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Supply chain disturbances can lead to substantial increases in production costs. To
mitigate these risks, firms may take steps to reduce their reliance on volatile suppli-
ers. We construct a model of endogenous network formation to investigate how these
decisions affect the structure of the production network and the level and volatility of
macroeconomic aggregates. When uncertainty increases in the model, producers prefer
to purchase from more stable suppliers, even though they might sell at higher prices.
The resulting reorganization of the network tends to reduce macroeconomic volatility,
but at the cost of a decline in aggregate output. The model also predicts that more pro-
ductive and stable firms have higher Domar weights—a measure of their importance
as suppliers—in the equilibrium network. We provide a basic calibration of the model
using U.S. data to evaluate the importance of these mechanisms.
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1. INTRODUCTION

FIRMS RELY ON complex supply chains to get the intermediate inputs that they need
for production. These chains can be disrupted by natural disasters, wars, trade barriers,
changes in regulations, congestion in transportation links, etc. Such shocks can propagate
to the rest of the economy through input-output linkages, resulting in aggregate fluctu-
ations. However, firms may mitigate this propagation by reducing their reliance on risky
suppliers. In this paper, we study how this kind of mitigating behavior affects an econ-
omy’s production network and macroeconomic aggregates.

Supply chain disruptions are one of the key challenges that business executives face
and are responsible for substantial investments in risk-mitigation strategies (Ho, Zheng,
Yildiz, and Talluri (2015)). The COVID-19 pandemic provides a stark illustration of
how uncertainty can disrupt supply relationships. Following the onset of the pandemic,
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many companies realized that their supply chains were more vulnerable than previously
thought. A recent survey revealed that seventy percent of firm managers agreed that the
pandemic pushed companies to favor higher supply chain resiliency instead of simply pur-
chasing from the lowest-cost supplier. Many also reported plans to diversify their supply
chains across suppliers and geographies.1

To study how supply chain uncertainty affects firms’ sourcing decisions and how these
decisions affect the macroeconomy, we construct a model of endogenous network forma-
tion that builds on Acemoglu and Azar (2020). In the model, firms produce differentiated
goods that can be consumed by a risk-averse representative household or used as interme-
diate inputs by other producers. Firms can produce their goods using different production
techniques. A technique is a production function that specifies which intermediate inputs
to use and how these inputs are to be combined. Techniques can also differ in terms of
productivity. When choosing a technique, a firm can marginally adjust the importance of
a supplier or drop that supplier altogether. Consequently, these decisions, when aggre-
gated, lead to changes in the production network along both the intensive and extensive
margins.

After selecting production techniques, firms are subject to random productivity shocks.
They can then adjust how much they produce and the quantity of inputs that they use,
subject to the constraints imposed by their selected technique. Competitive pressure be-
tween producers implies that the productivity shocks, as they affect production costs, are
reflected in prices.

Importantly, and in contrast with Acemoglu and Azar (2020), firms’ beliefs about the
distribution of sectoral productivities can influence their choice of production technique
and, thus, the structure of the network. Firms compare profits across different states of
the world using the representative household’s stochastic discount factor and, as such,
they inherit the household’s attitude toward risk. Consequently, while a firm would gen-
erally prefer to purchase from a more productive supplier, it might decide otherwise if
this supplier is also riskier. Such a supplier would sell at a lower price on average but it is
also more likely to suffer from a large negative productivity shock, in which case the price
of its good would rise substantially. Potential customers consider this possibility and bal-
ance concerns between average productivity and stability when choosing their production
techniques.

For example, consider a car manufacturer deciding what materials to use as inputs. If
steel prices are expected to increase or become more volatile, it may instead use carbon
fiber for some components. If the change is large enough, it may switch away from using
steel altogether, in which case the link between the car manufacturer and its steel supplier
would disappear.

We prove that the unique equilibrium in this environment is efficient, so that the equi-
librium production network can be understood as resulting from a social planner maximiz-
ing the utility of the representative household. That network optimally balances a higher
level of expected GDP against a lower variance, with the relative importance of these
two objectives being determined by the household’s risk aversion. This trade-off implies
a novel mechanism through which uncertainty can lower expected GDP. In the presence

1Survey by Foley & Lardner LLP, available online at https://www.foley.com/-/media/files/insights/
publications/2020/09/foley-2020-supply-chain-survey-report-1.pdf. See also Wagner and Bode (2008) and
Zurich Insurance Group (2015) for other surveys documenting the importance of supply chain risks. Alessan-
dria, Yar Khan, Khederkarian, Mix, and Ruhl (2022) investigated the impact of supply chain disturbances in
the context of the COVID pandemic.

https://www.foley.com/-/media/files/insights/publications/2020/09/foley-2020-supply-chain-survey-report-1.pdf
https://www.foley.com/-/media/files/insights/publications/2020/09/foley-2020-supply-chain-survey-report-1.pdf
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of uncertainty, firms prefer stable input prices and, as a result, move toward safer suppli-
ers even though they might be less productive. Through this flight to safety process, less
productive producers gain in importance, and aggregate productivity and GDP fall as a
result. On the other hand, this supply chain reshuffling leads to a more resilient network
that dampens the effect of shocks and reduces aggregate fluctuations.

We further show that in equilibrium, the importance of a producer (as measured by its
sales share, or Domar weight) is greater when its productivity has a higher expected value
or a lower variance. More broadly, the impact of beliefs on the economy depends crucially
on substitution patterns that determine whether the Domar weights of two sectors tend to
move together or in opposite directions after a change in the TFP process. These patterns
depend on how technique choices affect productivity and on the covariance matrix of the
TFP shocks. For instance, if sectors i and j are strongly positively correlated, the planner
tends to make them move in opposite directions as to avoid too much risk exposure. In
that case, an increase in the expected productivity of sector i is accompanied by a decline
in the Domar weight of sector j.

Whether sectors are substitutes or complements also determines how the expected
value and the variance of GDP respond to shifts in beliefs. We characterize conditions
under which these changes are amplified or mitigated, compared to the fixed-network
benchmark of Hulten’s theorem (Hulten (1978)). We further show that when there is no
uncertainty, Hulten’s theorem applies in our setting even though the network is endoge-
nous.

In some circumstances, the forces at work in the model can have counterintuitive im-
plications for how the productivity process affects aggregate quantities. While an increase
in expected productivity or a decline in volatility always benefit welfare, their impact on
expected GDP can be the opposite of what one would expect. For instance, an increase in
expected productivity can lead to a decline in expected GDP, so that Hulten’s theorem is
not a good guide to understanding changes in GDP, even as a first-order approximation.
To understand why, imagine a producer with (on average) low but stable productivity.
Its high output price makes it unattractive as a supplier. But if its expected productivity
increases, its risk-reward profile improves, and other producers might begin to purchase
from it. Doing so, they might move away from more productive but riskier producers and,
as a result, expected GDP might fall. We show that a similar mechanism also implies that
an increase in the volatility of a sector’s productivity can lead to a decline in the variance
of aggregate output.

We provide a basic calibration of the model using sectoral U.S. data. To isolate the im-
pact of uncertainty, we compare our calibrated model to an alternative economy in which
firms are unconcerned about risk when making sourcing decisions. Although this econ-
omy is similar to the baseline model during normal times, significant differences appear
during high-volatility periods, such as the Great Recession. During that episode, firms re-
sponded to uncertainty by moving to safer but less productive suppliers. These decisions
led to a meaningful reduction in the volatility of GDP, but the added stability came at the
cost of an additional decline in expected GDP.

The model that we use for our quantitative analysis relies on some simplifying assump-
tions for tractability reasons. To verify the robustness of our findings, we provide addi-
tional empirical evidence that does not rely on the structure of the model. Taking advan-
tage of rich firm-level U.S. data, we find that, as in the model, higher uncertainty leads
to a decline in Domar weights, and that network connections involving riskier suppliers
are more likely to break down. These results are robust to using different measures of
uncertainty and instruments from Alfaro, Bloom, and Lin (2019) to tease out exogenous
variation in uncertainty.
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Our work is related to a large literature that investigates the impact of uncertainty on
macroeconomic aggregates (Bloom (2009, 2014), Bloom, Floetotto, Jaimovich, Saporta-
Eksten, and Terry (2018)). We propose a novel mechanism through which uncertainty can
lower expected GDP. This mechanism operates through a flight to safety process in which
firms facing higher uncertainty switch to safer but less productive suppliers, leading to
lower but less volatile GDP. In a recent paper, David, Schmid, and Zeke (2022) argued
that uncertainty may lead capital to flow to firms that are less exposed to aggregate risk,
rather than to those firms where it would be most productive. In their model, as in ours,
uncertainty can lead to lower aggregate output and measured TFP.2

There is a growing literature that studies how shocks propagate through production net-
works, in the spirit of early contributions by Long and Plosser (1983), Dupor (1999), and
Horvath (2000). Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) derived condi-
tions on input-output networks under which idiosyncratic shocks result in aggregate fluc-
tuations, even when the number of producers is large.3  Acemoglu, Ozdaglar, and Tahbaz-
Salehi (2017) and Baqaee and Farhi (2019a) described conditions under which produc-
tion networks can generate fat-tailed aggregate output distributions. Foerster, Sarte, and
Watson (2011) and Atalay (2017) studied the empirical contributions of sectoral shocks
for aggregate fluctuations. Carvalho and Gabaix (2013) argued that the reduction in ag-
gregate volatility during the Great Moderation (and its potential recent undoing) can be
explained by changes in the input-output network.4

In most of this literature, Hulten’s (1978) theorem applies, so that sales shares are a
sufficient statistic to predict the impact of microeconomic shocks on macroeconomic ag-
gregates. In contrast, since firms choose production techniques in the presence of uncer-
tainty, Hulten’s theorem is not a useful guide to how productivity affects expected GDP
in our model.5 An increase in expected sectoral productivity can even have a negative
impact on expected GDP.

