar weight. Proposition 2 makes this point

formally for a single change in µi or Σii. Of course, in the data multiple changes in µt and Σt occur

at the same time, and it would be difficult to isolate the impact of a single change on the Domar

weights. Instead, we look at simple cross-sector correlations between the Domar weights ωit and

the first (µit) and the second moments (Σiit) of sectoral TFPs, both in the data and in the model.

These correlations provide a straightforward, albeit noisy, measure of the interrelations between ωt,

µt and Σt. As can be seen in rows (4) and (5) of Table 4, the predictions of the model are borne

out in the data. The model is thus able to capture well the impact of beliefs on the structure of
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the production network.

Sectoral correlations

The model is also able to replicate features of the correlation between sectoral outputs. We

focus on growth rates to accommodate different trends in the data and in the model. For each pair

of sectors, we compute the correlation in their output growth in the model and in the data, and

plot them in Figure 7. The model reasonably captures cross-sectoral comovements: We find that

the correlation between the data- and model-implied values is 0.44. On average, sectoral outputs

are positively correlated in the model and in the data, although the model correlation is somewhat

weaker on average (see the first column of Table 5).

Figure 7: Cross-sector correlations in the model and in the data

Notes: For each pair of sectors, we compute correlations in the growth rates of sectoral output in the model and in the data.
Each dot in the graph shows the value of this correlation in the model (X-axis) and in the data (Y-axis). The solid black line
results from the ordinary least square analysis.

Table 5 also reports averages of these correlations during periods of low and high TFP growth

and uncertainty growth, as measured by (70) and (71). We see that in the data these correlations

are lower in good times, when TFP growth is high and uncertainty growth is low. The model is

able to replicate this ranking. Intuitively, in bad times consumption is low and so the household

is particularly worried about bad shocks. To avoid them, firms rely more on the most stable

producers. As firms are mostly purchasing from the same sectors, sectoral outputs become more

correlated.

B.4 Counterfactual exercises

In this appendix we provide more information about the counterfactual exercises of Section 8.2.
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Table 5: Correlations in sectoral sales growth

All years TFP growth Uncertainty growth
Low High Low High

Model 0.18 0.22 0.13 0.16 0.20
Data 0.36 0.37 0.34 0.32 0.38

Notes: For each sector pair (i, j), we compute correlations in the growth rates of sectoral
output in the model and in the data. We then take averages across all sectors. TFP
growth and Uncertainty growth are measured as in Figure 5. We use high/low to refer to
years with TFP growth or uncertainty growth above/below corresponding median levels.

Long-run moments

Table 6 provides differences in long-run moments between our baseline model and the three

alternative economies described in the main text. In the “known εt”, E [y] and W collapse to

realized GDP and V [y] = 0. In Table 6, we compute instead these moments before εt is known but

still assuming that the production network is chosen optimally for the realized draw of εt

Table 6: Uncertainty, GDP and welfare in the post-war sample

Baseline model compared to...

Fixed network as if Σt = 0 Known εt

Expected log GDP, E[y] +2.12% −0.01% +0.68%

Expected st. dev. of log GDP,
√

V[y] +0.13% −0.10% −0.22%
Expected welfare, W +2.11% +0.01% +0.71%
Realized log GDP, y +1.61% +0.07% −0.54%

Notes: Baseline variables minus their counterparts in the “fixed network”, the “as if Σt = 0”, the “known εt” alterna-
tives.

Time series under the “known εt” alternative economy

In the “known εt”, beliefs (µt,Σt), and in particular uncertainty, play no role in shaping the

network and, from the planner’s problem, the optimal network is simply the one that maximizes

(realized) consumption. It follows that consumption (or GDP) is always larger than in the baseline

model (bottom right panel in Figure 8).42 Unsurprisingly, the difference is particularly pronounced

during episodes of high uncertainty, when knowing εt provides a larger advantage, and reaches a

high of 3% during the Great Recession. On average, GDP is 0.54% larger than in the baseline

economy suggesting a sizable impact of uncertainty on the economy (bottom row in Table 6).

The top three panels in the right column of Figure 8 show how the baseline and alternative

economies differ in terms of expected log GDP, the standard deviation of log GDP, and (expected)

42Again, here we report the moments before εt is known but still assuming that the production network is chosen
optimally for the realized draw of εt.
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welfare. Crucially, these measures are evaluated before ε is realized.43 Welfare W is always lower

in the alternative economy because, by construction, W is what the network in the baseline model

maximizes. Furthermore, the optimal network in this economy does not seek to increase E [y] and

reduce V [y]. As a result, E [y] is on average lower and V [y] is on average higher (right column in

Table 6).

Figure 8: The role of uncertainty in the postwar period

Left column: the “as if Σt = 0” alternative Right column: the “known εt” alternative

(a) Difference in expected log GDP [%] (b) Difference in expected log GDP [%]

(c) Difference in expected st. dev. of log GDP [%] (d) Difference in expected st. dev. of log GDP [%]

(e) Difference in expected welfare [%] (f) Difference in expected welfare [%]

(g) Difference in realized log GDP [%] (h) Difference in realized log GDP [%]

Notes: The differences between the series implied by the baseline model (without tildes) and the two alternatives (marked by
tildes): the “as if Σt = 0” alternative (left column) and the “known εt” alternative (right column). All economies are hit by
the same shocks that are filtered out from the TFP data under our baseline model. All differences are expressed in percentage
terms. Expected log GDP E[y] and expected standard deviation of log GDP

√
V[y] are evaluated before εt is realized.

43Note that realized welfare in this economy is simply equal to realized log GDP.
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Supplemental appendix (Not for publication)

C Additional derivations and results

This appendix contains additional derivations that are used in the main text.

C.1 Derivation of the stochastic discount factor

The Lagrange multiplier on the budget constraint of the household captures the value of an

extra unit of the numeraire and serves as stochastic discount factor for firms to compare profits

across states of the world. The following lemma shows how to derive the expression in the main

text.

Lemma 10. The Lagrange multiplier on the budget constraint of the household (4) is

Λ =
u′ (Y )

P
,

where Y =
∏n
i=1

(
β−1
i Ci

)βi and P =
∏n
i=1 P

βi
i .

Proof. The household makes decisions after the realization of the state of the world ε. The state-

specific maximization problem has a concave objective function and a convex constraint set so that

first-order conditions are sufficient to characterize optimal decisions. The Lagrangian is

u

((
C1

β1

)β1
× · · · ×

(
Cn
βn

)βn)
− Λ

(
n∑
i=1

PiCi − 1

)

and the first-order condition with respect to Ci is

βiu
′ (Y )Y = ΛPiCi. (72)

Summing over i on both sides and using the binding budget constraint yields

u′ (Y )Y = Λ, (73)

which, together with (72), implies that

PiCi = βi. (74)
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We can also plug back the first-order condition in Y =
∏n
i=1

(
β−1
i Ci

)βi to find

Y =
n∏
i=1

(
β−1
i Ci

)βi = n∏
i=1

(
β−1
i

βiu
′ (Y )Y

ΛPi

)βi
Λ = u′ (Y )

n∏
i=1

P−βi
i (75)

which, combined with (73), yields

Y =

n∏
i=1

P−βi
i . (76)

This last equation implicitly defines a price index P =
∏n
i=1 P

βi
i such that PY = 1. Combining

that last equation with (73) yields the result.

C.2 Derivation of the unit cost function

The cost minimization problem of the firm is

Ki (αi, P ) = min
Li,Xi

Li + n∑
j=1

PjXij


subject to F (αi, Li, Xi) ≥ 1,

where F is given by (1). The first-order conditions are

Li = θ

1−
n∑
j=1

αij

F (αi, Li, Xi) ,

PjXij = θαijF (αi, Li, Xi) ,

where θ is the Lagrange multiplier. Plugging these expressions back into the objective function,

we see that Ki (αi, P ) = θ since F (αi, Li, Xi) = 1 at the optimum. Now, plugging the first-order

conditions in the production function we find

1 = eεiAi (αi) θ

n∏
j=1

P
−αij

j ,

which is the result.
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C.3 Derivation of the first-order condition of the firm (19)

At an interior solution, the first-order conditions associated with problem (17) are

0 = −dai (αi)
dαij

+Rj .

We can write these equations in vector form as f (αi,R) = 0, with element j given by

fj (αi,R) = −dai (αi)
dαij

+Rj .

A solution αi to the first-order conditions corresponds to f (αi,R) = 0. The Jacobian of f with

respect to αi is −Hi where Hi is the Hessian of ai. The Jacobian of f with respect to the vector R
is the identity matrix. From the implicit function theorem, we can therefore write

∂αij
∂Rk

=

[
∂αi
∂R

]
jk

= −

[[
∂f

∂αi

]−1

× ∂f

∂R

]
jk

=
[
H−1
i

]
jk
.

C.4 Derivation of ā and α (ω) under quadratic TFP shifter

In this appendix, we solve the problem (23) at an interior solution when the TFP shifter

functions (a1, . . . , an) are of the form (2). From (23), the planner seeks to maximize

∑
i

ωi

(
1

2
α⊤
i Hiαi − (α◦

i )
⊤Hαi

)
,

subject to ω⊤ = β⊤L (α) or, since I − α is always invertible for α ∈ A, α⊤ω = ω − β. We can

rewrite this problem as a standard quadratic program

min
α∈A

1

2
x⊤Qx+ c⊤x,

subject to Ex = d, where

Q︸︷︷︸
n2×n2

= −


ω1H1 0

. . .

0 ωnHn

 ,
and where the constraint

α⊤ω = ω − β,
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becomes

[Iω1, . . . , Iωn]︸ ︷︷ ︸
E︸︷︷︸

n×n2



α11

...

α1n

...

αn1
...

αnn


︸ ︷︷ ︸

x

=


ω1 − β1

...

ωn − βn


︸ ︷︷ ︸

d

,

and where c⊤ =
[
ω1 (α

◦
1)

⊤H1 . . . ωn (α
◦
n)

⊤Hn

]
. The solution to this problem is well-known

and given by [
Q E⊤

E 0

][
x

λ

]
=

[
−c
d

]
.

Proof. Using the block matrix inverse equation we can write

[
Q E⊤

E 0

]−1

=

[
Q−1 −Q−1E⊤ (EQ−1E⊤)−1

EQ−1 Q−1E⊤ (EQ−1E⊤)−1(
EQ−1E⊤)−1

EQ−1 −
(
EQ−1E⊤)−1

]
,

such that the solution to the optimization problem is

x = Q−1E⊤
(
EQ−1E⊤

)−1
d−

(
Q−1 −Q−1E⊤

(
EQ−1E⊤

)−1
EQ−1

)
c.

Simple matrix algebra implies that

EQ−1 = −
[
H−1

1 . . . H−1
n

]
,

and

EQ−1E⊤ = −
∑
i

ωiH
−1
i = −D,

where we explicitly define the square matrix D.

It follows that
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x =


H−1

1
...

H−1
n

D−1


ω1 − β1

...

ωn − βn

+


ω−1
1 H−1

1 0
. . .

0 ω−1
n H−1

n



ω1H1α

◦
1

...

ωnHnα
◦
n



−


H−1

1
...

H−1
n

D−1
[
H−1

1 . . . H−1
n

]
ω1H1α

◦
1

...

ωnHnα
◦
n

 ,
or

αi − α◦
i = H−1

i

∑
j

ωjH
−1
j

−1ω − β −
∑
j

ωjα
◦
j

 .

The value function follows immediately from the definition of ā (ω) given by (23).

C.5 Amplification and dampening

Proposition 8. Let α∗ (µ,Σ) be the equilibrium production network under (µ,Σ) and letW (α, µ,Σ)

be the welfare of the household under the network α. The change in welfare after a change in beliefs

from (µ,Σ) to (µ′,Σ′) satisfies the inequality

W
(
µ′,Σ′)−W (µ,Σ)︸ ︷︷ ︸

Change in welfare under a flexible network

≥W
(
α∗ (µ,Σ) , µ′,Σ′)−W (α∗ (µ,Σ) , µ,Σ)︸ ︷︷ ︸
Change in welfare under a fixed network

. (38)

Proof. By definition, the change in welfare under the flexible network is

W
(
µ′,Σ′)−W (µ,Σ) =W

(
α∗ (µ′,Σ′) , µ′,Σ′)−W (α∗ (µ,Σ) , µ,Σ) ,

and under the fixed network is

W
(
α∗ (µ,Σ) , µ′,Σ′)−W (α∗ (µ,Σ) , µ,Σ) .

By Proposition 1, α∗ (µ′,Σ′) maximizes welfare under (µ′,Σ′) so that

W
(
α∗ (µ′,Σ′) , µ′,Σ′) ≥W

(
α∗ (µ,Σ) , µ′,Σ′) .

Combining the two expression gives the result.

D Additional proofs

This appendix contains proofs that are not included in the main appendix.
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D.1 Proof of Corollary 1

Corollary 1. For a fixed production network α, the following holds.

1. The impact of a change in expected TFP µi on the moments of log GDP is given by

∂ E [y]

∂µi
= ωi, and

∂V [y]

∂µi
= 0.

2. The impact of a change in volatility Σij on the moments of log GDP is given by

∂ E [y]

∂Σij
= 0, and

∂V [y]

∂Σij
= ωiωj .

Proof. Equation (14) implies that ∂ E[y(α)]
∂µi

= β⊤L (α)1i. Since P
⊤C =WL = 1 by the household’s

budget constraint, we need to show that β⊤L (α)1i = PiQi to complete the proof of the first result.