Our paper is not the first to study the endogenous formation of production networks.
Oberfield (2018) built a model in which each firm selects a supplier to purchase from,
and studied how changes in the environment affect the production network. Our model
is closely related to Acemoglu and Azar (2020). As in that paper, we model endogenous
network formation as a technique choice problem in which firms do not internalize the
impact of their supply chain decisions on equilibrium objects. The key difference between
the two models is in terms of timing. In Acemoglu and Azar (2020), firms know the re-
alization of the shock when choosing their technique, while in our model that decision is
made under uncertainty. As a result, in our setting, uncertainty and beliefs influence the

2Fernández-Villaverde, Guerrón-Quintana, Rubio-Ramírez, and Uribe (2011) investigated the real impact
of interest rate volatility for emerging economies. Jurado, Ludvigson, and Ng (2015) provided econometric
estimates of time-varying macroeconomic uncertainty. Baker, Bloom, and Davis (2016) measured economic
policy uncertainty based on newspaper coverage. Nieuwerburgh and Veldkamp (2006) and Fajgelbaum, Schaal,
and Taschereau-Dumouchel (2017) developed models in which uncertainty can have a long-lasting impact on
economic aggregates.

3Production networks are one mechanism through which granular fluctuations can emerge (Gabaix (2011)).
4Other studies have looked at the importance of production networks outside the business cycle litera-

ture. Jones (2011) investigated their importance to explain income differences between countries. Barrot and
Sauvagnat (2016), Boehm, Flaaen, and Pandalai-Nayar (2019), and Carvalho, Nirei, Saito, and Tahbaz-Salehi
(2021) studied the propagation of shocks after natural disasters.

5Baqaee and Farhi (2019a) investigated departures from Hulten’s theorem due to higher-order effects.
Recent work that has studied production networks under distortions, where Hulten’s theorem generally does
not hold, includes Baqaee (2018), Liu (2019), Baqaee and Farhi (2019b), Bigio and La’O (2020), and Caliendo,
Parro, and Tsyvinski (2022).
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structure of the network and economic aggregates. Taschereau-Dumouchel (2020), Ace-
moglu and Tahbaz-Salehi (2020), and Elliott, Golub, and Leduc (2022) studied economies
in which firms’ decisions to operate or not shape the production network. Lim (2018)
and Huneeus (2018) evaluated the importance of endogenous changes in the network
for business cycle fluctuations. Boehm and Oberfield (2020) estimated a network for-
mation model using Indian microdata to study misallocation in input markets. Bernard
et al. (2022) built a model of network formation to explain firm heterogeneity. Grossman,
Helpman, and Sabal (2023) considered how policy can improve resiliency in a model with
endogenous formation of supply links.6 A key distinguishing feature of our work is its
focus on how uncertainty affects the structure of the production network and macroeco-
nomic aggregates.

Several papers in the network literature endow firms with CES production functions, so
that the input-output matrix varies with factor prices. Our model generates endogenous
changes in the production network through a different mechanism, which is closer to
Oberfield (2018) and Acemoglu and Azar (2020). In contrast to the standard CES setup,
our model allows links between sectors to be created or destroyed. In addition, the existing
literature using CES production network models has not studied how uncertainty and
beliefs shape production networks, and introducing such mechanisms while keeping the
model tractable is not straightforward.

The next section introduces our model of network formation under uncertainty. In Sec-
tion 3, we characterize the equilibrium when the network is fixed. We then investigate the
firms’ technique choice problem in Section 4 and consider the full equilibrium with a flex-
ible network in Section 5. In Sections 6 and 7, we describe how the productivity process
affects the production network, welfare, and GDP. In Section 8, we provide a basic cali-
bration of the model. Section 9 provides additional empirical evidence in support of the
mechanisms. The last section concludes. Additional materials can be found in Kopytov,
Mishra, Nimark, and Taschereau-Dumouchel (2024a, 2024b).

2. A MODEL OF ENDOGENOUS NETWORK FORMATION UNDER UNCERTAINTY

We study the formation of production networks under uncertainty in a multi-sector
economy. Each sector is populated by a representative firm that produces a differentiated
good that can be used either as an intermediate input or for consumption. To produce,
each firm must choose a production technique, which specifies a set of inputs to use. Firms
are owned by a risk-averse representative household and are subject to sector-specific
productivity shocks. Since firms choose production techniques before these shocks are
realized, the probability distribution of the shocks affects the input-output structure of
the economy.

2.1. Firms and Production Functions

There are n sectors, indexed by i ∈{1! " " " !n}, each producing a differentiated good. In
each sector, there is a representative firm that behaves competitively so that equilibrium
profits are always zero. When this creates no confusion, we use sector i, product i, and
firm i interchangeably.

6Atalay, Hortacsu, Roberts, and Syverson (2011) showed that a “preferential attachment” model can fit fea-
tures of the U.S. firm-level production network. Carvalho and Voigtländer (2014) built a rule-based network
formation model to study the diffusion of intermediate inputs. Kopytov (2023) studied financial interconnect-
edness and systemic risk under uncertainty.
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As in Oberfield (2018) and Acemoglu and Azar (2020), the representative firm in sec-
tor i has access to a set of production techniques Ai. A technique αi ∈ Ai specifies the set
of inputs that are used in production, how these inputs are to be combined, and a pro-
ductivity shifter Ai(αi). We model these techniques as Cobb–Douglas technologies that
can vary in terms of factor shares and total factor productivity. It is therefore convenient
to identify a technique αi ∈ Ai with the intermediate input shares associated with that
technique, αi = (αi1! " " " !αin), and to write the corresponding production function as

F (αi!Li!Xi) = eεiAi(αi)ζ(αi)L
1−∑n

j=1 αij
i

n∏

j=1

X
αij
ij ! (1)

where Li is labor and Xi = (Xi1! " " " !Xin) is a vector of intermediate inputs. The term
εi is the stochastic component of sector i’s total factor productivity. Finally, ζ(αi) is a
normalization to simplify future expressions.7

Since a technique αi corresponds to a vector of factor shares, we define the set of fea-
sible production techniques Ai for sector i as Ai = {αi ∈ [0!1]n : ∑n

j=1 αij ≤ αi}, where
0 < 1 − αi < 1 provides a lower bound on the share of labor in the production of good i.
We denote by A the Cartesian product A1 × · · · × An, such that an element α ∈ A, which
corresponds to a choice of inputs for each sector, fully characterizes the production net-
work in this economy. The set A allows firms to adjust the importance of a supplier at the
margin or to not use a particular input at all by setting the corresponding share to zero.
The model is therefore able to capture network adjustments along both the intensive and
extensive margins.

The choice of technique influences the total factor productivity of sector i through
Ai (αi). This term is given by nature and represents how effective a combination of inputs
is at producing a given good. For instance, beach towels and flowers are not very useful
when making a car, and a technique that relies only on these inputs would have a low Ai.
In contrast, a technique that uses aluminum, steel, car engines, etc. would be associated
with a higher productivity. When deciding on its optimal production technique, firm i will
take Ai into account, but it will also evaluate the expected level and volatility of each
input price.

We impose the following structure on Ai(αi).

ASSUMPTION 1: Ai(αi) is smooth and strictly log-concave.

This assumption is both technical and substantial in nature. The strict log-concavity en-
sures that there exists a unique technique that solves the optimization problem of the firm.
It also implies that, for each sector i, there is a unique vector of ideal input shares α◦

i ∈ Ai

that maximizes Ai and that represents the most productive way to combine intermediate
inputs to produce good i. Without loss of generality, we normalize Ai(α◦

i ) = 1 for all i.8

7Namely, [ζ(αi)]−1 = (1 − ∑n
j=1 αij)1−∑n

j=1 αij
∏n

j=1 α
αij
ij . This normalization is useful to simplify the unit cost

expression, given by (8) below. ζ(αi) could instead be included in Ai(αi) without any impact on the model.
8We further assume for all i that ∇ logAi(α◦

i ) = 0, where ∇ denotes the gradient. Since α◦
i maximizes Ai ,

this assumption is potentially restrictive only if α◦
i /∈ int Ai . All the results go through without it except that an

extra term must be added to the approximation in Proposition 8.
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EXAMPLE: One example of a function Ai(αi) that satisfies Assumption 1 is the
quadratic form

logAi(αi) = 1
2
(
αi − α◦

i

)⊤
H̄i

(
αi − α◦

i

)
! (2)

where H̄i is a negative-definite matrix that is also the Hessian of logAi. Throughout the
paper, we will sometimes assume that Ai takes this form to more transparently describe
the mechanisms at work. We also use this functional form in the quantitative section of
the paper.

The distribution of sectoral productivity shock εi in (1) is a key primitive of the model
and an important input into the firms’ technique choice problem. We collect these shocks
in the vector ε= (ε1! " " " ! εn), which we assume to be normally distributed, ε∼ N (µ!&).9
The vector µ determines the expected level of sectoral productivities, while the covariance
matrix & determines both uncertainty about individual elements of ε and their correla-
tions across industries. We assume throughout that & is positive definite. The vector ε is
the only source of uncertainty in this economy.

In equilibrium, ε will have a direct impact on prices, and its moments (µ!&) will affect
expectations about the price system. For instance, a sector with a high µi will have a low
expected unit cost and therefore the price of good i will be low in expectation. Similarly, a
high &ii implies large productivity shocks and a volatile price of good i. Since production
techniques must be chosen before ε is realized, the beliefs (µ!&) will affect the sourcing
decisions of the firms.

We impose that the representative firm in sector i can only adopt one technique αi.
Without this restriction, the firm would set up a continuum of individual plants, each with
its own technique, to cover the set Ai. After the realization of the productivity shocks,
the firm would only operate the plant that is best suited to the specific ε draw. All the
other plants would remain idle. In reality, we think that fixed costs would prevent the firm
from setting up all these plants. Information frictions might also impede the reallocation
of sectoral demand to the best-suited technique. To avoid burdening the exposition of the
model, we adopt this restriction in an ad hoc fashion here, but provide a microfoundation
for it in Supplemental Appendix E in Kopytov et al. (2024a).

2.2. Household Preferences

A risk-averse representative household supplies one unit of labor inelastically and
chooses a consumption vector C = (C1! " " " !Cn) to maximize

u

((
C1

β1

)β1

× · · · ×
(
Cn

βn

)βn)
! (3)

where βi > 0 for all i and
∑n

i=1βi = 1. We refer to Y = ∏n
i=1(β−1

i Ci)βi as aggregate con-
sumption or, equivalently in this setting, GDP. The utility function u(·) is CRRA with a

9This assumption is common in the literature but implies that an increase in the variance &ii of a sector i
increases its expected TFP. Through this channel, the adverse effect of an increase in uncertainty is mitigated.
A common way to correct for this effect is to remove half of the variance of ε from its mean. Supplemental
Appendix H in Kopytov et al. (2024a) describes why such a correction is problematic in our model and discusses
other potential corrections.
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coefficient of relative risk aversion ρ≥ 1.10 The household makes consumption decisions
after uncertainty is resolved and so in each state of the world it faces the budget constraint

n∑

i=1

PiCi ≤ 1! (4)

where Pi is the price of good i, and the wage is used as the numeraire.
Firms are owned by the representative household and maximize expected profits dis-

counted by the household’s stochastic discount factor11

)= u′(Y )/P! (5)

where P = ∏n
i=1 P

βi
i is the price index. The stochastic discount factor captures how much

an extra unit of the numeraire contributes to the utility of the household in different states
of the world.

From the optimization problem of the household, it is straightforward to show that

y = −β⊤p! (6)

where y = logY , p = (logP1! " " " ! logPn), and β = (β1! " " " !βn). Log GDP is thus the
negative of the sum of log prices weighted by the consumption shares β. Intuitively, as
prices decrease relative to wages, the household can purchase more goods, and aggregate
consumption increases.

2.3. Unit Cost Minimization

We solve the problem of a given representative firm in two stages. In the first stage,
the firm decides which production technique to use. Importantly, this choice is made be-
fore the random productivity vector ε is realized. In contrast, consumption, labor, and
intermediate inputs are chosen (and their respective markets clear) in the second stage,
after the realization of ε. This timing captures the fact that production techniques take
time to adjust, as they might involve retooling a plant, teaching new processes to workers,
negotiating contracts with new suppliers, etc.

We begin by solving the second-stage problem. Under a given technique αi, the cost
minimization problem of a firm in sector i is

Ki(αi!P) = min
Li!Xi

(

Li +
n∑

j=1

PjXij

)

! subject to F (αi!Li!Xi) ≥ 1" (7)

The solution to this problem implicitly defines the unit cost of production Ki(αi!P), which
plays an important role in our analysis. Since, for a given αi, the firm operates a constant

10The case 0 < ρ< 1 is straightforward to characterize but is somewhat unnatural since the household then
seeks to increase the variance of log consumption. Indeed, when logY is normal, maximizing E[(1−ρ)−1Y 1−ρ]
amounts to maximizing E[logY ] − 1

2 (ρ − 1) V[logY ] such that ρ ≶ 1 indicates whether the household likes
uncertainty in log consumption or not. This is a consequence of the usual increase in the mean of a log-normal
variable from an increase in the variance of the underlying normal variable. See Supplemental Appendix H in
Kopytov et al. (2024a) for a version of the model in which we correct for this term.

11See Supplemental Appendix C in Kopytov et al. (2024a) for the derivation of equations (5) and (6).
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returns to scale technology, Ki does not depend on the scale of the firm and is only a
function of the (relative) prices P = (P1! " " " !Pn). We show in Supplemental Appendix C
in Kopytov et al. (2024a) that the production function (1) implies that

Ki(αi!P) = 1
eεiAi(αi)

n∏

j=1

P
αij
j ! (8)

which is the standard Cobb–Douglas unit cost function. Equation (8) states that the cost
of producing one unit of good i is equal to the geometric average of the individual input
prices (weighted by their respective shares) adjusted for sectoral total factor productivity.

2.4. Technique Choice

Given an expression for Ki, the first stage of the representative firm’s problem is to pick
a technique αi ∈ Ai to maximize expected discounted profits, that is,

α∗
i ∈ arg max

αi∈Ai

E
[
)Qi

(
Pi −Ki(αi!P)

)]
! (9)

where Qi is the equilibrium demand for good i, and where the profits in different states
of the world are weighted by the household’s stochastic discount factor ). The represen-
tative firm takes P , Qi, and ) as given, and so the only term in (9) over which it has any
control is the unit cost Ki(αi!P). The firm thus selects the technique αi ∈ Ai that min-
imizes the expected discounted value of the total cost of goods sold QiKi(αi!P), while
taking into consideration that final consumption goods are valued differently across dif-
ferent states of the world, as captured by ).12 Because profits are discounted by ), firms
effectively inherit the risk attitude of the representative household.

2.5. Equilibrium Conditions

In equilibrium, competitive pressure pushes prices to be equal to unit costs, so that

Pi =Ki(αi!P) for all i ∈{1! " " " !n}" (10)

For a given network α ∈ A, this equation, together with (8), allows us to fully characterize
the price system as a function of the random productivity shocks ε.13

An equilibrium is defined by the optimality conditions of both the household and the
firms holding simultaneously, together with the usual market clearing conditions.

DEFINITION 1: An equilibrium is a choice of technique α∗ = (α∗
1! " " " !α

∗
n) and a stochas-

tic tuple (P∗!C∗!L∗!X∗!Q∗) such that:
1. (Optimal technique choice) For each i ∈ {1! " " " !n}, the technique choice α∗

i ∈ Ai

solves (9) given prices P∗, demand Q∗
i , and the stochastic discount factor )∗ given

by (5).

12As usual, the presence of the stochastic discount factor in the firm problem comes from the implicit as-
sumption that there are complete markets in this economy. Since agents can trade state-ε contingent claims,
state prices reflect the marginal utility of the household in each state.

13Even without imposing that production techniques are Cobb–Douglas, the system (10) yields a unique
price vector P under standard assumptions. But the Cobb–Douglas structure implies that we can write the
distribution of P in closed form, which allows us to characterize the technique choice problem in a tractable
way.
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2. (Optimal input choice) For each i ∈ {1! " " " !n}, factor demands per unit of output
L∗

i /Q
∗
i and X∗

i /Q
∗
i are a solution to (7) given prices P∗ and the chosen technique α∗

i .
3. (Consumer maximization) The consumption vector C∗ maximizes (3) subject to (4)

given prices P∗.
4. (Unit cost pricing) For each i ∈ {1! " " " !n}, P∗

i solves (10) where Ki(α∗
i !P

∗) is given
by (8).

5. (Market clearing) For each i ∈{1! " " " !n},

C∗
i +

n∑

j=1

X∗
ji =Q∗

i = Fi

(
α∗
i !L

∗
i !X

∗
i

)
! and

n∑

i=1

L∗
i = 1" (11)

Conditions 2 to 5 correspond to the standard competitive equilibrium conditions for
an economy with a fixed production network. They imply that firms and the household
optimize in a competitive environment and that all markets clear given equilibrium prices.
Condition 1 emphasizes that production techniques, and hence the production network
represented by the matrix α∗, are equilibrium objects that depend on the primitives of the
economy.

It is straightforward to extend the model along several dimensions without losing
tractability. For instance, the model can accommodate disturbances that happen at the
link level instead of at the sectoral level. To do so, we can simply think of a link between
two producers as a fictitious “transport” sector that is also subject to shocks. It is also
straightforward to extend the model to include multiple primary factors or wedges be-
tween unit costs and prices. We work out this last extension in Supplemental Appendix
K in Kopytov et al. (2024a). In Supplemental Appendix L in Kopytov et al. (2024a), we
also consider additional sources of uncertainty in terms of (1) household preferences, (2)
labor supply, and (3) distortions (e.g., due to government policies). We find that these
sources of uncertainty either do not matter for the equilibrium network, matter only if
they interact with the productivity shocks ε, or have a similar impact to the uncertainty
about ε.