From (74), we know that PiCi = βi. Using Shepard’s Lemma together with the marginal pricing

equation (10), we can find the firm’s factor demands equations

PjXij = αijPiQi,

Li =

1−
n∑
j=1

αij

PiQi. (77)

Using these results, we can write the market clearing condition (11) as

PiQi = βi +
n∑
j=1

αjiPjQj .

Solving the linear system implies

β⊤L (α)1i = PiQi, (78)

which proves the first part of the proposition. For the second part of the result, differentiating (14)

with respect to Σij and holding Σ symmetric yields

∂V [y (α)]

∂Σij
=

1

2
β⊤L (α)

[
1i1

⊤
j + 1j1

⊤
i

]
[L (α)]⊤ β,

which is the result.

D.2 Proof of Corollary 3

Corollary 3. If ω ∈ intO, then the following holds.
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1. An increase in the expected value µi or a decline in the variance Σii leads to an increase in

ωj if i and j are global complements, and to a decline in ωj if i and j are global substitutes.

2. An increase in the covariance Σij, i ̸= j, leads to a decline in ωk if k is global complement

with i and j, and to an increase in ωk if k is global substitute with i and j.

Proof. Combining (31) and (28), we can write
dωj

dµi
= −1⊤j H−11i = −H−1

ji = −H−1
ij since H is

symmetric and inversion preserves symmetry. This proves point 1. For point 2, combining (31) and

(29) yields
dωj

dΣii
= (ρ− 1)ωi1

⊤
j H−11i = (ρ− 1)ωiH−1

ij , which is the result. For point 3, combining

(31) and (29) yields

dωk
dΣij

=
1

2
(ρ− 1)1⊤kH−1 (ωj1i + ωi1j) =

1

2
(ρ− 1)

(
ωjH−1

ik + ωiH−1
jk

)
,

which is the result.

D.3 Proof of Lemma 5

Lemma 5. An increase in the covariance Σij induces stronger global substitution between i and j,

in the sense that
∂H−1

ij

∂Σij
> 0.

Proof. Note that
∂H−1

ij

∂Σkl
=

1

2
(ρ− 1)1⊤i H−1

(
1k1

⊤
l + 1l1

⊤
k

)
H−11j ,

where, if k ̸= l, we differentiate with respect to Σkl and Σlk to preserve the symmetry of Σ and

divide by two. In the special case with i = k and j = l,

∂H−1
kl

∂Σkl
=
1

2
(ρ− 1)1⊤kH−1

(
1k1

⊤
l + 1l1

⊤
k

)
H−11l

=
1

2
(ρ− 1)

{
1⊤kH−11k1

⊤
l H−11l + 1⊤kH−11l1

⊤
kH−11l

}
=
1

2
(ρ− 1)

{
H−1
kkH

−1
ll +

[
H−1
kl

]2}
> 0.

The strict inequality holds because H−1 is a negative definite matrix.

D.4 Proof of Lemma 6

Lemma 6. Suppose that all input shares are (weak) local complements in the production of all

goods, that is
[
H−1
i

]
kl

≤ 0 for all i and all k ̸= l. If α ∈ intA, there exists a scalar Σ̄ > 0 such

that if ∥Σ∥ ≤ Σ̄, all sectors are global complements, that is H−1
ij < 0 for all i ̸= j.

Proof. Consider the problem (23). In the internal equilibrium, α ∈ intA, the first-order condition

with respect to αij for this problem is
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ωi
∂ai
∂αij

− ζjωi = 0 ⇔ ζj =
∂ai
∂αij

, (79)

where ζ is the vector of Lagrange multipliers associated with the constraint α⊤ω − ω + β = 0.

Applying the envelope theorem to (23), we obtain

∇ā = a (α) + (I − α) ζ.

Differentiation of this expression yields

(
∇2ā

)
ij
=

d2ā

dωidωj
=

n∑
k=1

∂ai (αi)

∂αik

dαik
dωj

+ (1i − αi)
⊤ dζ

dωj
− ζ⊤

dαi
dωj

=
n∑
k=1

(
∂ai (αi)

∂αik
− ζk

)
dαik
dωj

+ (1i − αi)
⊤ dζ

dωj

(79)
= (1i − αi)

⊤Hs
dαs
dωj

. (80)

Note that from (79), dζ
dωj

= Hs
dαs
dωj

for any sector s. This implies, in particular, that dαk
dωj

=

H−1
k Hs

dαs
dωj

for any sector pair k, s.

Recall that ω⊤ = β⊤L (α) ⇔ α⊤ω − ω + β = 0. Differentiating this expression with respect to

ωj , we get

n∑
k=1

ωk
dαk
dωj

+ α⊤1j − 1j = 0 ⇔
n∑
k=1

ωk

(
H−1
k Hs

dαs
dωj

)
+ α⊤1j − 1j = 0 ⇔

Hs
dαs
dωj

=

(
n∑
k=1

ωkH
−1
k

)−1 (
I − α⊤

)
1j . (81)

Combining this with (80), we get

(
∇2ā

)−1
=

L−1

(
n∑
k=1

ωkH
−1
k

)−1 (
L⊤
)−1

−1

= L⊤

(
n∑
k=1

ωkH
−1
k

)
L, (82)

where L−1 = I − α. Note that all elements of
(
∇2ā

)−1
are negative,

(
∇2ā

)−1
< 0, if

[
H−1
i

]
kl

≤ 0

for all i and all k ̸= l. Indeed, in that case H−1
i ≤ 0 and H−1

i has a strictly negative diagonal since

Hi is negative definite. Furthermore, ωi > 0 for all i, and all elements of L = I + α+ α2 + . . . are

positive since α ∈ intA.

Next, consider H−1 =
(
∇2ā− (ρ− 1)Σ

)−1
. For Σ = 0 we have that H−1 =

(
∇2ā

)−1
< 0.

Since the function
(
∇2ā− (ρ− 1)Σ

)−1
is continuous in Σ, it follows that there exists a threshold

Σ̄ > 0 such that
(
∇2ā− (ρ− 1)Σ

)−1
< 0 for ∥Σ∥ ≤ Σ̄, which is the result.
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D.5 Proof of Lemma 7

Lemma 7. Suppose that all the TFP shifter functions (a1, . . . , an) take the form 2, with α◦
i = α◦

j

for all i, j, and that H−1
i is of the form (33) for all i. If α ∈ intA, there exists a scalar Σ̄ > 0 and

a threshold 0 < s̄ < 1 such that if ∥Σ∥ ≤ Σ̄ and s > s̄, then all sectors are global substitutes, that

is H−1
ij > 0 for all i ̸= j.

Proof. Imposing α◦
i = l◦ and Hi = H for all i, we can rewrite (24) as

αi (ω) = l◦ +

 n∑
j=1

ωj

−1ω − β − l◦
n∑
j=1

ωj

 =

 n∑
j=1

ωj

−1

(ω − β) .

Clearly, αi (ω) = l (ω) > 0 ∀i. Using the Sherman-Morrison formula, we obtain

L = (I − α)−1 =
(
I − 1l⊤

)−1
= I +

1l⊤

1− l⊤1
= I +

1

1−
∑

j lj


l1 l2 . . . ln

l1 l2
...

...
. . . ln

l1 . . . ln−1 ln

 . (83)

Plugging H−1
i from (33) into (82), we get

(
∇2ā

)−1

im
= 1⊤i L⊤

(
n∑
k=1

ωkH
−1
k

)
L1m =

(
n∑
k=1

ωk

)
n∑
k=1

Lki

−Lkm +
s

n− 1

∑
j ̸=k

Ljm

 . (84)

Notice that
(
∇2ā

)−1

im
is a continuous and strictly increasing function of s (the latter is true

because for α ∈ intA, all elements of L are positive). Furthermore,
(
∇2ā

)−1

im
< 0 if s = 0. Using L

given by (83), we get for i ̸= m
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(
∇2ā

)−1

im
=

(
n∑
k=1

ωk

)Lmi
−Lmm +

s

n− 1

∑
j ̸=m

Ljm


+ Lii

−Lim +
s

n− 1

∑
j ̸=i

Ljm

+
∑
k ̸=m,i

Lki

−Lkm +
s

n− 1

∑
j ̸=k

Ljm


=

(
n∑
k=1

ωk

)[
li

1−
∑

j lj

(
−1− (1− s) lm

1−
∑

j lj

)

+

(
1 +

li
1−

∑
j lj

)(
s

n− 1
− (1− s) lm

1−
∑

j lj

)
+
li (n− 2)

1−
∑

j lj

(
s

n− 1
− (1− s) lm

1−
∑

j lj

)]
s→1→

(
n∑
k=1

ωk

)
1

n− 1
> 0. (85)

It follows that we have global (strict) substitution for Σ = 0 and s → 1, and global (strict)

complementarity for Σ = 0 and s = 0. Furthermore,
(
∇2ā+ JE

)−1
is continuous in s and Σ.

Therefore, there exist thresholds 0 < s ≤ s̄ < 1 and a threshold Σ̄ > 0 such that if ∥Σ∥ ≤ Σ̄ and

s > s̄ then
[(
∇2ā+ JE

)−1
]
im
> 0 for i ̸= m, and if ∥Σ∥ ≤ Σ̄ and s < s then

[(
∇2ā+ JE

)−1
]
im
< 0

for i ̸= m.

D.6 Proof of Proposition 4

Proposition 4. If α ∈ intA, there exists a scalar Σ̄ > 0 such that if ∥Σ∥ ≤ Σ̄ the following holds.

1. (Complementarity) Suppose that input shares are local complements in the production of good

i, that is
[
H−1
i

]
kl
< 0 for all k ̸= l. Then a beneficial change to k (∂Ek/∂γ > 0) increases

αij for all j.

2. (Substitution) Suppose that the conditions of Lemma 7 about the TFP shifters (a1, . . . , an)

hold. Then there exists a threshold 0 < s̄ < 1 such that if s > s̄, a beneficial change to k

(∂Ek/∂γ > 0) decreases αij for all i and all j ̸= k, and increases αik for all i.

Proof. From (81) we can write

(
dαij
dω

)⊤
= 1⊤j H

−1
i

(
n∑
l=1

ωlH
−1
l

)−1 (
I − α⊤

)
.
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It follows that

dαij
dγ

=

(
dαij
dω

)⊤ dω

dγ
= 1⊤j H

−1
i

(
n∑
l=1

ωlH
−1
l

)−1 (
I − α⊤

)
︸ ︷︷ ︸

dαij

dω⊤

(
−H−1∂E

∂γ

)
︸ ︷︷ ︸

dω
dγ

. (86)

If Σ = 0, then using (32) and (82) we find

dαij
dγ

= −1⊤j H
−1
i (I − α)−1 ∂E

∂γ
. (87)

Recall that (I − α)−1 = I+α+α2+· · · > 0 if α ∈ intA. It follows that under local complementarity

(H−1
i < 0), a beneficial change to Ek increases αij for all i, j. Through the same argument as in

the proof of Lemma 6, this holds for small ∥Σ∥.
Suppose now that the TFP shifter functions (a1, . . . , an) take the form 2 with α◦

i = l◦, and

Hi = H is given by (33). Then (I − α)−1 is given by (83). Plugging those in (87), we obtain

dαij
dγ

= −
∑
k ̸=j

(
s

n− 1
− (1− s) lk

1−
∑

m lm

)
∂Ek
∂γ

−
(
−1− (1− s) lj

1−
∑

m lm

)
∂Ej
∂γ

s→1→ − 1

n− 1

∑
k ̸=j

∂Ek
∂γ

+
∂Ej
∂γ

.

The expression above is strictly negative if a beneficial shock hits sector k ̸= j (∂Ek/∂γ > 0,

∂Ej/∂γ = 0), and is strictly positive if a beneficial shock hits sector j (∂Ej/∂γ > 0, ∂Ek/∂γ = 0).

Since the inequalities are strict, the same argument as in the proof of Lemma 7 applies and the

results hold for s > s̄ > 0 and for small ∥Σ∥.

D.7 Proof of Corollary 5

Proposition 5. Let γ denote either the mean µi or an element of the covariance matrix Σij. The

equilibrium response to a change in beliefs γ must satisfy

dE [y]

dγ
− ∂ E [y]

∂γ︸ ︷︷ ︸
Excess response of E[y]

=
1

2
(ρ− 1)

(
dV [y]

dγ
− ∂V [y]

∂γ

)
︸ ︷︷ ︸
Excess response of V[y]

. (41)

Proof. Suppose that the network is flexible. Then differentiating welfare with respect to γ implies

dW
dγ

=
dE [y]

dγ
− 1

2
(ρ− 1)

dV [y]

dγ
.

Applying the envelope theorem to (21) implies

dW
dγ

=
∂ E [y]

∂γ
− 1

2
(ρ− 1)

∂V [y]

∂γ
,
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where partial derivatives, as usual, indicate that the network α is held fixed. Combining these two

equations yields the result.

D.8 Proof of Corollary 7

Corollary 7. Suppose that ω ∈ intO. There exists a threshold Σ̄ < 0 such that if Σkl > Σ̄ for all

k, l, then the following holds.

1. If all sectors are global complements with sector i, that is H−1
ik < 0 for k ̸= i, then

dE [y]

dµi
> ωi, and

dV [y]

dµi
> 0.

2. If all sectors are global complements with sectors i and j, that is H−1
ik < 0 and H−1

jk < 0 for

k ̸= i, j, then
dE [y]

dΣij
< 0, and

dV [y]

dΣij
< ωiωj .