On the other hand, certain ingredients are essential to keep the model tractable. Here,
the key challenge comes from the fact that technique choices affect equilibrium prices,
which in turn affect technique choices. The log-linearity implied by the Cobb–Douglas
aggregators in (1) and (3) are needed to keep the equilibrium beliefs tractable. While this
implies a unit elasticity of substitution in the production function (1), this elasticity only
captures the response of intermediate inputs to realized prices conditional on a chosen
production technique. Since firms’ expectations affect their technique choice, the model
is able to handle richer substitution patterns between expected prices and intermediate
input shares, as we explore in more detail in Section 6.

3. EQUILIBRIUM PRICES AND GDP IN A FIXED-NETWORK ECONOMY

Before analyzing how the equilibrium production network responds to changes in the
productivity process, it is useful to first establish how prices and GDP behave under a
fixed network. To this end, we first define two objects that will play a central role in our
analysis.

The first is the Leontief inverse L(α) = (I − α)−1, which can also be written as the
geometric sum L(α) = I +α+α2 + · · · . An element i, j of L(α) captures the importance
of sector j as an input in the production of good i by taking into account direct and indirect
connections between the two sectors in the production network.



ENDOGENOUS PRODUCTION NETWORKS UNDER UNCERTAINTY 1631

We also define the Domar weight ωi of sector i as the ratio of its sales to nominal GDP,
such that ωi = PiQi

P⊤C
. As we show in the proof of Corollary 1, the vector of Domar weights

ω= (ω1! " " " !ωn) is equal to ω⊤ = β⊤L(α) > 0 in the model. Domar weights combine the
preferences of the household with the Leontief inverse to provide an overall measure of
the importance of a sector as a supplier. They are constant in a fixed-network economy
but vary when firms are free to adjust sourcing decisions.

With these definitions in hand, we present a first result that links the vector of sectoral
productivities with prices and GDP.

LEMMA 1: Under a given network α, the vector of log prices is given by

p(α) = −L(α)
(
ε+ a(α)

)
! (12)

and log GDP is given by

y(α) =ω(α)⊤(
ε+ a(α)

)
! (13)

where a(α) = (logAi(αi)! " " " ! logAn(αn)).

Lemma 1 describes how prices and GDP depend on (1) the productivity vector ε+a(α)
and (2) the production network α. Since all the elements of ω(α) and L(α) are non-
negative, an increase in productivity has a negative impact on log prices and a positive
impact on log GDP when the network is fixed. Intuitively, as firms become more produc-
tive, their unit costs decline, and competition forces them to sell at lower prices. From
the perspective of GDP, higher productivity implies that the available labor can be trans-
formed into more consumption goods.

The lemma makes clear that production techniques α matter for prices and GDP
through two distinct channels. They have a direct impact on the productivity shifters a(α)
because different techniques have different productivities. In addition, α affects prices
and GDP through its impact on the Leontief inverse and the Domar weights. The matrix
L(α) = I + α+ α2 + · · · in (12) implies that the price of good i depends not only on i’s
productivity, but also on the productivity of its suppliers, and on the productivity of their
suppliers, and so on. These higher-order connections also matter for GDP and thus the
impact of sectoral productivity on aggregate output depends on the sector’s importance,
as captured by its Domar weight.

Lemma 1 also shows that p and y are linear functions of the productivity vector ε and,
as a result, inherit the normality of ε. The first and second moments of y can thus be
written as

E
[
y(α)

]
=ω(α)⊤(

µ+ a(α)
)

and V
[
y(α)

]
=ω(α)⊤&ω(α)" (14)

We conclude this section with a simple corollary, already known in the literature, that
describes the impact of beliefs on the mean and the variance of log GDP under a fixed
production network. In what follows, we use partial derivatives to emphasize that the
network α is kept fixed.

COROLLARY 1: For a fixed production network α, the following hold:
1. The impact of a change in expected TFP µi on the moments of log GDP is given by

∂E[y]
∂µi

=ωi! and
∂V[y]
∂µi

= 0"
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2. The impact of a change in volatility &ij on the moments of log GDP is given by14

∂E[y]
∂&ij

= 0! and
∂V[y]
∂&ij

=ωiωj"

The first part of the corollary demonstrates that for a fixed production network, Hul-
ten’s (1978) celebrated theorem also holds in expectational terms. That is, the change in
expected log GDP following a change in the expected productivity of a sector i is equal
to that sector’s sales share ωi. The second part of the corollary establishes a similar result
for a change in &. It shows that the impact of an increase in the volatility of a sector’s
TFP on the variance of log GDP is equal to the square of that sector’s sales share. This
result also applies to a change in covariance, in which case the increase in V[y] is equal to
the product of the two industries’ sales shares. Since Domar weights are always positive,
an increase in covariance always leads to higher aggregate volatility. Intuitively, positively
correlated shocks are unlikely to offset each other, and their expected aggregate impact
is therefore larger. Finally, the corollary shows that when the network is fixed, the covari-
ance matrix & has no impact on E[y]. It follows that whenever we discuss the response of
expected log GDP to a change in uncertainty, the mechanism must operate through the
endogenous reorganization of the network.

Corollary 1 emphasizes that for a fixed network, knowing the sales shares of every in-
dustry is sufficient to compute the impact of changes in µ and & on the moments of log
GDP. In Section 7, we show that this is no longer true when firms can adjust their input
shares in response to changes in the distribution of sectoral productivity. In fact, when
the network is free to adjust, an increase in an element of µ can even lead to a decline in
expected log GDP.

4. FIRM DECISIONS

In the previous section, we described prices under a given network. Here, we use that
information to characterize the problem of the representative firm in sector i that must
choose a technique αi ∈ Ai. It is convenient to work with the log of the stochastic dis-
count factor λ(α∗) = log)(α∗) and the log of the unit cost ki(αi!α∗) = logKi(αi!P∗(α∗)),
where α∗ denotes the equilibrium network. These quantities are normally distributed in
equilibrium.

Using this notation, we can reorganize the problem of the firm (9) as15

α∗
i ∈ arg min

αi∈Ai

E
[
ki

(
αi!α

∗)] + Cov
[
λ
(
α∗)!ki

(
αi!α

∗)]" (15)

The objective function in (15) captures how beliefs and uncertainty affect the production
network. Its first term implies that the firm prefers to adopt techniques that provide, in
expectation, a lower unit cost of production. Taking the expected value of the log of (8),
we can write this term as

E
[
ki

(
αi!α

∗)] = −µi − ai(αi) +
n∑

j=1

αij E[pj]!

14Whenever we take derivatives with respect to off-diagonal elements of &, we simultaneously change &ij

and &ji to preserve the symmetry of &, and divide the result by 2.
15We show how to derive this equation as part of the proof of Lemma 2.
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so that, unsurprisingly, the firm prefers techniques that have high productivity ai and that
rely on inputs that are expected to be cheap.

The second term in (15) captures the importance of aggregate risk for the firm’s decision.
It implies that the firm prefers to have a low unit cost in states of the world in which the
marginal utility of consumption is high. As a result, the coefficient of risk aversion ρ of
the household indirectly determines how risk-averse firms are. We can expand this term
as Cov[λ!ki] = Corr[λ!ki]

√
V[λ]

√
V[ki], which implies that the firm tries to minimize

the correlation of its unit cost with λ. Furthermore, since prices and GDP tend to move
in opposite directions (see Lemma 1), Corr[λ!ki] is typically positive, and so firms seek
to minimize the variance of their unit cost.16 This has several implications for their choice
of suppliers. To see this, we can use (8) to write

V
[
ki

(
αi!α

∗)] =
n∑

j=1

α2
ij V[pj] +

∑

j≠k

αijαik Cov[pj!pk] + 2 Cov

[

−εi!
n∑

j=1

αijpj

]

+&ii" (16)

The variance of the unit cost can thus be decomposed into four channels. The first term
implies that the firm prefers inputs that have stable prices. The second term implies that
the firm avoids techniques that rely on inputs with positively correlated prices and, in-
stead, prefers to diversify its set of suppliers and adopt inputs whose variation in prices
offset each other. The third term implies that the firm prefers inputs whose prices are
positively correlated with its own productivity shocks. When the firm experiences a neg-
ative shock, the prices of its inputs are then more likely to be low, reducing the expected
increase in its unit cost. Finally, the last term captures the fact that a more volatile pro-
ductivity εi contributes to a more volatile unit cost.

Risk-Adjusted Prices. At an equilibrium network α∗, we can simplify the technique
choice problem of the firm by introducing a risk-adjusted version of sectoral prices.

LEMMA 2: In equilibrium, the technique choice problem of the representative firm in sector
i is

α∗
i ∈ arg max

αi∈Ai

ai(αi) −
n∑

j=1

αijRj

(
α∗)! (17)

where

R
(
α∗) = E

[
p

(
α∗)] + Cov

[
p

(
α∗)!λ

(
α∗)] (18)

is the vector of equilibrium risk-adjusted prices, and where

E
[
p

(
α∗)] = −L

(
α∗)(µ+ a

(
α∗)) and Cov

[
p

(
α∗)!λ

(
α∗)] = (ρ− 1)L

(
α∗)&

[
L

(
α∗)]⊤

β"

This lemma shows that all the equilibrium information needed for the firm’s problem
is contained in the vector of risk-adjusted prices R. This quantity provides an overall
measure of the desirability of an input that depends on its expected price and on how its
price covaries with the stochastic discount factor. This latter term implies that goods that
are cheap when aggregate consumption is low are particularly attractive as inputs.

16If i’s productivity shock is strongly negatively correlated with that of the other sectors, it can be that
Corr[λ!ki] < 0, in which case i seeks to be more volatile to insure the household in states of low consumption.
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Lemma 2 implies that the TFP shifter ai plays a crucial role in determining how a
change in risk-adjusted prices affects firm i’s chosen input shares. To see this, we can
take the first-order condition for an interior solution of problem (17) and use the implicit
function theorem to write

∂αij

∂Rk

=
[
H−1

i (αi)
]
jk
! (19)

where H−1
i is the inverse of the Hessian matrix of ai and where [·]jk denotes its element

j, k. This equation implies that if a good k becomes marginally more expensive or more
risky (higher Rk), firm i responds by changing its share αik of good k by [H−1

i (αi)]kk.
Since ai is strictly concave by Assumption 1, the diagonal elements of H−1

i are negative,
and so a higher Rk always leads to a decline in αik. The size of that decline depends on
the curvature of ai.

Whether the increase in Rk leads to a decline or an increase in the share of other
inputs j ≠ k depends on whether the shares of j and k are complements or substitutes
in the production of good i. If [H−1

i ]jk > 0, we say that they are substitutes, and in that
case a higher risk-adjusted price Rk leads to an increase in αij . As the firm decreases αik,
the incentives embedded in ai to increase αij get stronger, and the firm substitutes αij for
αik. In contrast, if [H−1

i ]jk < 0, we say that the shares of j and k are complements, and an
increase in Rk leads to a decline in αij . One sufficient condition for a Hessian matrix Hi

to feature complementarities for all sectors is [Hi]jk ≥ 0 for all j ≠ k.17

This notion of substitution and complementarity embedded in H−1
i applies ex ante, be-

fore uncertainty is realized, and when firms can adjust their input shares. It is not to be
confused with the usual elasticity of substitution between goods, which would be com-
puted ex post, once the shares are fixed, and which equals 1 in our setup given the Cobb–
Douglas nature of production.

While (19) is only valid at an interior solution of the firm’s problem, the forces that
it captures are also at work when some of the constraints embedded in αi ∈ Ai bind.
But these constraints can also increase the degree of substitution between input shares.
Suppose, for instance, that the minimum labor share constraint

∑n
l=1αil ≤ αi binds, and

that the risk-adjusted price of good j falls. To increase the share of good j, a firm in sector
i would have to lower its share of some other input, say k, to avoid violating the constraint.
In this case, the shares of j and k would behave as substitutes in the production of good i.

Example: Substitutability and Complementarity in Partial Equilibrium. To show how the
substitution patterns embedded in ai affect technique choices, we can revisit the car man-
ufacturer example from the Introduction. Suppose that this manufacturer primarily uses
steel (input 1) to produce cars, and that it relies on equipment (input 2) such as milling
machines and lathes to transform raw steel into usable components. As before, the manu-
facturer also has the option to purchase carbon fiber (input 3) to replace steel components
if needed. It would be natural to endow this manufacturer (sector i = 4) with a TFP shifter
function of the form

a4(α4) = −
4∑

j=1

κj

(
α4j − α◦

4j

)2 −ψ1(α41 − α42)2 −ψ2
[
(α41 + α43) −

(
α◦

41 + α◦
43

)]2
! (20)

17In this case, −Hi is an M-matrix and therefore inverse-positive. Intuitively, [Hi]jk ≥ 0 implies that a higher
αij increases the TFP benefit of raising αik.
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FIGURE 1.—Impact of rising the risk-adjusted price of steel. Note: a4 as in (20) with ψ1 =ψ2 = 1, α◦
4j = 1/3,

κj = 1/10 for j ≠ 4, and κ4 = ∞ and α◦
44 = 0.

√
V[λ] Corr[pj!λ] = 1, E[p2] = −0"05, E[p3] = 0"05, and

V[p2] = V[p3] = 0"1. Panel (a): V[p1] = 0. Panel (b): E[p1] = 0"05.

where κj > 0, ψ1 > 0, and ψ2 > 0. From the second term, we see that any increase in the
share α41 of steel would incentivize the firm to increase the share α42 of steel machinery
as well. Inputs 1 and 2 are therefore complements in the production of cars. In contrast,
the third term implies that any increase in the share α41 of steel would make it optimal
to reduce the share α43 of carbon fiber, and so the shares of inputs 1 and 3 are substi-
tutes. These patterns can be confirmed by computing the inverse Hessian of a4 directly
and inspecting the off-diagonal terms. The parameters ψ1 > 0 and ψ2 > 0 determine the
strength of these substitution-complementarity patterns.

Figure 1 shows what happens to the production technique chosen by this car manufac-
turer if the risk-adjusted price of steel increases. In panel (a), the increase in R1 comes
from a higher expected price E[p1], while in panel (b), the price of steel becomes more
volatile (higher V[p1]). Naturally, when the risk-adjusted price of steel rises, the man-
ufacturer relies less on steel in production, and α41 falls. Since steel machinery is only
useful when steel is used in production, the share α42 falls as well. If the increase in R1 is
large enough, the manufacturer severs the link with its steel and steel machinery suppliers
completely so that both α41 = α42 = 0. At the same time, as steel becomes more expensive
in risk-adjusted terms, the firm finds a carbon fiber supplier and progressively increases
the share αi3.

5. EQUILIBRIUM EXISTENCE, UNIQUENESS, AND EFFICIENCY

In the previous section, we characterized how an individual firm’s technique choice
depends on risk-adjusted prices. However, prices are equilibrium objects that depend on
the production network and, therefore, on the choices made by other firms. In this section,
we consider the full equilibrium mapping and show that there exists a unique equilibrium
and that it is efficient. To prove these results, we rely on the problem of the social planner,
and on the fact that the set of equilibria coincides with the set of efficient allocations.

5.1. The Efficient Allocation

There is a representative household in the economy, and so finding the set of Pareto ef-
ficient allocations amounts to solving the problem of a social planner that maximizes the
utility function (3) subject to the resource constraints (11). The following lemma charac-
terizes production networks that solve that problem.
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LEMMA 3: An efficient production network α∗ solves

W := max
α∈A

W (α!µ!&)!

where W is a measure of the welfare of the household, and where

W (α!µ!&) := E
[
y(α)

]
− 1

2
(ρ− 1) V

[
y(α)

]
(21)

is welfare under a given network α.18

Lemma 3 follows directly from the fact that an efficient network must maximize the ex-
pected utility of the representative household. It further shows that the household favors
networks associated with high expected log GDP E[y(α)] and low aggregate uncertainty
V[y(α)]. The risk aversion parameter ρ determines the relative importance of these two
terms.

Recasting Household Welfare in Terms of Domar Weights. Since Domar weights play a
crucial role in determining the expected value and the variance of GDP, it will be useful
to recast the problem of the social planner in the space of ω. Using (14), we can write the
objective function (21) as

ω⊤µ+ω⊤a(α) − 1
2

(ρ− 1)ω⊤&ω" (22)

The only term in this expression that does not depend exclusively on ω is ω⊤a(α), which
corresponds to the contribution of the TFP shifter functions (a1! " " " !an) to aggregate
TFP. We want to write this object in terms ofω alone. For that purpose, notice that several
networks α are consistent with a given Domar weight vector ω, but that not all of them
are equivalent in terms of welfare. Indeed, to achieve a given ω, the planner will only
select the network α that maximizes welfare, which amounts to maximizing ω⊤a(α).

Formally, consider the optimization problem

ā(ω) := max
α∈A

ω⊤a(α)! (23)

subject to the definition of the Domar weights given by ω⊤ = β⊤L(α). We refer to the
value function ā as the aggregate TFP shifter function. It provides the maximum value
of TFP ω⊤a(α) that can be achieved under the constraint that the Domar weights must
be equal to some given vector ω. We denote by α(ω) the solution to (23). Since both
ā(ω) and α(ω) depend exclusively on the TFP shifter functions (a1! " " " !an) and on the
preference vector β, these two functions will be invariant, for a given ω, to the changes in
beliefs (µ!&) that we consider in the next sections.

EXAMPLE: We can solve explicitly for ā(ω) and α(ω) under the quadratic TFP shifter
function specified in (2). At an interior solution α ∈ intA, the optimal production network

18W is a convenient monotone transformation of the expected utility of the household, such that
E[Y 1−ρ](1 − ρ)−1 = exp((1 − ρ)W)(1 − ρ)−1, and we adopt it as our measure of welfare. If we denote the
expected utility of the household by W, we can write (W′ − W)/|W| ≈ (ρ− 1)(W ′ − W) so that it is straight-
forward to convert changes in welfare between measures.
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α(ω) that solves (23) for a given vector of Domar weights ω is19

αi(ω) − α◦
i = H−1

i

(
n∑

j=1

ωjH
−1
j

)−1(

ω−β−
n∑

j=1

ωjα
◦
j

)

! (24)

for all i, and the associated value function ā is

ā(ω) = 1
2

n∑

i=1

ωi

(
αi(ω) − α◦

i

)⊤
Hi

(
αi(ω) − α◦

i

)
" (25)

From (24), it is straightforward to show that the gradients ∇ai of the TFP shifter functions
are all equal to each other such that ∇ai = ∇aj for all i, j.20 It follows that at an interior
solution, input shares must be such that the marginal TFP benefit [∇ai]k of increasing αik

is equal across all sectors i.

We can use ā(ω) to recast the planner’s problem in the space of Domar weights.