Proof. From part 1 of Proposition 7 and using (28),

dE [y]

dµi
= ωi − (ρ− 1)

∑
jk

ωjΣjkH−1
ik , and

dV [y]

dµi
= −2

∑
jk

ωjΣjkH−1
ik .

Since H−1 is negative definite, H−1
ii < 0. Therefore, if H−1

ik < 0 for k ̸= i, then there exists a

threshold Σ̄ < 0 such that if Σjk > Σ̄ for all j, k, then
∑

j,k ωjΣjkH
−1
ik < 0 (recall that Σjj > 0 for

all j). Therefore, dE[y]dµi
> ωi and

dV[y]
dµi

> 0.

Using part 2 of Proposition 7 and (29), we can follow analogous steps to show that dE[y]
dΣii

< 0

and dV[y]
dΣii

< ω2
i under the same conditions. Finally, from part 2 of Proposition 7 we have

dE [y]

dΣij
=

1

2
(ρ− 1)2

∑
lk

(
ωlωjΣlkH−1

ik + ωlωiΣlkH−1
jk

)
,

and
dV [y]

dΣij
= ωiωj + (ρ− 1)

∑
lk

(
ωlωjΣlkH−1

ik + ωlωiΣlkH−1
jk

)
.

Since H−1 is negative definite, H−1
ii ,H

−1
jj < 0. Therefore, if H−1

ik < 0 and H−1
jk < 0 for

k ̸= i and k ̸= j, then then there exists a threshold Σ̄ < 0 such that if Σjk > Σ̄ ∀j, then∑
lk

(
ωlωjΣlkH−1

ik + ωlωiΣlkH−1
jk

)
< 0 (recall that Σjj > 0 for all j). Therefore, dE[y]

dΣij
< 0 and

dV[y]
dΣij

< ωiωj .

D.9 Proof of Corollary 8

Corollary 8. Suppose that ω ∈ intO. Then there exist thresholds Σ > 0 and Σ̄ > 0 such that,
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1. If all sectors are global substitutes with sector i, that is H−1
ik > 0 for k ̸= i, and sector i is

not too risky while other sectors are sufficiently risky in the sense that Σji < Σ for all j and

Σjk > Σ̄ for all j, k ̸= i, then

dE [y]

dµi
< ωi, and

dV [y]

dµi
< 0.

2. If all sectors are global substitutes with sectors i and j, that is H−1
ik > 0 and H−1

jk > 0 for

k ̸= i, j, and sectors i and j are not too risky while other sectors are sufficiently risky in the

sense that Σli < Σ and Σlj < Σ for all l, and Σlk > Σ̄ for all l, k ̸= i and l, k ̸= j, then

dE [y]

dΣij
> 0, and

dV [y]

dΣij
> ωiωj .

Proof. From part 1 of Proposition 7 and using (28),

dE [y]

dµi
= ωi − (ρ− 1)

∑
jk

ωjΣjkH−1
ik , and

dV [y]

dµi
= −2

∑
jk

ωjΣjkH−1
ik .

Since H−1 is negative definite, H−1
ii < 0. Therefore, if H−1

ik > 0 for k ̸= i, then there exist

thresholds Σ > 0 and Σ̄ > 0 such that if Σjk > Σ̄ for all j, k ̸= i, and Σji < Σ for all j, then∑
j,k ωjΣjkH

−1
ik > 0. Therefore, dE[y]dµi

< ωi and
dV[y]
dµi

< 0.

Using part 2 of Proposition 7 and (29), we can follow analogous steps to show that dE[y]
dΣii

> 0

and dV[y]
dΣii

> ω2
i under the same conditions.

Finally, from part 3 of Proposition 7 we have

dE [y]

dΣij
=

1

2
(ρ− 1)2

∑
lk

(
ωlωjΣlkH−1

ik + ωlωiΣlkH−1
jk

)
,

and
dV [y]

dΣij
= ωiωj + (ρ− 1)

∑
lk

(
ωlωjΣlkH−1

ik + ωlωiΣlkH−1
jk

)
.

Since H−1 is negative definite, H−1
ii ,H

−1
jj < 0. Therefore, if H−1

ik > 0 and H−1
jk > 0 for k ̸= i, j,

then there exist thresholds Σ > 0 and Σ̄ > 0 such that if Σlk > Σ̄ for all l, k ̸= i and l, k ̸= j,

and Σli,Σlj < Σ for all l, then
∑

lk

(
ωlωjΣlkH−1

ik + ωlωiΣlkH−1
jk

)
> 0. Therefore, dE[y]

dΣij
> 0 and

dV[y]
dΣij

> ωiωj .

E Microfoundation for the “one technique” restriction

In the main text, we made the ad hoc assumption that each sector can only adopt one production

technique. Without this restriction, a large number of production techniques might be adopted and,
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after the shock ε is realized, only the technique that is best suited to this specific realization of ε

would produce. In practice, we believe that several frictions might prevent this type of behavior.

For instance, information frictions might make it impossible to redirect demand to the plant with

the best technique after the shock is realized. Alternatively, engineers might be needed to explore

how to set up a production technique, and there might be economies of scales pushing firms to

adopt the same technique to save on engineering costs.

In this appendix, we propose one possible microfoundation for the “one technique” restriction.

This microfoundation relies on decentralized trade for goods and on an information friction that

prevents buyers from targeting specific producers. To describe this microfoundation, we first go

over the economic agents in this environment. As in the main text, we still assume that there are n

sectors/goods, but we are now explicit about the firms that operate within a sector. Specifically, in

each sector i ∈ {1, . . . , n} there is a continuum of firms indexed by l ∈ [0, 1]. Each firm l operates

a plant that can produce using a single production technique αli ∈ Ai. We assume that physical

restrictions, such as available factory space, prevent a plant for adopting multiple techniques.

Different firms/plants in the same sector are however free to adopt different techniques.

Transactions between buyers (the household and intermediate firms) and sellers are conducted

through shoppers. These shoppers are sent out by the buyers to meet sellers and negotiate terms

of trade. Each shopper is atomistic, can purchase a measure one of goods and is matched with a

seller at random. It follows that if in the market for good i there is a total demand of Qi, each

producer l is matched with a mass Qidl of shoppers. Importantly, we assume that shoppers do not

observe anything about the producers before they meet, and so cannot direct their search in any

way.

If a shopper from firm m in sector j (or from the household) meets producer l in sector i, they

agree to trade at a price P̃ jmil through a protocol described below.44 From these prices we can

compute the effective price paid by a firm in j (or by the household) for goods i. Since m sends a

continuum of shoppers to all producers in sector i, the effective price it pays is equal to the average

price

P̃ jmi =

∫ 1

0
P̃ jmil dl.

Individual prices P̃ jmil are set by splitting the joint surplus of the match through Nash bargaining.

Specifically, if we denote the marginal benefit to the buyer of acquiring good i as Bjm
i , then the

transaction price is such that the surplus of the seller is equal to a fraction 0 ≤ ς ≤ 1 of the total

surplus. That is to say,

P̃ jmil −Ki

(
αli,
{
P̃ ilk

}
k∈{1,...,n}

)
= ς

(
Bjm
i −Ki

(
αli,
{
P̃ ilk

}
k∈{1,...,n}

))
, (88)

44For notational convenience, let j = 0 denote the household and assume that there is a unit mass of “sub-
households” indexed by m ∈ [0, 1].
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where Ki

(
αli,
{
P̃ ilk

}
k∈{1,...,n}

)
is the unit cost of producer l in sector i under a chosen technique

αli.

From this last equation, we can write the technique choice problem of firm l. Since techniques

are chosen before uncertainty is realized, we must average (88) across all states of the world,

taking into account the stochastic discount factor of the household and the varying demand (mass

of shoppers) for the good. It follows that firm l in sector i picks a production technique αli to

maximize

E

Λ n∑
j=0

Qjidl

∫ 1

0
ς

(
Bjm
i −Ki

(
αli,
{
P̃ ilk

}
k∈{1,...,n}

))
dm

 ,
where Qjidl denotes the demand from sector j for goods produced by firm l in sector i. Since αli

only affects this expression through Ki, this maximization problem is equivalent to minimizing

E

[
ΛQiKi

(
αli,
{
P̃ ilk

}
k∈{1,...,n}

)]
, (89)

where Qi =
∑n

j=0Qji is total demand for sector i. Notice that this technique choice problem would

be the same as the one described by (9) in the main text if the vector of input prices did not depend

on the specific buying firm l and if all prices were equal to unit costs. To get that outcome, we now

take the limit ς → 0, so that the bargaining power of the sellers goes to zero. In that case, (88)

implies that

P̃ jmil = Ki

(
αli,
{
P̃ ilk

}
k∈{1,...,n}

)
,

and so P̃ jmil does not depend on the identity of the buyer, i.e. on j or m. It follows that effective

demand P̃ ilk =
∫ 1
0 P̃

il
ksds does not depend on i and l, and we therefore can write P̃ ilk = Pk. Finally,

this implies that the cost minimization problem (89) does not depend on the specific identity l of

the firm. Given that the TFP shifter function is log concave, all firms in sector i therefore make

the same technique choice αi, have the same unit cost Ki (αi, P ) where P = (P1, . . . , Pn), and that

all prices are equal to unit cost, as in the model in the main text.

F Extension of Proposition 3 to binding constraints

We can straightforwardly extend Proposition 3 to handle the case in which some of the con-

straints ωi ≥ 0 bind with strictly positive Lagrange multipliers.45 Note that these Domar weights

ωi will not respond to a marginal change in beliefs. We still assume, however, that the constraint

1 ≥ ω⊤ (1− ᾱ) is slack.

Formally, define a set of indices I = {i : ωi ≥ βi binds}. For j /∈ I, ωj > βj and for j ∈ I,
45Thus, we rule out cases in which ωi = βi but the Lagrange multiplier corresponding to the ωi ≥ βi is also zero.

At such points, the derivative of ωi with respect to a change in beliefs might be not defined.
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ωj = βj . Define an n̂× 1 vector ωnb that contains elements ωi such that i /∈ I, and an (n− n̂)× 1

vector ωb that contains elements ωi such that i ∈ I, where 0 ≤ n̂ ≤ n. Then ωnb is implicitly given

by the first-order conditions of (26), i.e.

Enb + dā (ω)

dωnb
= 0,

where Enb is an n̂×1 vector obtained by deleting elements k ∈ I from E , and dā(ω)
dωnb is an n̂×1 vector

obtained by differentiating (23) with respect to ωnb. Applying the implicit function theorem, we

can write

dωnb

dγ
= −

(
Hnb

)−1
× ∂Enb

∂γ
. (90)

In the expression above,

Hnb =
dā (ω)

dωnbd (ωnb)
⊤ − (ρ− 1)Σnb,

where dā(ω)

dωnbd(ωnb)
⊤ is an n̂ × n̂ Hessian matrix obtained by differentiating (23) twice with respect

to ωnb, and ∂Enb

∂ωnb = − (ρ− 1)Σnb, where Σnb is an n̂× n̂ matrix obtained by deleting columns and

rows k ∈ I from Σ. Finally, compute ∂Enb

∂γ for γ = µi and Σij :

∂Enb

∂µi
= 1nbi ,

∂Enb

∂Σij
= −1

2
(ρ− 1)

(
ωj1

nb
i + ωi1

nb
j

)
,

where 1nbi is an n̂ × 1 vector obtained by deleting elements k ∈ I from 1i. In particular, if i ∈ I
then all elements of 1nbi are zeros. Consequently, if i ∈ I then a change in µi or Σii has no impact

on ωnb.

G More details about the regressions of Section 9

In this section, we provide more details about the regressions presented in Tables 1 and 2.

The firm-level production network data comes from the Factset Revere database and covers the

period from 2003 to 2016. We limit the sample to relationships that have lasted at least five years.

The IV estimates remain significant when relationships of other lengths are considered. The firm-

level uncertainty data comes from Alfaro et al. (2019) and was downloaded from Nicholas Bloom’s

website at https://nbloom.people.stanford.edu. We thank the authors for sharing their data.

Alfaro et al. (2019) describes how the data is constructed in detail, and we only include here a

summary of how the instruments are computed. The instruments are created by first computing
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the industry-level sensitivity to each aggregate shock c, where c is either the price of oil, one of seven

exchange rates, the yield on 10-year U.S. Treasury Notes and the economic policy uncertainty index

of Baker et al. (2016). As Alfaro et al. (2019) explain, “for firm i in industry j, sensitivitycj = βcj is

estimated as follows

rriskadji,t = αj +
∑
c

βcj · rct + ϵi,t,

where rriskadji,t is the daily risk-adjusted return of firm i, rct is the change in the price of commodity

c, and αj is industry j’s intercept. [...] Estimating the main coefficients of interest, βcj , at the

SIC 3-digit level (instead of at the firm-level) reduces the role of idiosyncratic noise in firm-level

returns, increasing the precision of the estimates. [...] We allow these industry-level sensitivities to

be time-varying by estimating them using 10-year rolling windows of daily data.” The instruments

zci,t−1 are then computed as follows:

zci,t−1 =
∣∣βcj,t−1

∣∣ ·∆σct−1,

where ∆σct−1 denotes the volatility of the aggregate variable c. As a result, instruments vary on the

3-digit SIC industry-by-year level. As in Alfaro et al. (2019), we also include in the IV regressions

the first moments associated with each aggregate series c (“1st moment 10IVi,t−1” in Tables 1

and 2) to isolate the impact of changes in their second moment alone. Note that we control

for year×customer×supplier industry (2-digit SIC) fixed effects in Tables 1 and 2. Therefore,

instruments and control variables used in columns (2) and (3) exhibit nontrivial variation within

fixed-effects bins. At the same time, such rich fixed effects allow us to compare how a given customer

firm in a given year reacts to different volatility shocks hitting its suppliers within the same 2-digit

SIC industry.