COROLLARY 2: The efficient Domar weight vector ω∗ solves

W = max
ω∈O

ω⊤µ+ ā(ω)︸ ︷︷ ︸
E[y]

−1
2

(ρ− 1)ω⊤&ω︸ ︷︷ ︸
V[y]

! (26)

where O ={ω ∈ Rn
+ :ω≥ β and 1 ≥ω⊤(1 − ᾱ)} and ā(ω) is given by (23).

The set O contains the vectors ω that are feasible given the restriction that the cor-
responding network α(ω) must belong to A. The first inequality in its definition follows
from αij ≥ 0 for all i, j. The second inequality, where 1 denotes the n× 1 all-one column
vector, follows from

∑
j αij ≤ ᾱi for all j.

One key advantage of the optimization problem (26) over (21) is that its choice variable
is a vector instead of a matrix. This makes the comparative static results presented in the
next section simpler and more transparent. In addition, the recast objective function (26)
has attractive properties, as the following lemma shows.

LEMMA 4: The objective function of the planner’s problem (26) is strictly concave. Fur-
thermore, there is a unique vector of Domar weights ω∗ that solves that problem, and there is
a unique production network α(ω∗) associated with that solution.

This lemma shows that there is a unique efficient network in this economy. It also im-
plies that first-order conditions are sufficient to characterize that network, such that we
can easily solve for it using standard numerical methods.

19See Supplemental Appendix C in Kopytov et al. (2024a) for the full derivation.
20It is clear from (24) that Hi(αi − α◦

i ) = Hj (αj − α◦
j ) for all i, j. Furthermore, since ai(α) is a quadratic

function given by (2), we have that ∇ai =Hi(αi − α◦
i ), where ∇ai = dai

dαi
denotes the gradient vector of ai .
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5.2. Fundamental Properties of the Equilibrium

Having characterized the problem of the social planner, we can go back to the equilib-
rium and establish some of its basic properties. The following proposition follows from
the fact that there are no frictions or externalities in the environment and that all markets
are competitive.

PROPOSITION 1: There exists a unique equilibrium, and it is efficient.

The proof of this proposition establishes that the set of equilibria coincides with the set
of efficient allocations. Since by Lemma 4 there is a unique efficient allocation, it follows
that there is also a unique equilibrium.

Proposition 1 implies that we can investigate the properties of the equilibrium by solv-
ing the problem of the social planner directly. This will prove useful when characterizing
how the equilibrium network and aggregate quantities respond to changes in the produc-
tivity process.

6. BELIEFS AND THE PRODUCTION NETWORK

In this section, we characterize how beliefs (µ!&) affect the equilibrium production
network. We begin with a general result that describes how a change in a sector’s risk or
expected TFP impacts its own Domar weight. We then provide an expression that char-
acterizes how the full vector of Domar weights responds to a marginal change in (µ!&).
Finally, we investigate how beliefs affect the structure of the underlying production net-
work α. As we only consider the equilibrium network from now on, we lighten the notation
by dropping the superscript ∗ when referring to equilibrium variables.

6.1. Domar Weights

Corollary 1 implies that Domar weights are key objects to understand how changes
in beliefs (µ!&) affect the expected level and the variance of GDP. In a fixed-network
environment, these weights are constant and do not respond to changes in beliefs. In
contrast, when the network is endogenous, they are equilibrium objects that vary with
(µ!&). The next proposition describes the relationship between these quantities.

PROPOSITION 2: The Domar weightωi of sector i is (weakly) increasing in µi and (weakly)
decreasing in &ii.

This proposition can be understood both from the perspective of an individual producer
and from the perspective of the social planner. Individual producers rely more on sectors
whose prices are low and stable. As a result, these sectors are more important suppli-
ers and their Domar weights are larger. From the planner’s perspective, recall from (13)
that the Domar weight of a sector captures its contribution to log GDP. Since the plan-
ner wants to increase and stabilize GDP, it naturally increases the importance of more
productive (larger µi) and less volatile (smaller &ii) sectors in the production network.

Risk-Adjusted Productivity Shocks. Proposition 2 describes how the Domar weight of a
sector responds to a change in its own TFP process, and it holds generally. At an interior
equilibrium, we can also characterize how any change in beliefs affects the full vector ω.
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For that purpose, we introduce a risk-adjusted version of the productivity vector ε defined
as

E = µ︸︷︷︸
E[ε]

− (ρ− 1)&ω︸ ︷︷ ︸
Cov[ε!λ]

" (27)

The vector E captures how higher exposure to the productivity process ε affects the repre-
sentative household’s utility. It depends on how productive each sector i is in expectation,
and on how its εi covaries with the stochastic discount factor λ. If we denote by 1i the
column vector with a 1 as ith element and zeros elsewhere, we can write

∂E
∂µi

= 1i! (28)

such that an increase in µi makes sector i more attractive. It, however, leaves the risk-
adjusted TFP of other sectors unchanged. Similarly, for a change in &ij , we can compute

∂E
∂&ij

= −1
2

(ρ− 1)(ωj1i +ωi1j)! (29)

such that an increase in variance &ii, by adding aggregate risk to the economy, decreases
the risk-adjusted TFP of sector i. The intensity of that effect depends on the risk aversion
of the household ρ and, through ωi, on the importance of i as a supplier. Similarly, an
increase in covariance &ij , i ≠ j, decreases the risk-adjusted TFP of both sectors i and j.
Again, this effect is stronger when the household is more risk-averse. In what follows,
we refer to a change that increases E as beneficial, and to a change that decreases E as
adverse.

Using the definition of E , we can write the first-order condition of the planner’s problem
(26) at an interior solution as

∇ā(ω) + E = 0! (30)

where ∇ā is the gradient of the aggregate TFP shifter function ā. This first-order condi-
tion shows that the planner balances the benefit of a sector in terms of risk-adjusted TFP
against its impact on the aggregate TFP shifter.

Response of the Domar Weight Vector to Changes in Beliefs. The first-order condition
(30) allows us to characterize how the entire vector of Domar weights responds to any
change in the productivity process in a unified way. Applying the implicit function theo-
rem to (30) yields the following result.

PROPOSITION 3: Let γ denote either the mean µi or an element of the covariance matrix
&ij . If ω ∈ intO, then the response of the equilibrium Domar weights to a change in γ is given
by

dω

dγ
= −H−1

︸ ︷︷ ︸
propagation

× ∂E
∂γ︸︷︷︸

impulse

! (31)

where the n× n negative-definite matrix H is given by

H = ∇2ā+ dE
dω

! (32)
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and where the matrix ∇2ā is the Hessian of the aggregate TFP shifter function ā, and dE
dω

=
− dCov[ε!λ]

dω
= −(ρ− 1)& is the Jacobian matrix of the risk-adjusted TFP vector E .21

The response of the Domar weights to a change in beliefs, as given by (31), can be
decomposed into an impulse component and a propagation component. The impulse cap-
tures the direct impact of the change on risk-adjusted TFP. It is simply given by the partial
derivative of E with respect to the moment of interest (see (28) and (29) above). This im-
pulse is then propagated through H−1 to capture its full equilibrium effect on the Domar
weights.

Just as H−1
i captured local substitution patterns between inputs in the problem of firm

i, H−1 captures global, economy-wide substitution patterns between sectors. If H−1
ij < 0,

we say that i and j are global complements. If, instead, H−1
ij > 0, we say that i and j are

global substitutes.
The following corollary justifies this terminology by showing that the sign of H−1

ij is
sufficient to characterize how Domar weights respond to a change in the productivity
process.

COROLLARY 3: If ω ∈ intO, then the following hold:
1. An increase in the expected value µi or a decline in the variance &ii leads to an increase

in ωj if i and j are global complements, and to a decline in ωj if i and j are global
substitutes.

2. An increase in the covariance &ij , i ≠ j, leads to a decline inωk if k is global complement
with i and j, and to an increase in ωk if k is global substitute with i and j.

This corollary shows that if sectors are global complements they tend to move together
after a change in beliefs. If they are substitutes instead, they tend to move in opposite
directions. Indeed, by Proposition 2, a beneficial change to a sector i leads to an increase
in its Domar weight ωi. This direct effect then contributes to further adjustments of the
Domar weights through H−1. Corollary 3 shows that for sectors that are complements
with i, this indirect effect leads to an increase in their Domar weights. When they are
substitutes, ωj declines instead.

It is clear from (32) that global substitution patterns are determined by the shape of the
TFP shifter functions (a1! " " " !an) through ∇2ā(ω), and by the household’s risk perception
through −(ρ− 1)&. We will explore these two channels in turn.

& and Global Substitution Patterns. The following lemma describes how an increase in
covariance &ij between any two sectors affects the degree of global substitution between
them.

LEMMA 5: An increase in the covariance &ij induces stronger global substitution between

i and j, in the sense that
∂H−1

ij

∂&ij
> 0.

21This proposition focuses on an interior equilibrium, such that ω ∈ intO, but this restriction can be sat-
isfied even if some shares αij are equal to zero. Indeed, for ωj ≥ βj to bind, it must be that αij = 0 for all
i. Furthermore, Proposition 3 can be extended to include some binding constraints. When ωi ≥ βi binds, ωi

is not affected by a marginal change in beliefs. We can therefore exclude these constrained Domar weights
from the application of the implicit function theorem. It follows that a version of (31) holds for unconstrained
Domar weights, as we show in Supplemental Appendix F in Kopytov et al. (2024a).
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Intuitively, if the correlation between εi and εj becomes larger, the planner has stronger
incentives to lowerωj after an increase inωi in order to reduce aggregate risk. From (32),
we see that the strength of that diversification mechanism depends on the household’s risk
aversion through ρ.

∇2ā and Global Substitution Patterns. The curvature of the aggregate TFP shifter func-
tion ā, as captured by its Hessian ∇2ā, also contributes to global substitution patterns.
Intuitively, if a higher ωi raises the marginal TFP benefit of increasing ωj , sectors i and
j tend to move together, which pushes these sectors to be global complements. Clearly,
the local TFP shifter functions (a1! " " " !an) play a key role in shaping ā such that the lo-
cal substitution patterns matter for the global ones. The next lemma establishes sufficient
conditions under which local complementarities translate into global complementarities.

LEMMA 6: Suppose that all input shares are (weak) local complements in the production
of all goods, that is, [H−1

i ]kl ≤ 0 for all i and all k ≠ l. If α ∈ intA, there exists a scalar &̄> 0
such that if ∥&∥ ≤ &̄, all sectors are global complements, that is, H−1

ij < 0 for all i ≠ j.

This result shows that if all input shares are local complements, then sectors are also
global complements, if the covariance matrix & is small enough. This last condition en-
sures that the substitution forces from diversification that are described in Lemma 5 do
not dominate the complementarities coming from the TFP shifters (a1! " " " !an).

Lemma 6 also shows that sectors are global complements even if the local TFP shifters
are neutral in the sense that [H−1

i ]kl = 0 for all i and all k ≠ l. This suggests that the
equilibrium forces of the model, on their own, create global complementarities between
sectors. To understand why, suppose that a sector i becomes more attractive, for instance
due to an increase in µi. Any other sector j that relies either directly or indirectly on
i (Lji > 0) would benefit from that change, and also become more attractive. By itself,
this triggers an increase in Domar weights throughout the network and a shift away from
labor. Through this mechanism, the model generates global complementarities between
sectors, even under TFP shifter functions that do not feature local complementarities.

We also consider how local substitution can lead to global substitution. To do so, it is
convenient to parameterize Hi to be able to tractably adjust the strength of local substi-
tution. For that purpose, let

H−1
i =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
s

n− 1
" " "

s

n− 1
s

n− 1
−1

"""

"""
" " "

s

n− 1
s

n− 1
" " "

s

n− 1
−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

! (33)

where we impose −(n−1) < s < 1 to guarantee that H−1
i is negative definite. When s < 0,

all input shares are complements in the production of good i, and when s > 0, they are
substitutes. The next lemma describes sufficient conditions under which local substitution
implies global substitution.

LEMMA 7: Suppose that all the TFP shifter functions (a1! " " " !an) take the form (2), with
α◦
i = α◦

j for all i, j, and that H−1
i is of the form (33) for all i. If α ∈ intA, there exists a scalar
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&̄ > 0 and a threshold 0 < s̄ < 1 such that if ∥&∥ ≤ &̄ and s > s̄, then all sectors are global
substitutes, that is, H−1

ij > 0 for all i ≠ j.

Global substitution thus emerges if local substitution forces are sufficiently strong (s
sufficiently close to 1) to overcome the natural forces of the model that push for comple-
mentarity between sectors. Again, this result requires that ∥&∥ ≤ &̄ to limit the comple-
mentarity forces that could arise, for instance, from two sectors that are strongly nega-
tively correlated.

An Approximate Equation for the Equilibrium Domar Weights. Propositions 2 and 3
describe how the equilibrium Domar weights respond to a marginal change in beliefs, but
they are silent about which sectors will have large or small Domar weights in equilibrium.
Given the structure of the TFP shifter function ā, solving the planner’s problem (26) forω
must, in general, be done using numerical methods. We can, however, derive approximate
equations for ω using a Taylor expansion of ∇ā. The ideal shares α◦, as they lead to the
highest values of the TFP shifters (a1! " " " !an), provide a natural point around which to do
this approximation. Denote by ω◦ = [L(α◦)]⊤β the vector of Domar weights associated
with α◦. Then, if the equilibrium network ω is close to ω◦, we can write

∇ā(ω) ≈ ∇ā
(
ω◦) + ∇2ā

(
ω◦)(ω−ω◦)" (34)

This approximation is accurate if, for instance, the cost of deviating from the ideal shares
embedded in the local TFP shifters is large. We work out that case formally in Supple-
mental Appendix I in Kopytov et al. (2024a).

With this approximation, the first-order condition (30) becomes linear in ω, and we can
solve for the equilibrium Domar weights.

LEMMA 8: If ω intO, the equilibrium Domar weights are approximately given by

ω=ω◦ −
[
H◦]−1E ◦ +O

(∥∥ω−ω◦∥∥2)
! (35)

where the superscript ◦ indicates that H and E are evaluated at ω◦.

This proposition provides an approximate expression for the equilibrium Domar
weights in terms of the global substitution patterns embedded in [H◦]−1 and the expected
attractiveness of all sectors, as captured by the risk-adjusted productivity E ◦. Suppose that
a sector i is endowed with a productivity process εi that is high in expectation or that has
a low covariance with the stochastic discount factor. In this case, E ◦

i is large and, since the
diagonal elements of [H◦]−1 are negative, ωi tends to be larger than ω◦

i . In addition, the
large E ◦

i contributes to increasing the Domar weights of all sectors that are global comple-
ments with i, and to decreasing the Domar weights of sectors that are global substitutes
with it.

6.2. The Production Network

In the previous section, we described how a change in beliefs affects the vector of Do-
mar weights. While Domar weights are key objects that influence aggregate outcomes,
they do not provide a complete description of the underlying production network. In this
section, we extend our analysis and characterize how beliefs affect the individual links in
the equilibrium network α.
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PROPOSITION 4: If α ∈ intA, there exists a scalar &̄> 0 such that, if ∥&∥ ≤ &̄, the follow-
ing hold:

1. (Complementarity) Suppose that input shares are local complements in the production
of good i, that is, [H−1

i ]kl < 0 for all k ≠ l. Then a beneficial change to k (∂Ek/∂γ > 0)
increases αij for all j.

2. (Substitution) Suppose that the conditions of Lemma 7 about the TFP shifters
(a1! " " " !an) hold. Then there exists a threshold 0 < s̄ < 1 such that, if s > s̄, a bene-
ficial change to k (∂Ek/∂γ > 0) decreases αij for all i and all j ≠ k, and increases αik

for all i.

Point 1 shows that if all inputs are local complements in the production of good i, all
shares αij tend to move together. After a beneficial change to a given sector k, firms in
sector i increase their reliance on k which, through complementarity, leads to an increase
in i’s reliance on other sectors as well. If, instead, local substitution forces are sufficiently
strong (point 2), a beneficial change to the productivity process of firm k still leads to a
higher reliance on sector k, but in this case the forces embedded in Hi push for a decline
in other shares. The proof of Proposition 4 also provides an explicit expression for the
derivative dαij/dγ in terms of the gradient of α(ω) and of dω/dγ.

An Approximate Equation for the Equilibrium Production Network. As for the Domar
weights, one must in general use numerical methods to find the equilibrium network α.
We can, however, derive an approximation for the equilibrium production network when
the cost of deviating from the ideal shares α◦ is large. Specifically, let ai(αi) = κ̄× âi(αi),
where â does not depend on κ, and suppose that α◦

i ∈ intAi. The parameter κ̄ > 0 cap-
tures how costly it is for the firms to deviate from α◦ in terms of TFP loss. When κ̄ is large,
we can use perturbation theory to derive an approximate equation for α (Judd and Guu
(2001), Schmitt-Grohé and Uribe (2004)).

LEMMA 9: If α ∈ intA, the equilibrium input shares in sector i are approximately given by

αi = α◦
i + κ̄−1(Ĥ◦

i

)−1R◦ +O
(
κ−2)! (36)

where Ĥ◦
i is the Hessian of âi at α◦

i , and where the vector of risk-adjusted prices at α◦ is given
by

R◦ = −L◦µ+ (ρ− 1)L◦&ω◦"

Recall from (19) that H−1
i describes how a marginal change in R affects αi in the prob-

lem of firm i. The approximation (36) captures the same forces. It shows that the deviation
of αi from α◦

i depends, approximately, on the vector of risk-adjusted prices R evaluated
at the ideal shares α◦. Intuitively, when it is costly for firms to deviate from α◦, we can
evaluate the equilibrium prices as if firms chose α◦ and use these prices to compute the
sourcing decisions of the firm. By Lemma 9, these decisions provide a first-order approx-
imation of the true equilibrium network.22

22See Supplemental Appendix I in Kopytov et al. (2024a) for more details.
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FIGURE 2.—Cascading impact of a change in &44. Note: Arrows represent the movement of goods: there is
a solid blue arrow from j to i if αij > 0. Dashed gray arrows indicate αij = 0. a is as in (A.27) in Supplemental
Appendix B in Kopytov et al. (2024b) with κij = 0 if there is a potential link between two firms and infinity
otherwise. α◦

ij = 0"5 if there is a potential link, and 0 otherwise. µ = 0 except for µ4 = 0"1. In the left figure,
&= 0. In the right figure, &= 0 except &44 = 1. The risk aversion of the household is ρ= 2. βi = 1/n for all i.