H Alternative specifications for the distribution of ε

The parametrization of the shock process ε that we use in the model is common in the uncer-

tainty literature (see for instance, Bloom et al., 2018), but has the implication that a change in

the covariance matrix Σ has a direct impact on expected GDP E [Y ], and so can affect decisions

even when the household is risk neutral (ρ = 0). This happens because the mean of a log-normal

variable like GDP is an increasing function of the variance of the underlying normal distribution.

A common approach used by many papers is to undo this effect by removing half of the variance

from the mean of the normal distribution. Such a change is, however, problematic in our setup.

In this appendix, we first describe that in our setting there is no parametrization of ε such that

1) ε is normally distributed, 2) Σ does not affect decisions when ρ = 0, and 3) the distribution of

ε does not depend on endogenous objects. We then consider a version of the model in which the
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distribution of ε is such that changes in Σ do not affect any decision when ρ = 0. This specification

is however conceptually problematic as the distribution of ε depends on endogenous equilibrium

objects. Finally, we consider a specification in which we adjust the mean of ε so that changes in Σ

have no effect on E [eε]. In that case, the expectation of firm-level TFP shocks is unaffected by Σ;

however, the expectation of macroeconomic aggregates, e.g. E [Y ], still depend on Σ.

H.1 How to parametrize ε so that a risk-neutral household does not respond

to uncertainty

In this subsection we describe how ε must be parametrized so that a risk-neutral household

(ρ = 0) does not change its behavior in response to changes in uncertainty Σ. For that purpose, it

is useful to go back to central equations of the model that hold whenever ε is normally distributed.

Hulten’s theorem implies that for any given network α, log GDP is given by y = ω (α)⊤ (ε+ a (α)),

where ω (α) is the vector of Domar weights. Together with CRRA preferences, this implies that

the social planner’s problem can be written as

W ≡ max
α∈A

E [y (α)]− 1

2
(ρ− 1)V [y (α)]

= max
α∈A

ω (α)⊤ (E [ε] + a (α))− 1

2
(ρ− 1)ω (α)⊤V [ε]ω (α) .

In the benchmark model we have ε ∼ N (µ,Σ) and clearly Σ matters for the planner’s decisions

when ρ = 0. Suppose instead that ε ∼ N
(
µ− 1

2B,Σ
)
where B is some quantity that can depend

on Σ and that would make α∗ invariant to Σ when ρ = 0. Plugging in the planner’s problem, we

find

W = max
α∈A

ω (α)⊤
(
µ− 1

2
B + a (α)

)
− 1

2
(ρ− 1)ω (α)⊤Σω (α)

= max
α∈A

ω (α)⊤ (µ+ a (α))− 1

2
ρω (α)⊤Σω (α) +

1

2
ω (α)⊤ (Σω (α)−B) .

For Σ to have no influence when ρ = 0 we therefore need the last term to be zero, which requires

B = Σω (α). In other words, this requires that the distribution of firm-level TFP shocks itself

depends on endogenous equilibrium objects, namely the Domar weights ω (α). This is problematic

for at least two important reasons. First, we cannot think of a good reason why the distribution

of productivity shocks that affect one industry would depend on the production technique chosen

by another industry. Why that dependence would operate through Domar weights is also unclear.

Second, the parametrization ε ∼ N
(
µ− 1

2Σω (α) ,Σ
)
potentially introduces an externality in the

economy: when deciding on its input shares αi, firm i is modifying the TFP process of all other

firms in the economy. This would create a gap between the efficient and the equilibrium allocations.
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H.2 A model in which risk considerations are absent when ρ = 0

Here, we propose a distribution for ε such that 1) changes in Σ do not affect decisions when

the household is risk neutral (ρ = 0), and 2) the equilibrium coincides with the solution to the

planner’s problem. Note that simply setting B = Σω (α) does not accomplish this because of the

externalities mentioned above.

Specifically, we assume that

ε ∼ N (µ− g (α, α∗,Σ) ,Σ) , (91)

where

g (α, α∗,Σ) =
1

2
ΣL (α∗)⊤ β +

1

2
(α− α∗)⊤ L (α∗) ΣL (α∗)⊤ β. (92)

The term α∗ in this expression is the equilibrium network, so that in equilibrium we have

g (α∗, α∗,Σ) = 1
2ΣL (α∗)T β. When making decisions, the representative firm in sector i chooses

αi = (αi1, . . . , αin) but takes α
∗ as given.

A few comments are in order. First, this specification implies that the distribution of shocks

depends on endogenous equilibrium objects. This is clearly conceptually problematic, but it is,

as we have discussed above, required for the result. We are not arguing that this specification

is desirable or plausible. Our goal here is to explore the conditions under which decisions are

unaffected by Σ under risk neutrality. Second, instead of assuming that g shifts the mean of ε, we

could equivalently include it in the TFP shifter A. In that case, A would depend on equilibrium

objects, unlike in the baseline specification. Third, the specification (91)–(92) differs from the

one discussed above, ε ∼ N
(
µ− 1

2Σω (α) ,Σ
)
, which made the planner’s problem unaffected by Σ

under ρ = 0. Notice that both specification coincide in equilibrium but extra terms are required in

(91)–(92) to ensure that the decentralized equilibrium allocation is efficient.

Once production techniques have been chosen and a specific realization of ε has been drawn,

the distribution of ε has no impact on the economy. Therefore, Lemmas 1 and 2 also hold under

this alternative specification (with E [p (α∗)] = −L (α∗) (µ− g (α∗, α∗,Σ) + a (α∗)) in Lemma 2).

Furthermore, as derived in Section H.1, the planner’s objective is given by

W ≡ max
α∈A

β⊤L (α) (µ+ a (α))︸ ︷︷ ︸
log E[Y (α)]

−1

2
ρ β⊤L (α) ΣL (α)⊤ β︸ ︷︷ ︸

V[y(α)]

.

Following the same steps as in the main text, we can establish that there exists a unique solution

to the planner’s problem. One can also establish that there exists a unique equilibrium and it is

efficient. The proof is analogous to that of Proposition 1. The key step in that proof is to show

that the first-order conditions of the planner’s problem and of the firm’s problem coincide. This is
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indeed the case. For the planner’s problem, we have

∂ai
∂αi

+ L (α) (µ+ a (α))− ρL (α) ΣL (α)⊤ β + χpi − γpi = 0. (93)

Consider now the firm’s problem. Combining (46) with (12), (44) and (45), we find that the

problem of the representative firm in sector i can be written as

α∗
i = arg min

αi∈Ai

1

2
(αi − α∗

i )
⊤ L (α∗) ΣL (α∗)⊤ β − a (αi)− α⊤

i L (α∗)

(
µ− 1

2
ΣL (α∗)⊤ β + a (α∗)

)
+

1

2

(
(αi − 1i − (1− ρ)β)⊤ L (α∗) + 1⊤i

)
Σ
(
(αi − 1i − (1− ρ)β)⊤ L (α∗) + 1⊤i

)⊤
.

Differentiating with respect to αij we can write the first-order conditions as

0 = 1⊤j L (α∗) ΣL (α∗)⊤ β − ∂a (αi)

∂αij
− 1⊤j L (α∗) (µ+ a (α∗))

+
(
1⊤j L (α∗)

)
Σ
(
(αi − 1i − (1− ρ)β)⊤ L (α∗) + 1⊤i

)⊤
− χeij + γei ,

In equilibrium α = α∗ and so the above expression simplifies to

∂a (α∗
i )

∂αij
+ 1⊤j L (α∗) (µ+ a (α∗))− ρβ⊤L (α∗) ΣL (α∗)⊤ 1j + χeij − γei = 0,

which is equivalent to (93). Finally, the results in Sections 6 and 7 remain unchanged, with the

only exception that (ρ− 1) should replaced by ρ.

H.3 Making the expectation of firm-level TFP shocks independent of Σ

One specification for ε which is used in the literature is ε ∼ N
(
µ− 1

2diag (Σ) ,Σ
)
. This ad-

justment implies that the expected value of firm-level TFP E [exp (εi)] = exp
(
µi − 1

2Σii +
1
2Σii

)
=

exp (µi) does not depend on Σ. Changes to Σ are therefore closer to pure changes in uncertainty.

But, as follows from the discussion above, Σ still matters for decisions even when the household is

risk neutral. Almost all our analytical results are unaffected by this change in specification. The

only differences appear when we take derivatives with respect to Σ. In that case, the results need

to be adapted to capture the impact of Σ on the expected value of ε.

Changes to quantitative results

We also investigate the implications of this change in specification for our quantitative model.

To do so, we consider an alternative economy, denoted with tildes, in which

ε̃ ∼ N
(
µ̃− 1

2
diag

(
Σ̃
)
, Σ̃

)
.
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If we were to calibrate this economy, we would find that

µ̃t −
1

2
diag

(
Σ̃t

)
= µt,

Σ̃t = Σt,

where µt and Σt are the mean and covariance of εt in our baseline calibration. That is because the

calibration matches the vector of sectoral TFP perfectly. If we remove 1
2Σii from the expectation

of εi, the estimation would increase the expectation µ̃t to compensate and match the data.

We reproduce the exercise in the left column of Figure 4 in this setup. This amounts to

comparing the economy described above with an alternative in which the production network is

chosen as if Σ̃t = 0. The results are presented in Figure 9. Overall, we find that uncertainty has a

larger impact on the economy in this setting than in the baseline model of Section 8. As in Figure

4, the variance of log GDP is smaller in the baseline model. Expected log GDP is however quite

different, with E [y] larger in the baseline than in the alternative model. This is because the network

in the alternative economy is not well adapted to the TFP process. In the alternative model, firms

choose production techniques as if E [ε̃] = µ̃, when in reality E [ε̃] = µ̃ − 1
2diagΣ̃. This implies

that firms ignore the fact that risky suppliers (i.e. those with high Σii) are also less productive on

average, which results in a decline in expected log GDP relative to the baseline model (first panel

of Figure 9). Given that the alternative model performs worse than the baseline both in terms of

E [y] and V [y], the welfare losses in the alternative model are substantial (third panel).
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Figure 9: The role of uncertainty when ε ∼ N
(
µ− 1

2diag (Σ) ,Σ
)

(a) Difference in expected log GDP [%]

(b) Difference in expected standard deviation of log GDP [%]

(c) Difference in expected welfare [%]

(d) Difference in realized log GDP [%]

Notes: The differences between the series implied by the baseline model with ε ∼ N
(
µ− 1

2
diag (Σ) ,Σ

)
(without tildes) and

the “as if Σ̃t = 0” alternative (with tildes). Both economies are hit by the same shocks that are filtered out from the TFP data
under our baseline model. All differences are expressed in percentage terms.

I Approximated economy

Section I.1 considers the economy in which the cost of deviating from the ideal shares is large.

All the proofs are in Section I.2.

I.1 Large costs of deviating from the ideal input shares

In this section, we consider an economy in which the cost of deviating from the ideal input

shares α◦ is large. Let ai (αi) = κ̄ × âi (αi), where âi does not depend on κ̄ and is such that

âi (α
◦
i ) = 0. Suppose that α◦

i ∈ intAi. The parameter κ̄ > 0 captures how costly it is for the firms
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to deviate from α◦ in terms of TFP losses.46

Our goal is to characterize the economy when κ̄ > 0 is large. To do so, we use perturbation

theory to express the equilibrium production network as a second-order approximation (Judd and

Guu, 2001; Schmitt-Grohé and Uribe, 2004). More explicitly, let α (κ̄) denote the production

network under a given cost shifter κ̄, and consider the expansion

α (κ̄) = α(0) + κ̄−1α(1) + κ̄−2α(2) +O
(
κ̄−3

)
, (94)

where α(m) denotes the mth order term. Notably, for a sufficiently large κ̄, α (κ̄) ∈ intA because

α◦ ∈ intA by assumption. We will provide expressions for these terms in what follows, but first it

is convenient to rewrite some equilibrium quantities using the expansion (94).

Throughout, we will work with variables that are evaluated at the ideal input shares. We use

the superscript ◦ to denote these quantities. For instance, L◦ = (I − α◦)−1 is the Leontief inverse

evaluated at α◦, Ĥ◦
i is the Hessian of âi at α

◦
i , and so on.

The following lemma provides approximate expressions for the Leontief inverse and the TFP

shifter.

Lemma 11. The following holds:

1. The Leontief inverse L can be written as L = L◦ + κ̄−1L(1) + κ̄−2L(2) +O
(
κ−3

)
, where

L(1) = L◦α(1)L◦, (95)

L(2) = L◦α(2)L◦ + L(1)α(1)L◦. (96)

2. The TFP shifter âi can be written as âi = κ̄−2âi,(2) +O
(
κ̄−4

)
, where

âi,(2) =
1

2
α⊤
i,(1)Ĥ

◦
i αi,(1), (97)

and where α⊤
i,(1) is the ith row of α(1).

The first part of the lemma states that to a first order the Leontief inverse can be expressed as

a deviation from L◦ that is linear in α(1). Naturally, the second-order term is linear in α(2) and

quadratic in α(1). Its second part shows that as the production network moves away from α◦ the

TFP loss associated with that move depends on the curvature of the TFP shifter function captured

by Ĥ◦
i . The zero-order term in the expression of âi is zero because âi (α

◦
i ) = 0, and the first-order

term ∇âi (α◦
i ) = 0 since the ideal shares maximize âi.

47

46Throughout this section we assume that all the third derivatives of âi are zero. Relaxing this assumption is
straightforward but requires heavier notation that obscures the exposition of the mechanisms,

47The third-order term is zero by assumption that all the third derivatives of âi are zero.
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Approximated risk-adjusted prices

With these quantities in hand, we can derive an expression for the risk-adjusted price vector.

Lemma 12. The risk-adjusted price vector R can be written as R = R(0) + κ̄−1R(1) + O
(
κ−2

)
,

where

R(0) = R◦ = −L◦µ︸ ︷︷ ︸
E[p◦]

+(ρ− 1)L◦Σω◦︸ ︷︷ ︸
Cov(p◦,λ◦)

(98)

is the risk-adjusted price vector (18) evaluated at the ideal input shares α◦, and

R(1) = −L(1)µ− L◦â(2)︸ ︷︷ ︸
Change in E[p]

+(ρ− 1)L◦ΣL⊤
(1)β + (ρ− 1)L(1)Σ [L◦]⊤ β︸ ︷︷ ︸

Change in Cov(p,λ)

, (99)

where L(1) and â(2) are given by (95) and (97).

Equation (98) shows that to a first-order approximation R is simply equal to its value at the

ideal input shares α◦. The second-order term (99) describes that deviating from α◦ impacts R in

two ways. First, it changes the importance of different sectors as suppliers, as captured by L(1),

and it modifies the TFP losses associated with the choice of technique, captured by â(2). Together,

these two terms reflect the impact of α on the expected price vector E[p]. Second, the change in α

modifies the covariance between the stochastic discount factor and the price vector. The last two

terms in (99) capture that channel.

Approximated production network and Domar weights

The following proposition provides a second-order approximation for the production network α.

Proposition 9. If α ∈ intA, the equilibrium input shares in sector i are approximately given by

αi = α◦
i + κ̄−1

(
Ĥ◦
i

)−1
R(0)︸ ︷︷ ︸

αi,(1)

+κ̄−2
(
Ĥ◦
i

)−1
R(1)︸ ︷︷ ︸

αi,(2)

+O
(
κ̄−3

)
, (100)

where R(0) and R(1) are given by (98) and (99).

This expression, together with the two preceding lemmas, provides a closed-form characteriza-

tion of the equilibrium production network in terms of the primitives of the model as a second-order

approximation. To understand its structure, recall from Lemma (2) that the equilibrium can be

characterized as the fixed point of the self-map given by the right-hand side of (17). We can

iterate on this self-map to find the equilibrium network. This involves starting from an initial risk-

adjusted price vector, computing the optimal production network under these prices, computing

the new risk-adjusted prices that correspond to that network, and restarting that process again

until convergence.
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Proposition 9 mimics this structure. From Equation (19), the inverse Hessian H−1
i captures

how risk-adjusted prices affect the input shares chosen by firm i. The term α◦
i + κ̄

−1
(
Ĥ◦
i

)−1
R◦ in

(100) therefore corresponds to the firms optimal decision under R◦, which acts as the initial vector

for the iterations. The following term in (100) captures the next step in the iteration process. The

quantity R(1) corresponds to the response of R to the first round decision of the firms. Multiplying

this quantity by
(
Ĥ◦
i

)−1
then provides the reaction of the firms to this change in R.

One implication of Proposition 9 is that further iterations of the equilibrium mapping have

a decreasing impact on the production network. We see from the second term in (100) that the

reaction of the firms to the original risk-adjusted prices is of order κ̄−1, while the second iteration

term is of order κ̄−2. This suggests that when κ̄ is large the first few rounds of iteration should

provide an accurate picture of the production network.

Combining the expressions for the Leontief inverse (95) and (96) with the expressions for α(1)

and α(2) given by (100), it is straightforward to derive a formula for the Domar weights.

Corollary 9. The equilibrium vector of Domar weights is

ω = ω◦ + κ̄−1 L⊤
(1)β︸ ︷︷ ︸
ω(1)

+κ−2 L⊤
(2)β︸ ︷︷ ︸
ω(2)

+O
(
κ̄−3

)
, (101)

where ω◦ = (L◦)⊤ β, and L(1) and L(2) are given by (95) and (96).

Using (100) and (101), one can also explicitly show that the approximate formula (35) shown

at the end of Section 6.1 is accurate if κ̄ is sufficiently large.

Corollary 10. The approximation of the Domar weight vector (35) is accurate if κ̄ is large, such

that

− [H◦]−1 E◦ = κ̄−1ω(1) +O
(
κ̄−2

)
. (102)

Approximated GDP

Recall that moments of log GDP are given by (14). Using our results above, it is straightforward

to derive approximate expressions for E y and V y.

Corollary 11. In equilibrium, the mean and variance of log GDP are

E y = (ω◦)⊤ µ+ κ̄−1
(
ω⊤
(1)µ+ (ω◦)⊤ â(2)

)
+ κ̄−2

(
ω⊤
(2)µ+ ω⊤

(1)â(2)

)
+O

(
κ̄−3

)
and

V y = (ω◦) Σω◦ + 2κ̄−1 (ω◦)⊤Σω(1) + κ̄−2
(
2 (ω◦)⊤Σω(2) + ω⊤

(1)Σω(1)

)
+O

(
κ̄−3

)
.
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Response of the production network to changes in beliefs

We now provide two results that describe, as closed-form second-order approximation, the

response of the production network to changes in beliefs.

The following corollary provides a closed-form expression for dαi
dµk

as a second-order approxima-

tion.

Corollary 12. The impact of an increase in µk on the network is given by

dαi
dµk

= κ̄−1
(
Ĥ◦
i

)−1
(
∂R(0)

∂µk
+ κ̄−1∂R(1)

∂µk

)
︸ ︷︷ ︸

Response of R with fixed network

+κ̄−2
(
Ĥ◦
i

)−1
(∑

lm

dαlm,(1)

dµk
×

∂R(1)

∂αlm,(1)

)
︸ ︷︷ ︸

Impact of the network on R

+O
(
κ̄−3

)
,

(103)

where the impact of µk on R taking the network fixed is given by

∂R(0)

∂µk
+ κ̄−1∂R(1)

∂µk
= −L◦1k − κ̄−1L(1)1k, (104)

and the change in R through the response of the network is given by

dαlm,(1)

dµk
×

∂R(1)

∂αlm,(1)
= −1⊤m

(
Ĥ◦
l

)−1
L◦1k × (ρ− 1)L◦Σ

(
L◦1l1

⊤
mL◦

)⊤
β. (105)

The following corollary provides a similar result for the derivative of the network with respect

to Σop for o ̸= p. Its results also apply for the case o = p if all the terms 1
2

(
1o1

⊤
p + 1p1

⊤
o

)
are

replaced by 1o1
⊤
o , as in this case there is no need to take two derivatives to preserve the symmetry

of Σ.

Corollary 13. The impact of an increase in Σop on the network is given by

dαi
dΣop

= κ̄−1
(
Ĥ◦
i

)−1
(
∂R(0)

∂Σop
+ κ̄−1∂R(1)

∂Σop

)
︸ ︷︷ ︸

Response of R with fixed network

+κ̄−2
(
Ĥ◦
i

)−1
(∑

lm

dαlm,(1)

dΣop
×

∂R(1)

∂αop,(1)

)
︸ ︷︷ ︸

Impact of the network on R

+O
(
κ̄−3

)
,

(106)

where the impact of Σop on R taking the network fixed is given by

∂R(0)

∂Σop
+ κ̄−1∂R(1)

∂Σop
= (ρ− 1)L◦

[
1

2

(
1o1

⊤
p + 1p1

⊤
o

)]
ω◦

+ κ̄−1

[
(ρ− 1)L◦

[
1

2

(
1o1

⊤
p + 1p1

⊤
o

)]
L⊤
(1)β + (ρ− 1)L(1)

[
1

2

(
1o1

⊤
p + 1p1

⊤
o

)]
(L◦)⊤ β

]
,
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and the change in R through the response of the network is given by

dαlm,(1)

dΣop
×

∂R(1)

∂αlm,(1)
= (ρ− 1)

(
Ĥ◦
i

)−1
L◦
[
1

2

(
1o1

⊤
p + 1p1

⊤
o

)]
ω◦ × (ρ− 1)L◦Σ

(
L◦1l1

⊤
mL◦

)⊤
β.

(107)

I.2 Proofs related to the approximation

Proof of Lemma 11

Lemma 11. The following holds:

1. The Leontief inverse L can be written as L = L◦ + κ̄−1L(1) + κ̄−2L(2) +O
(
κ−3

)
, where

L(1) = L◦α(1)L◦, (95)

L(2) = L◦α(2)L◦ + L(1)α(1)L◦. (96)

2. The TFP shifter âi can be written as âi = κ̄−2âi,(2) +O
(
κ̄−4

)
, where

âi,(2) =
1

2
α⊤
i,(1)Ĥ

◦
i αi,(1), (97)

and where α⊤
i,(1) is the ith row of α(1).

Proof. The rules of differentiation for a matrix inverse imply that

dL (α)

dαkl
=
d
(
(I − α)−1

)
dαkl

= (I − α)−1 dα

dαkl
(I − α)−1 = L (α)1k1

⊤
l L (α) ,

and [
dL (α)

dαkl

]
ij

= 1⊤i L (α)1k1
⊤
l L (α)1j = [L (α)]ik [L (α)]lj .

By Taylor’s theorem, and using the notation (94) for the deviation from α◦, we find

Lij = L◦
ij +

∑
kl

L◦
ik

(
κ̄−1αkl,(1)

)
L◦
lj +

∑
kl

L◦
ik

(
κ̄−2αkl,(2)

)
L◦
lj

+
1

2

{∑
kl

(∑
sm

L◦
is

(
κ̄−1αsm,(1)

)
L◦
mk

)(
κ̄−1αkl,(1)

)
L◦
lj

+
∑
kl

L◦
ik

(
κ̄−1αkl,(1)

)(∑
sm

L◦
ls

(
κ̄−1αsm,(1)

)
L◦
mj

)}
+O

(
κ̄−3

)
,

which can be written in the matrix form as

L = L◦ + κ̄−1L◦α(1)L◦ + κ̄−2
(
L◦α(2)L◦ + L◦α(1)L◦α(1)L◦)+O

(
κ̄−3

)
.
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This completes the proof of the first part of the lemma. For the second part, we can write

âi (αi) ≈ âi (α
◦
i ) + (αi − α◦

i )
⊤


∂âi
∂αi1
...
∂âi
∂αin


αi=α◦

i

+
1

2
(αi − α◦

i )
⊤ Ĥ◦

i (αi − α◦
i ) +O

(
(αi − α◦

i )
4
)
.

The first term is equal to zero by the definition of âi. The second term is equal to zero since α◦
i

maximizes âi. The third-order term is zero by assumption that all the third derivatives of âi are

zero. Using the notation (94) for the deviation from α◦, we can write

âi (αi) ≈
1

2
κ̄−2α⊤

i,(1)Ĥ
◦
i αi,(1) +O

(
κ̄−4

)
,

which is the result.

Proof of Lemma 12

Lemma 12. The risk-adjusted price vector R can be written as R = R(0) + κ̄−1R(1) + O
(
κ−2

)
,

where

R(0) = R◦ = −L◦µ︸ ︷︷ ︸
E[p◦]

+(ρ− 1)L◦Σω◦︸ ︷︷ ︸
Cov(p◦,λ◦)

(98)

is the risk-adjusted price vector (18) evaluated at the ideal input shares α◦, and

R(1) = −L(1)µ− L◦â(2)︸ ︷︷ ︸
Change in E[p]

+(ρ− 1)L◦ΣL⊤
(1)β + (ρ− 1)L(1)Σ [L◦]⊤ β︸ ︷︷ ︸

Change in Cov(p,λ)

, (99)

where L(1) and â(2) are given by (95) and (97).

Proof. We can write R as

R = −L (α) (µ+ κ̄â (α)) + (ρ− 1)L (α) Σ [L (α)]⊤ β, (108)

or

R = −
(
L◦ + κ̄−1L(1) +O

(
κ̄−2

)) (
µ+ κ̄× κ̄−2â(2) + κ̄O

(
κ̄−3

))
+ (ρ− 1)

(
L◦ + κ̄−1L(1) +O

(
κ̄−2

))
Σ
(
L◦ + κ̄−1L(1) +O

(
κ̄−2

))⊤
β,

where we used the expressions in Lemma 11. Grouping terms yields the result.
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Proof of Proposition 9

Proposition 9. If α ∈ intA, the equilibrium vector of input shares in sector i is

αi = α◦
i + κ̄−1

(
Ĥ◦
i

)−1
R(0)︸ ︷︷ ︸

αi,(1)

+κ̄−2
(
Ĥ◦
i

)−1
R(1)︸ ︷︷ ︸

αi,(2)

+O
(
κ̄−3

)
, (100)

where R(0) and R(1) are given by (98) and (99).

Proof. Since α◦ ∈ intA, when κ̄ is large enough the equilibrium network α is also in the interior of

A. From (19), that equilibrium is then fully described by the first-order conditions of the problem

(17), such that
∂âi (αi)

∂αij
= κ̄−1 ×Rj (α) , (109)

and where Rj (α) is given by (108). We can write the left-hand side of this equation as

∂âi (αi)

∂αij
=

(
∂âi
∂αij

)
αi=α◦

i

+ (αi − α◦
i )

⊤


∂2âi

∂αi1∂αij

...
∂2âi

∂αin∂αij


αi=α◦

i

+
1

2
(αi − α◦

i )
⊤


∂3âi

∂α2
i1∂αij

. . . ∂3âi
∂αi1∂αin∂αij

. . . . . . . . .
∂3âi

∂αi1∂αin∂αij
. . . ∂3âi

∂α2
in∂αij


αi=α◦

i

(αi − α◦
i ) +O

(
(αi − α◦

i )
3
)
.

The first term in the right-hand side of this expression is zero since α◦ maximizes âi. The third

term is also zero given our assumption that the third derivatives of âi are zero. Using the notation

from (94), we can therefore write

∂âi (αi)

∂αij
=
(
κ̄−1αi,(1) + κ̄−2αi,(2)

)⊤
Ĥ◦
i 1j +O

(
κ̄−3

)
.

Combing with the right-hand side of (109) and the expressions of Lemma 12, we find

(
κ̄−1αi,(1) + κ̄−2αi,(2)

)⊤
Ĥ◦
i 1j +O

(
κ̄−3

)
= κ̄−1

(
Rj,(0) + κ̄−1Rj,(1) +O

(
κ−2

))
.

Since this expression must be valid for all κ̄, we find that

αi,1 =
(
Ĥ◦
i

)−1
R◦

and

αi,2 =
(
Ĥ◦
i

)−1
R(1),
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which is the result.

Proof of Corollary 9

Corollary 9. The equilibrium vector of Domar weights is

ω = ω◦ + κ̄−1 L⊤
(1)β︸ ︷︷ ︸
ω(1)

+κ−2 L⊤
(2)β︸ ︷︷ ︸
ω(2)

+O
(
κ̄−3

)
, (101)

where ω◦ = (L◦)⊤ β, and L(1) and L(2) are given by (95) and (96).

Proof. This corollary immediately follows from the definition of the Domar weights, ω = L (α)⊤ β.

Proof of Corollary 10

Corollary 10. The approximation of the Domar weight vector (35) is accurate if κ̄ is large, such

that

− [H◦]−1 E◦ = κ̄−1ω(1) +O
(
κ̄−2

)
. (102)

Proof. Using (18) and (32), we can express the left-hand side of (102) as

− [H◦]−1 E◦ = −
[
∇2ā (ω◦)− (ρ− 1)Σ

]−1
(µ− (ρ− 1)Σω◦) .

Using (82) to express ∇2ā (ω◦), we get

− [H◦]−1 E◦ = −

(L◦)−1

(
n∑
k=1

ω◦
k (H

◦
k)

−1

)−1 [
(L◦)⊤

]−1
− (ρ− 1)Σ

−1

(µ− (ρ− 1)Σω◦)

= −

κ̄ (L◦)−1

(
n∑
k=1

ω◦
k

(
Ĥ◦
k

)−1
)−1 [

(L◦)⊤
]−1

− (ρ− 1)Σ

−1

(µ− (ρ− 1)Σω◦)

= −κ̄−1 (L◦)⊤
n∑
k=1

(
ω◦
k

(
Ĥ◦
k

)−1
)
L◦ (µ− (ρ− 1)Σω◦) +O

(
κ̄−2

)
.

From (100), the expression above can be rewritten as

− [H◦]−1 E◦ = κ̄−1 (L◦)⊤
n∑
k=1

ω◦
kαk,(1) +O

(
κ̄−2

)
= κ̄−1L⊤

(1)β +O
(
κ̄−2

)
,
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where L(1) is given by (95) and ω(1) = L⊤
(1)β by (101).

Proof of Corollary 11

Corollary 11. In equilibrium, the mean and variance of log GDP are

E y = (ω◦)⊤ µ+ κ̄−1
(
ω⊤
(1)µ+ (ω◦)⊤ â(2)

)
+ κ̄−2

(
ω⊤
(2)µ+ ω⊤

(1)â(2)

)
+O

(
κ̄−3

)
and

V y = (ω◦) Σω◦ + 2κ̄−1 (ω◦)⊤Σω(1) + κ̄−2
(
2 (ω◦)⊤Σω(2) + ω⊤

(1)Σω(1)

)
+O

(
κ̄−3

)
.

Proof. These expressions are straightforward to derive by plugging in (14) expressions (97) and

(101).

Proof of Corollary 12

Corollary 12. The impact of an increase in µk on the network is given by

dαi
dµk

= κ̄−1
(
Ĥ◦
i

)−1
(
∂R(0)

∂µk
+ κ̄−1∂R(1)

∂µk

)
︸ ︷︷ ︸

Response of R with fixed network

+κ̄−2
(
Ĥ◦
i

)−1
(∑

lm

∂R(1)

∂αlm,(1)

dαlm,(1)

dµk

)
︸ ︷︷ ︸
Impact of the network on R

+O
(
κ̄−3

)
,

(103)

where the impact of µk on R taking the network fixed is given by

∂R(0)

∂µk
+ κ̄−1∂R(1)

∂µk
= −L◦1k − κ̄−1L(1)1k, (104)

and the change in R through the response of the network is given by

dαlm,(1)

dµk
×

∂R(1)

∂αlm,(1)
= −1⊤m

(
Ĥ◦
l

)−1
L◦1k × (ρ− 1)L◦Σ

(
L◦1l1

⊤
mL◦

)⊤
β. (105)

Proof. Differentiating (94) with respect to µk yields

dαi
dµk

= κ̄−1dαi,(1)

dµk
+ κ̄−2dαi,(2)

dµk
+O

(
κ̄−3

)
.

Using the expressions for the first and second-order terms given by the Proposition 9, we find

dαi
dµk

= κ̄−1
(
Ĥ◦
i

)−1 dR◦

dµk
+ κ̄−2

(
Ĥ◦
i

)−1
(∑

lm

∂R(1)

∂αlm,(1)

dαlm,(1)

dµk
+
∂R(1)

∂µk

)
+O

(
κ̄−3

)
,

where, as usual, the partial derivatives imply that the production network is kept constant. From
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(98), we have
dR◦

dµk
= −L◦1k,

and from (99), we have
∂R(1)

∂µk
= −L(1)1k.

Similarly, we use (99) to compute the partial derivative

∂R(1)

∂αij,(1)
= −L◦1i1

⊤
j L◦µ− L◦1i1

⊤
j Ĥ

◦
i αi,(1) + (ρ− 1)L◦Σ

(
L◦1i1

⊤
j L◦

)⊤
β + (ρ− 1)

(
L◦1i1

⊤
j L◦

)
Σ [L◦]⊤ β

(110)

= L◦1i1
⊤
j

(
−L◦µ+ (ρ− 1)L◦Σ [L◦]⊤ β − Ĥ◦

i αi,(1)

)
+ (ρ− 1)L◦Σ

(
L◦1i1

⊤
j L◦

)⊤
β

= L◦1i1
⊤
j

(
R(0) − Ĥ◦

i αi,(1)

)
+ (ρ− 1)L◦Σ

(
L◦1i1

⊤
j L◦

)⊤
β.

From Proposition 9, αi,(1) =
(
Ĥ◦
i

)−1
R(0), hence the first term in the last line of the expression

above is zero. Finally, from (100) we find

dαlm,(1)

dµk
= −1⊤m

(
Ĥ◦
l

)−1
L◦1k.

Grouping terms completes the proof.

Proof of Corollary 13

Corollary 13. The impact of an increase in Σop on the network is given by

dαi
dΣop

= κ̄−1
(
Ĥ◦
i

)−1
(
∂R(0)

∂Σop
+ κ̄−1∂R(1)

∂Σop

)
︸ ︷︷ ︸

Response of R with fixed network

+κ̄−2
(
Ĥ◦
i

)−1
(∑

lm

dαlm,(1)

dΣop
×

∂R(1)

∂αop,(1)

)
︸ ︷︷ ︸

Impact of the network on R

+O
(
κ̄−3

)
,

(106)

where the impact of Σop on R taking the network fixed is given by

∂R(0)

∂Σop
+ κ̄−1∂R(1)

∂Σop
= (ρ− 1)L◦

[
1

2

(
1o1

⊤
p + 1p1

⊤
o

)]
ω◦

+ κ̄−1

[
(ρ− 1)L◦

[
1

2

(
1o1

⊤
p + 1p1

⊤
o

)]
L⊤
(1)β + (ρ− 1)L(1)

[
1

2

(
1o1

⊤
p + 1p1

⊤
o

)]
(L◦)⊤ β

]
,

and the change in R through the response of the network is given by

dαlm,(1)

dΣop
×

∂R(1)

∂αlm,(1)
= (ρ− 1)

(
Ĥ◦
i

)−1
L◦
[
1

2

(
1o1

⊤
p + 1p1

⊤
o

)]
ω◦ × (ρ− 1)L◦Σ

(
L◦1l1

⊤
mL◦

)⊤
β.

(107)
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Proof. Differentiating (94) with respect to Σop yields

dαi
dΣop

= κ̄−1dαi,(1)

dΣop
+ κ̄−2dαi,(2)

dΣop
+O

(
κ̄−3

)
= κ̄−1

(
Ĥ◦
i

)−1 dR◦

dΣop
+ κ̄−2

(
Ĥ◦
i

)−1
(∑

lm

∂R(1)

∂αlm,(1)

dαlm,(1)

dΣop
+
∂R(1)

∂Σop

)
+O

(
κ̄−3

)
,

where we have used the expressions for the first and second-order terms given by the Proposition

9. From (98), we have
dR◦

dΣop
= (ρ− 1)L◦

[
1

2

(
1o1

⊤
p + 1p1

⊤
o

)]
ω◦,

and from (99), we have

∂R(1)

∂Σop
= (ρ− 1)L◦

[
1

2

(
1o1

⊤
p + 1p1

⊤
o

)]
L⊤
(1)β + (ρ− 1)L(1)

[
1

2

(
1o1

⊤
p + 1p1

⊤
o

)]
[L◦]⊤ β.

From (110), we know that

∂R(1)

∂αij,(1)
= (ρ− 1)L◦Σ

(
L◦1i1

⊤
j L◦

)⊤
β.

Finally, from (100), we can compute

dαlm,(1)

dΣop
=
(
Ĥ◦
i

)−1 dR◦

dΣop
= (ρ− 1)

(
Ĥ◦
i

)−1
L◦
[
1

2

(
1o1

⊤
p + 1p1

⊤
o

)]
ω◦.

J Additional information about the calibrated economy

We provide here additional information about the calibrated economy.

J.1 Cost of deviating from the ideal input shares

The overall mean of the elements of the calibrated cost matrix κ̂ is 194 with a standard deviation

of 447. The average and the standard deviation of the elements of the estimated vector κ̂i are 14.11

and 17.56, respectively. The analogous statistics for κ̂j are 13.73 and 17.18. To interpret these

numbers, it helps to transform them into what they imply for productivity. If we increase one

input share from its ideal value by one standard deviation in one sector, the average TFP loss for

that sector is 0.06%.

To better understand the structure of the κ̂ matrix, Figure 10 shows for each sector the elements

of the vectors κ̂i and κ̂j . As we can see, the amount of variation across sectors is quite substantial.
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The sectors with the highest κ̂i are “Misc. manufacturing” and “Machinery”, indicating that it is

particularly costly for these sectors to deviate from their ideal input shares. The sectors with the

highest κ̂j are “Petroleum”, “Furniture” and “Health care”, implying that all firms tend to find it

costly to adjust their input share of these sectors.

Figure 10: The calibrated costs of deviating from the ideal input shares

(a) Vector of costs κi (b) Vector of costs κj

J.2 Sectoral total factor productivity

The estimated drift vector γ̂ features substantial variation across sectors, indicating sizable

dispersion in the trajectory of sectoral TFP. “Computer and electronic manufacturing” has the

highest average annual growth in the sample, with εit growing 5.6% faster than the average sector.

At the other end of the spectrum, productivity in “Food services” shrank by −2.9% per year relative

to the average sector.

Similarly, the estimated covariance matrix Σ̂t suggests that there is also substantial dispersion

in uncertainty across sectors. The most volatile productivity is found in “Electrical equipment”

with an average
√

Σ̂iit of 38.0%, and the least volatile sector is “Real estate” with an average√
Σ̂iit of 1.8%. There is also a lot of variation across sectors in how much volatility changes over

time. The standard deviation of
√
Σ̂iit is largest for the “Electrical equipment” sector at 25.6%

and smallest for “Real estate” at 1.1%.

J.3 Great Recession: Flexible vs fixed network

In this section, we explore the role of network flexibility during the Great Recession—the period

in which the economy was hit by large adverse shocks (see Figure 5). Specifically, we fix the network

α at its 2006 pre-recession level and then hit the economy with the same shocks as in the baseline

economy with endogenous network. Figure 11 shows how the baseline economy compares to the

fixed-network alternative (denoted with tildes in the figure) over the years 2006 to 2012. We find

that expected GDP (top panel) is higher under the flexible network. This is because firms are able to

respond to changes in TFP and move away from sectors that are expected to perform badly. When
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doing so, firms become exposed to more productive but also more volatile suppliers, which results

in an increase in GDP volatility (second panel). However, the first effect dominates, and welfare is

quite substantially higher when the network is allowed to adjust (third panel). Interestingly, the

economy with a flexible network does substantially worse in terms of realized GDP (bottom panel)

during the Great Recession years. As evident from the two top panels, firms optimally choose to

be exposed to more productive but riskier suppliers. During the Great Recession, some of those

risks were realized, pushing realized GDP down for the baseline case.

Figure 11: The role of network flexibility during the Great Recession

(a) Difference in expected log GDP [%]

(b) Difference in expected standard deviation of log GDP [%]

(c) Difference in expected welfare [%]

(d) Difference in realized log GDP [%]

Notes: The differences between the series implied by the full model (without tildes) and the model in which the network is
fixed at its 2006 level (with tildes). All differences are expressed in percentage terms.
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J.4 Input shares and Domar weights

In this appendix, we compare the behavior of the input shares and the Domar weights in the

baseline economy and in the two alternative economies introduced in Section 8: the one with Σt = 0

and the economy in which production techniques are chosen after observing εt. As we can see from

Table 7 all versions of the model perform almost identically in terms of average shares and Domar

weights. The standard deviations differ however across models. Specifically, the baseline model, in

which firms care about uncertainty, features standard deviations that 4% to 8% lower than in the

alternatives, depending on the precise comparison.

Table 7: Domar weights and input shares in the model and in the data

Statistic
Version of the model

Data Baseline Σt = 0 Known εt

(1) Average Domar weight ω̄j 0.047 0.032 0.032 0.032
(2) Standard deviation σ (ωj) 0.0050 0.0021 0.0022 0.0023
(3) Coefficient of variation σ (ωj) /ω̄j 0.107 0.066 0.070 0.070
(4) Average share, ᾱij 0.013 0.008 0.008 0.008
(5) Standard derivation σ (αij) 0.0048 0.0023 0.0024 0.0024
(6) Coefficient of variation σ (αij) /ᾱij 0.37 0.30 0.31 0.31

Notes: For each sector, we compute the time series of its Domar weight ωjt, as well as their mean ω̄j and standard deviation
σ(ωj). Rows (1) and (2) report the cross-sectional average of these statistics. Row (3) is the ratio of rows (2) and (1). For each
pair of sectors, we compute the time series of the input share αijt, as well as their their mean ᾱij and standard deviation σ(αij).
Rows (4) and (5) report the cross-sectional average of these statistics. Row (6) is the ratio of rows (5) and (4). The “Baseline”
model is the model in which risk-averse firms choose techniques before TFP shocks ε are realized. The “Σt = 0” model is the
model in which the planner selects the network as if Σ = 0. The “Known εt” model is the model in which firms choose techniques
after the TFP shocks ε are realized.

The response of the network to uncertainty differs particularly strongly across models during

periods of high uncertainty. To show this, we compute changes in sectoral Domar weights ∆ωit =

ωit−ωi,t−1 in the baseline model and in the two alternatives. As usual, we denote changes in sectoral

Domar weights in the alternative models by tildes, i.e. ∆ω̃it. We then compute the cross-sectional

average of the absolute differences between ∆ωit and ∆ω̃it, and normalize it by the cross-sectional

average of standard deviations of |∆ωit|. This measure captures the difference between models in

how Domar weights change over time.

Figure 12 shows the resulting graphs. In the top panel, the “Σt = 0” model is used as alternative.

In the bottom panel, the “known εt” model is used as alternative. In the top panel the differences are

particularly pronounced during high-uncertainty episodes, when risk-averse firms actively switch to

safer production inputs. In the bottom panel, the Domar weights deviate from the baseline model

much more. This is because the production network adapts to the specific εt draw, and so the

differences are visible even in relatively tranquil times.
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Figure 12: Average of absolute differences in Domar weight growths in the postwar period

(a) The “as if Σt = 0” alternative

(b) The “known εt” alternative

Notes: Panel (a): difference between the series implied by the baseline model (without tildes) and the ”as if Σt = 0” alternative
(with tildes); Panel (b): difference between the baseline model (without tildes) and the alternative in which firms choose
techniques after TFP shocks ε are realized (with tildes). Both economies are hit by the same shocks that are filtered out from
the TFP data under our baseline model. Both series are normalized by the cross-sectional average of the standard deviations
of growths in sectoral Domar weights.

J.5 Robustness exercises

In this appendix, we provide two robustness exercises. First, we investigate what happens with

the coefficient of risk aversion varies. Second, we explore how the calibrated economy behaves when

β can change every period.

Sensitivity to the risk aversion parameter ρ

In this section, we investigate the sensitivity of our results to the value of the risk aversion

parameter ρ. To do so, we solve the model for different values of ρ without recalibrating the matrix

κ. We then compare this economy to the alternative with Σ = 0. Not surprisingly, we find that

ignoring uncertainty is costlier for higher values of ρ (Table 8).

The economy also responds to the spike in uncertainty during the Great Recession much more

for ρ = 10 (Figure 13). Specifically, if ρ = 10, the network adjusts such that the standard devi-

ation of GDP is almost 4.2% lower in 2009 relative to the risk-neutral alternative (second panel,

yellow crossed line). Although this adjustment is associated with a sizable decline in expected

GDP (−0.8%; first panel), welfare raises substantially (1.8%; third panel). This is because the

representative household enjoys a larger utility gain from a reduction in uncertainty under a higher

risk aversion parameter.
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Table 8: Uncertainty, GDP and welfare: the Role of risk aversion

Comparison with Σ = 0 model
ρ = 2 ρ = 4.27

(baseline)
ρ = 10

Expected log GDP E [y (α)] +0.001% +0.008% +0.033%

Std. dev. of log GDP
√

V [y (α)] +0.038% +0.105% +0.208%
Welfare W −0.001% −0.010% −0.057%

Notes: Baseline economy variables minus their counterparts in the Σ = 0 alternative for
different values of risk aversion ρ.

Time-varying consumption shares

In this appendix, we consider a version of the calibrated economy in which we let the β preference

vector change over time to match the observed consumption shares in the data. Figure 14 shows

the difference between that economy and the Σ = 0 alternative in which uncertainty has no impact

on the production network. As we can see, this figure is quite similar to Figure 4 (left column) in

the main text, suggesting that allowing β to change over time does not have a large effect on the

impact of uncertainty on the network.
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Figure 13: The role of uncertainty during the Great Recession: Role of risk aversion

(a) Difference in expected log GDP [%]

(b) Difference in expected standard deviation of log GDP [%]

(c) Difference in expected welfare [%]

(d) Difference in realized log GDP [%]

Notes: The differences between the series implied by the models featuring various degrees of risk aversion (without tildes) and
the “as if Σt = 0” alternative (with tildes). All differences are expressed in percentage terms.
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Figure 14: The role of uncertainty in the postwar period with time-varying β

(a) Difference in expected log GDP [%]

(b) Difference in expected standard deviation of log GDP [%]

(c) Difference in expected welfare [%]

(d) Difference in realized log GDP [%]

Notes: The differences between the series implied by the baseline model with time-varying β (without tildes) and the “as if
Σt = 0” alternative (with tildes). Both economies are hit by the same shocks that are filtered out from the TFP data under
our baseline model. All differences are expressed in percentage terms.
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K Wedges and inefficient allocation

In this appendix, we consider a version of the competitive economy of Section 2 with wedges.

To do so, we modify our setup along the lines of Acemoglu and Azar (2020). Specifically, we assume

that firms in industry i sell their goods at a markup τi ≥ 0 over their unit cost. A fraction ζi ∈ [0, 1]

of the revenue from the distortions is rebated to the representative household. The remaining 1−ζi
share is pure waste. We assume that τi and ζi are exogenous and do not depend on ε. Below, we

first describe the decentralized equilibrium with wedges and then show that there exists a distorted

“planner” whose decisions coincide with the distorted equilibrium. Finally, we characterize how

distortions affect equilibrium outcomes.

K.1 A distorted equilibrium

Several parts of the model are not affected by the wedges. In particular, the objective function

of the household remains unchanged. Its budget constraint must however be adjusted to take into

account the profits generated by the wedges. It becomes

n∑
i=1

PiCi ≤ 1 + T (α) ,

where T (α) =
∑n

i=1 ζi
τi

1+τi
PiQi is the rebate due to distortions. As we show below, T depends on

α but not on ε, which justifies the notation T (α). In the absence of distortions (τi = 0 for all i) or

if distortions are pure waste (ζi = 0 for all i), T = 0. The additional term in the budget constraint

implies a different stochastic discount factor Λ. From the first-order conditions of the household it

follows that

λ = (ρ− 1)β⊤p− ρ log (1 + T ) , (111)

where λ = logΛ is the log of the stochastic discount factor.

On the side of the firm, the cost minimization problem (7) is unaffected by the wedges, and

so the unit cost Ki conditional on a technique αi and a price vector P can still be written as (8).

Similarly, the technique choice problem of the firm, conditional on prices, is unaffected and is still

defined by (9). We will see however that in equilibrium the wedges affect the technique choices of

the firms through their impact on prices.
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Equilibrium conditions

We now turn to the market clearing conditions and the pricing equations. Those are affected

by the wedges. In particular, the pricing equation (10) becomes

Pi = (1 + τi)Ki (α, P ) , (112)

such that prices are set at a markup over unit cost. We can combine this equation with (8) to write

an expression for log prices as a function of the network α,

p = −L (α) (ε+ a (α)− log (1 + τ)) , (113)

where log (1 + τ) is a column vector with typical element log (1 + τi). As we can see, wedges τ

affect prices as productivity shifters.

The market clearing condition (11) for good i must also be adjusted for the potential loss in

resources. It becomes

Qi

(
1− (1− ζi)

τi
1 + τi

)
= Ci +

∑
j

Xji. (114)

We can use these equations to find an expression for the rebate to the household T . Combining

the first-order conditions of the firms with (112) and (114), we get

T (α) =


ζ1τ1

ζ2τ2
...

ζnτn


⊤ 


1 + ζ1τ1 0 . . . 0

0 1 + ζ2τ2 . . . 0
...

...
. . .

...

0 0 . . . 1 + ζnτn

− β


ζ1τ1

ζ2τ2
...

ζnτn


⊤

− α⊤



−1

β, (115)

and so we can fully characterize the stochastic discount factor (111) for a given network α. Note

also that T = 0 whenever ζ = 0 or τ = 0.

Using the expression for T together with the price vector p, we can write log GDP as

y = β⊤L (α) (ε+ a (α)− log (1 + τ)) + log (1 + T (α, ζ, τ)) . (116)

We see that the wedges have two different impacts on GDP. First, the distortions effectively lead to

a decline in productivity through log (1 + τ) . At the same time, the part of these distortions that

is rebated to the household has a positive impact on GDP through T .

Finally, in the following lemma we characterize the comparative statics of the rebate amount.

Lemma 13. Holding everything else equal, T (α) increases in αij for all i, j.

Proof. Denote χi = ζiτi. Rewrite (115) as
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T (α, χ) = χ⊤
[
I + diag (χ)− βχ⊤ − α⊤

]−1
β,

where diag (χ) is a diagonal matrix with the vector χ on its main diagonal. Note that I+diag (χ)−
χβ⊤ − α is a diagonally dominant Z-matrix with a positive main diagonal. Therefore, it is an

M-matrix whose inverse has all nonnegative inputs. Therefore,
[
I + diag (χ)− βχ⊤ − α⊤]−1

is a

nonnegative matrix as well. Differentiating T (α, χ) with respect to αij yields

∂T

∂αij
= χ⊤

[
I + diag (χ)− βχ⊤ − α⊤

]−1 (
1j1

⊤
i

) [
I + diag (χ)− βχ⊤ − α⊤

]−1
β.

Since all vectors and matrices in the right-hand side of the above expression are nonnegative,
∂T
∂αij

≥ 0.

Firm decision

In the presence of wedges, the technique choice by firms is described in the following lemma. It is

a direct analogue of Lemma 2 from the main text. The only difference is that expected equilibrium

log prices p∗ (α) in 118 needs to be adjusted by L (α∗) log (1 + τ), as follows from Equation (113).

Lemma 14. In the presence of wedges, the equilibrium technique choice problem of the represen-

tative firm in sector i is

α∗
i ∈ arg max

αi∈Ai

ai (αi)−
n∑
j=1

αijRj (α
∗) , (117)

where

R (α∗) = E [p (α∗)] + Cov [p (α∗) , λ (α∗)] , (118)

is the equilibrium risk-adjusted price of good j, and where

E [p (α∗)] = −L (α∗) (µ− log (1 + τ) + a (α∗)) and Cov [p (α∗) , λ (α∗)] = (ρ− 1)L (α∗) Σ [L (α∗)]⊤ β.

Proof. The proof is analogous to that of Lemma 2, with log prices given by (113) instead of (12).

K.2 A distorted planner’s problem

In the main text, we exploit the fact that the equilibrium allocation can be written as the

outcome of the planner’s optimization problem. Here, because of the distortions, it is no longer true

that the equilibrium coincides with the planner’s allocation. We can however derive the problem

of a distorted fictitious planner whose preferred allocation coincides with the distorted equilibrium.

We can then take advantage of that optimization problem to characterize the distorted equilibrium.

We define this distorted planner’s problem as
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Wd ≡ max
α∈A

E
[
yd (α)

]
− 1

2
(ρ− 1)V

[
yd (α)

]
, (119)

where

yd (α) = β⊤L (α) (ε+ a (α)− log (1 + τ))

is what log GDP would be if nothing was rebated to the household.

We can rewrite the distorted planner’s problem in terms of Domar weights.

Wd ≡ max
ω∈O

ω⊤ (µ− log (1 + τ)) + ā (ω)− 1

2
(ρ− 1)ω⊤Σω, (120)

where

ā (ω) =max
α∈A

ω⊤a (α) (121)

s.t.ω⊤ = β⊤L (α) .

Similar to the main model, the distorted planner’s problem has a unique solution because the

distorted planner’s objective function is concave in ω, and there exists unique α = α (ω) solving

(121). Furthermore, following the same steps as in the proof of Proposition 1, we can find that any

solution to the firm’s problem is also a solution to the distorted planner’s problem.

Proposition 10. There exists a unique equilibrium.

Proof. The proof is analogous to that of Proposition 1.

The unique equilibrium is no longer efficient because the distorted planner does not maximize

the true welfare of the representative household. Specifically, the distorted planner does not take

into account the fact that part of the distortion income is rebated to the household.

K.3 Characterizing the distorted equilibrium

We can use the distorted planner’s problem to characterize the distorted equilibrium. The next

proposition describes how the Domar weights are affected by beliefs (µ,Σ) and the wedges τ .

Proposition 11. The Domar weight ωi of sector i is increasing in µi, decreasing in Σii and

decreasing in τi.

Proof. The proof is similar to that of Proposition 2. Recall that

Wd = max
ω∈O

ω⊤ (µ− log (1 + τ)) + ā (ω)− 1

2
(ρ− 1)ω⊤Σω.
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By the envelope theorem,

dWd

dµi
= − dWd

d log (1 + τi)
= ωi and

dWd

dΣij
= −1

2
(ρ− 1)ωiωj .

With these derivatives in hand, we can follow analogous steps to those in the proof of Proposition

2 to find that an increase in µi or a decline in Σii leads to a higher ωi. Finally, an increase in τi is

equivalent to a decline in µi, and so the last part of the proposition follows.

Next, we investigate how changes in beliefs and wedges affect welfare, which can be written as

W (α∗) = Wd (α∗) + log (1 + T (α∗)) ,

where α∗ = α∗ (ω∗) solves (121) and ω∗ solves (120).

Proposition 12. In the distorted equilibrium, the following holds.

1. The impact of an increase in µi on welfare is given by

dW
dµi

= ωi +
1

1 + T (α∗)

∑
k,l

∂T

∂αkl

dα∗
kl

dµi
.

2. The impact of an increase in Σij on welfare is given by

dW
dΣij

= −1

2
(ρ− 1)ωiωj +

1

1 + T (α∗)

∑
k,l

∂T

∂αkl

dα∗
kl

dΣij
.

3. If ζ = 0, then the results of Proposition 4 hold in the distorted equilibrium.

Proof. Taking derivative of W with respect to µi yields

dW
dµi

=
dWd (α∗)

dµi
+

1

1 + T (α∗)

∑
k,l

∂T

∂αkl

dα∗
kl

dµi
= ωi +

1

1 + T (α∗)

∑
k,l

∂T

∂αkl

dα∗
kl

dµi
.

Similar steps yield the expression for the derivative with respect to Σij . Note that T = 0 when

ζ = 0 and so ∂T
∂αkl

= 0 for all k, l in this case. We then get the expressions of Proposition 4.

We see from these equations that changes in µ and Σ have two effects on welfare. There is a

term that is the same as in the efficient allocation, as described by Proposition 4. But there is also a

second term that reflects how changes in the production network lead to a higher or smaller rebate

to the household. For example, if conditions of part 1 of Proposition 4 are satisfied, an increase in

µi leads to an increase in all shares, that is,
dα∗

kl
dµi

> 0 for all k, l. This in turn increases the rebated

amount T by Lemma 13 and, as a result, dWdµi > ωi.
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L Other forms of uncertainty

In this appendix, we discuss how our model can be extended to handle other types of uncertainty.

We assume that when picking techniques, firms not only face uncertainty about the productivity

shocks ε but are also uncertain about 1) household’s preferences; 2) labor supply; 3) distortions. As

in the baseline model, all uncertainties are realized before firms pick quantities and the household

picks its consumption basket. We start by describing how these additional types of uncertainty can

be introduced in our framework.

Household’s preferences The household’s demand for different good types is determined by

the vector of preference parameters β. In this appendix, we assume that β is unknown when firms

pick production techniques. We maintain the restrictions that βi > 0 for all i and
∑n

i=1 βi = 1.

One natural distribution that satisfies these restrictions is the Dirichlet distribution.

Labor supply In the baseline model, the labor supply is fixed at one. In this appendix, we

assume instead that the total labor supply is given by L̄ > 0 and that L̄ is unknown when firms pick

production techniques. Uncertainty in L̄ might stem from, for example, changes in immigration,

retirement, or health (e.g., stay-at-home orders or mandated shutdowns) regulations that affect the

size of the labor force.

Distortions We introduce distortions in the same way as in Appendix K. Specifically, the price

of good i exceeds the unit cost for firms, namely, Pi = (1 + τi)Ki (αi, P ), where Ki (α, P ) is given

by (8). We assume that a fraction 1 − ζi ∈ [0, 1] of the distortion revenue is pure waste. Note

that these distortions can be driven by various sources, including government interventions and

markups.48 To study the role of distortion uncertainty, we assume that when firms pick their

production techniques, they are uncertain about τ .

To focus on how different types of uncertainty affect equilibrium network, we are going to make

the following assumption.

Assumption 2. The shocks to productivity (ε), preferences (β), distortions (τ) and labor supply

(L̄) are independent.

Analysis

After all uncertainties are realized, the representative household chooses its consumption basket

and firms pick quantities of production factors given their production techniques α. Several parts

48Our modeling of distortions follows Acemoglu and Azar (2020). Liu (2019) considers a richer structure of
government interventions. Importantly, these papers do not study the role of distortion uncertainty.
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of the model remain the same as in the main text. In particular, the objective function of the

household remains unchanged. Its budget constraint must however be adjusted to

n∑
i=1

PiCi ≤ L̄+ T,

where the first term on the right-hand side is the household’s labor income (recall that we can

normalize wage to one without loss of generality), and the second term on the right-hand side

T =
∑n

i=1 ζi
τiPiQi

1+τi
is the amount of distortion revenue rebated to the household. A different form

of the right-hand side of the budget constraint implies a different stochastic discount factor Λ. From

the first-order conditions of the household we can write the log of the stochastic discount factor as

λ = (ρ− 1)β⊤p− ρ log
(
L̄+ T

)
. (122)

On the firms’ side, the cost minimization problem (7) is unaffected, and so the unit cost Ki

conditional on a technique αi and a price vector P can still be written as (8). Similarly, the

technique choice problem of the firm, conditional on prices, is unaffected and is still defined by (9).

We now turn to the market clearing conditions and the pricing equations. Those are not the

same as in our main model. In particular, the pricing equation (10) becomes

Pi = (1 + τi)Ki (α, P ) . (123)

We can combine this equation with (8) to write an expression for log prices as a function of the

network α,

p = −L (α) (ε+ a (α)− log (1 + τ)) , (124)

where log (1 + τ) is a column vector with typical element log (1 + τi). As we can see, taxes τ affect

prices as productivity shifters.

The market clearing condition (11) for good i must also be adjusted for the potential loss in

resources. It becomes

Qi

(
1− (1− ζi)

τi
1 + τi

)
= Ci +

∑
j

Xji. (125)

We can use these equations to find an expression for the rebate to the household T . Combining

the first-order conditions of the firms with (123) and (125), we get

T = L̄

n∑
i=1

ζiτiω̂i, (126)

where
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ω̂ =




1 + ζ1τ1 0 . . . 0

0 1 + ζ2τ2 . . . 0
...

...
. . .

...

0 0 . . . 1 + ζnτn

− β


ζ1τ1

ζ2τ2
...

ζnτn


⊤

− α⊤



−1

β (127)

is a vector of sectoral weights in the total factor income, ω̂i =
PiQi

WL̄
= PiQi

L̄
. In the absence of taxes

(τ = 0) or if taxes are purely wasteful (ζ = 0), the rebate amount is zero, T = 0, and ω̂ = ω = L⊤β

is the Domar weight vector.

In the main model with only ε uncertainty, firms in sector i prefer techniques that are more

productive, in the sense of increasing ai (αi), and have low risk-adjusted prices Rj (Lemma 2).

The following lemma shows how this result can be extended in the model with multiple sources of

uncertainty.

Lemma 15. The technique choice of the representative firm in sector i solves

α∗
i ∈ arg min

αi∈Ai

−ai (αi) +
n∑
j=1

αijR̂ij (α
∗) , (128)

where

R̂ij = E [pj ] +
Cov [pj ,Λω̂i]

E [Λω̂i]
. (129)

Here Λ is the marginal utility of the representative household with respect to changes in income,

and ω̂i is the weight of sector i in the total factor income.

Proof. The objective function of firm in sector i is given by (9). The log stochastic discount factor

is (122), where T is given by (126); demand for sector i’s good is Qi =
ω̂iL̄
Pi

, where ω̂ is given by

(127) and logP is given by (124); and the unit cost function is (8). Combining them together, the

objective function (9) becomes

α∗
i ∈ arg min

αi∈Ai

Eexp

(ρ− 1)
∑
i

βipi − ρ log L̄− ρ log

(
1 +

n∑
i=1

ζiτiω̂i

)
︸ ︷︷ ︸

=log Λ

+ log L̄+ log ω̂i + log (1 + τi)− pi︸ ︷︷ ︸
=logQi

−εi − ai (αi) +
∑
j

αijpj︸ ︷︷ ︸
=logKi

 . (130)

Taking the first-order condition with respect to αij and imposing that in equilibrium α = α∗, we

117



find

E

[
ΛL̄ω̂i

(
−∂a (α

∗
i )

∂αij
+ pj

)]
+ χeij − γei = 0. (131)

Notice that we can write Λ
(
L̄
)
= L̄−ρΛ

(
L̄ = 1

)
. Therefore, under Assumption 2, the equilibrium

network is unaffected by L̄. Then (131) can be rewritten as

E [Λω̂i]

(
−∂a (α

∗
i )

∂αij
+ E [pj ]

)
+Cov [Λω̂i, pj ] + χ̃eij − γ̃ei = 0, (132)

where we redefine Lagrange multipliers by dividing them by E L̄. This is the first-order condition

of (128) with respect to αij .

From (8), a marginal change in αij changes the log unit cost of firms in sector i by − ∂ai
∂αij

+ pj .

Firms care not only about this effect but also how it comoves with the household’s marginal utility

with respect to changes in income Λ, adjusted by the relative importance of sector i, i.e. ω̂i. Under

normality of the productivity shocks ε, (129) can be rewritten as49

R̂ij = Eβ,τ [Rj ] +
Covβ,τ [Rj , (Eε Λ) ω̂i]

Eβ,τ [(Eε Λ) ω̂i]
, (133)

where Ex (·) means that we take expectations with respect to the random variable x, and where R
is given by

R = −L (α∗) (µ+ a (α∗)− log (1 + τ))︸ ︷︷ ︸
Eε[p]

+(ρ− 1)L (α∗) Σ [L (α∗)]⊤ β︸ ︷︷ ︸
Covε[p,λ]

,

which is a direct analogue of (18). When picking their production techniques, firms adjust their

beliefs about suppliers’ prices not only for risk in ε but also for other risk types, as captured by the

second term on the right-hand side of (133). Notably, the labor supply uncertainty and, in fact, the

level of L̄ do not affect firms’ production technique choices. As shown in the proof of Lemma 15, L̄

enters the firm’s objective (8) as a scaling factor of sectoral output Qi and stochastic discount factor

Λ. Therefore, under Assumption 2, the labor supply L̄ does not affect firms’ technique choices, and

thus can be normalized to 1 without loss of generality.

Proposition 13. The following statements about the impacts of different types of uncertainty on

equilibrium network hold.

1. Labor supply uncertainty does not matter for the production network;

2. If distortions are purely wasteful, ζ = 0, then uncertainty about log (1 + τ) has an equivalent

impact on the production network as uncertainty about ε;

49In particular, we use the law of total covariance and the fact that if x1 and x2 are normal variables, Cov (x1, X2) =
Cov (x1, x2) E (X2), where X2 = exp (x2).
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3. Uncertainty about the household’s preferences do not matter for the production network if ε

and τ are nonrandom.

Proof. Part 1 has been already established in the proof of Lemma 15. To prove part 2, impose

ζ = 0 and denote ε̂ = ε− log (1 + τ). Then ω̂ does not explicitly depend on τ and ε, and the price

function (124) and the firm’s objective function (130) depend only on ε̂, not on ε and τ separately.

Finally, part 3 follows from the fact that the price (124) does not depend on β. Therefore, if ε and

τ are nonrandom, (132) can be written as

−∂a (α
∗
i )

∂αij
+ pj + χ̌eij − γ̌ei = 0,

where we redefine Lagrange multipliers by dividing them by E [Λω̂i]. It is then clear that α∗ does

not depend on β.

Proposition 13 justifies our focus on uncertainty in productivity ε in the main text. First, as

discussed above, labor supply uncertainty does not matter for the production network. Second,

shocks to productivity and to taxes have analogous effects on firms’ decisions. In particular, a high

distortion τi makes sector i an expensive supplier, which for other firms is equivalent to firms in

industry i being unproductive. Notably, shocks to ε and to log (1 + τ) are no longer equivalent

if distortions are not purely wasteful. In that case, some of the distortion revenues are rebated

to the household, affecting the stochastic discount factor. Finally, preference uncertainty matters

only if there is uncertainty about ε or τ. To understand this result, notice that the price vector

(124) does not depend on the household’s preferences because it is determined by firms’ quantity

choices after uncertainty is realized. In the absence of uncertainty in ε and τ , the price vector p is

then a constant. When choosing their production techniques, firms do not need to consider how it

covaries with the household’s stochastic discount factor, that is, the second term on the right-hand

side of (129) is zero.
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