Example: Cascading Link Destruction. To illustrate what type of network adjustments
the model can generate, we consider an example in which a small change in the volatility
of a single sector can push multiple producers to sequentially switch to safer suppliers,
creating a cascade of adjustments. Consider the economy depicted in Figure 2. As indi-
cated by the arrows, firms in sectors 1 to 3 can source inputs from two potential suppliers.
The model is parameterized such that the shares of these suppliers are local substitutes.
Firms in sectors 4 to 7, in contrast, can only use labor in production.

When uncertainty about sector 4 is sufficiently low (&44 → 0; left panel), sectors 1 to 3
rely, directly or indirectly, on sector 4 as a supplier. As &44 increases (right panel), firms
in sector 3, seeking a more stable supply of goods, switch to using good 7 as an input
instead. But this change implies a higher risk-adjusted price for sector 3, which makes
firms in sector 2 want to use good 6 in production instead of good 2. The same logic then
applies to firms in sector 1. A change in the uncertainty of a single sector can thus lead to
a cascading movement to safety that affects far-away sectors.

We can interpret this cascading network adjustment through the lens of Lemma 9. Dif-
ferentiating the expression with respect to &44 yields

dαij

d&44
= κ̄−1(ρ− 1)ω◦

4

([(
Ĥ◦

i

)−1]
jj
L◦

j4

︸ ︷︷ ︸
direct effect of &44 on j

+
∑

l≠j

[(
Ĥ◦

i

)−1]
jl
L◦

l4

)

︸ ︷︷ ︸
indirect effect of &44

through other suppliers l≠j

+O
(
κ̄−2)" (37)

Equation (37) states that if a firm j relies on sector 4 as an input (either immediate or
distant, such that L◦

j4 > 0), an increase in &44 makes j less attractive. This direct effect
pushes αij down (recall that [H−1

i ]jj < 0 by the concavity of ai). There is also an indirect
effect that operates through the second term in (37). If another sector l ≠ j also relies on
4 (L◦

l4 > 0), then an increase in &44 makes l less attractive as well. This indirect channel
can lead to either a decrease or an increase in αij , depending on whether j and l are
complements or substitutes in the production of i; that is, whether [(H◦

i )−1]jl is negative
or positive.

Sector 1, for instance, has two potential suppliers, sectors 2 and 5, with associated shares
α12 and α15. The direct effect of an increase in uncertainty &44 on α12 is strongly negative
since sector 2 relies heavily on 4 (large L◦

24). The indirect effect through sector 5 is, how-
ever, zero since sector 5 does not rely on sector 4 in production (L◦

54 = 0). Furthermore,
the contribution through the indirect effect of all other sectors is also zero since sector 1
never uses them in production and hence [(H◦

1 )−1]2l = 0 for l ≠ 2 and l ≠ 5. It follows that
(37) predicts a decline in α12, and this is indeed what we see in Figure 2.
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Instead, if we consider the response of α15, the direct effect is absent because sector 5
does not rely on sector 4 (L◦

54 = 0). Since sector 2 is sector 1’s only other possible con-
nection, only the indirect effect through that sector remains. The relevant term here is
[(H◦

1 )−1]52L◦
24, which is positive because L◦

24 > 0, and the shares of goods 5 and 2 are sub-
stitutes in the production of good 1, [(H◦

1 )−1]52 > 0. Therefore, an increase in &44 leads to
a larger α15. The same logic applies to the responses of firms 2 and 3, thus explaining the
cascading effect illustrated in Figure 2.23

7. IMPLICATIONS FOR GDP AND WELFARE

Above, we analyzed how the production network responds to changes in beliefs (µ!&),
but what ultimately matters for welfare is the level and the variance of GDP. In this sec-
tion, we describe how these objects are affected by changes in (µ!&) when the network is
endogenous.

7.1. Beliefs and Welfare

The next result compares how beliefs affect our measure of welfare, defined in (21),
under a flexible and a fixed network.

PROPOSITION 5: Let γ denote either the mean µi or an element of the covariance matrix
&ij . Under an endogenous network, welfare responds to a marginal change in γ as if the
network were fixed at its equilibrium value α∗, that is,

dW (µ!&)
dγ

= ∂W
(
α∗!µ!&

)

∂γ
"

This proposition is a direct consequence of the envelope theorem: Since the equilibrium
network is welfare-maximizing, any marginal movement around that network must have
no impact on welfare. It follows that as beliefs change, their impact on the production
network does not affect welfare at the margin.

While this proposition shows that the flexibility of the network plays no role for the
response of welfare to a marginal change in beliefs, this is generally not true for non-
infinitesimal changes. In that case, shifts in (µ!&) that are beneficial to welfare are am-
plified, compared to the fixed-network benchmark, while changes that are harmful are
dampened (see Proposition 2). Indeed, if we denote by α∗(µ!&) the equilibrium produc-
tion network under (µ!&) and by W (α!µ!&) welfare under a network α, we can write
that the difference in welfare after a change in beliefs from (µ!&) to (µ′!&′) satisfies the
inequality

W
(
µ′!&′) − W (µ!&)

︸ ︷︷ ︸
Change in welfare under a flexible network

≥W
(
α∗(µ!&)!µ′!&′) −W

(
α∗(µ!&)!µ!&

)
︸ ︷︷ ︸

Change in welfare under a fixed network

" (38)

This result follows directly from the fact that a flexible network provides an extra margin
of adjustment to the planner and thus cannot leave the household worse off than under a
fixed network.24

23Lemma 9 assumes that α ∈ intA, which is not the case in Figure 2, but it still captures the main forces
that push the shares in response to changes in (µ!&) and is therefore informative about the response of the
network.

24We provide a proof of this result in Supplemental Appendix C in Kopytov et al. (2024a).
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We can also use Proposition 5 to show that the impact of a change in (µ!&) on W is
completely determined by the equilibrium Domar weights and the coefficient of relative
risk aversion ρ.

COROLLARY 4: The impact of an increase in µi on welfare is given by

dW
dµi

=ωi! (39)

and the impact of an increase in &ij on welfare is given by

dW
d&ij

= −1
2

(ρ− 1)ωiωj" (40)

This proposition follows directly from Corollary 1 and Proposition 5. Its first part pro-
vides a Hulten-like result for welfare in an endogenous network economy: Equation (39)
states that the impact of an increase in µi on welfare is equal to the Domar weight ωi of
the affected sector. Since Domar weights are positive, increasing µi always has a positive
impact on welfare. The second part of the proposition provides a similar result for an in-
crease in uncertainty or covariance. In this case, the impact of the change is proportional
to the product of the relevant Domar weights, and an increase in &ij lowers welfare when
ρ > 1. Intuitively, with a higher &ii, the economy features more uncertainty, which the
household dislikes. Similarly, when sectoral shocks are more positively correlated, they
offset each other less, such that the volatility of consumption increases and welfare falls.

7.2. Beliefs and GDP

Under an endogenous network, changes in beliefs also affect GDP through their impact
on the production network. In this section, we analyze this link explicitly, starting with a
general result that describes how GDP reacts to the presence of uncertainty.

PROPOSITION 6: The presence of uncertainty lowers expected log GDP, in the sense that
E[y] is largest when &= 0.

This proposition follows directly from Lemma 3. Without uncertainty (&= 0), the vari-
ance V[y] of log GDP is zero for all networks α ∈ A. The social planner then maximizes
E[y] only. When, instead, the productivity vector ε is uncertain (& ≠ 0), the planner also
seeks to lower V[y], which necessarily lowers expected log GDP in equilibrium.

Proposition 6 establishes a novel mechanism through which uncertainty reduces ex-
pected log GDP. To understand that mechanism, consider the technique choice problem
from the firm’s perspective. When there is no uncertainty, firms do not worry about risk
and move toward cheaper suppliers, which tend to be the most productive ones, and to-
ward techniques with higher TFP. As a result, the aggregate economy is maximally pro-
ductive, and E[y] is large. When some suppliers become risky, customers worry about a
possible increase in input costs and start purchasing from more stable but less productive
suppliers. As a result, the aggregate economy becomes less productive on average and
expected log GDP falls.

The endogenous response of the network is essential for the result of Proposition 6.
Indeed, in our model, uncertainty affects expected log GDP only through the endogenous
response of the network. If the shares α were fixed, uncertainty would have no impact on
E[y].
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Response of GDP to a Marginal Change in Beliefs. The previous proposition states that
expected GDP is maximized in the absence of any uncertainty, but we can also consider
the impact of a marginal change in beliefs on the moments of GDP. To do so, we first pro-
vide a result that connects the responses of E[y] and V[y] under an endogenous network
to their counterparts under a fixed network.

COROLLARY 5: Let γ denote either the mean µi or an element of the covariance matrix
&ij . The equilibrium response to a change in beliefs γ must satisfy

dE[y]
dγ

− ∂E[y]
∂γ︸ ︷︷ ︸

Excess response of E[y]

= 1
2

(ρ− 1)
(
dV[y]
dγ

− ∂V[y]
∂γ

)

︸ ︷︷ ︸
Excess response of V[y]

" (41)

The left-hand side of (41) is the response of E[y] to the change in γ in the flexible-
network economy (full derivatives) in excess of its fixed-economy response (partial deriva-
tives). The right-hand side involves the same quantity for V[y]. Corollary 5 is a direct con-
sequence of Proposition 5. Since the response of welfare to a marginal change in beliefs
must be the same under a flexible and a fixed network, a larger increase in E[y] under
a flexible network must come at the cost of a larger increase in the variance V[y]. This
fundamental tension between E[y] and V[y] comes from the fact that the equilibrium
network was efficient before the change in the productivity process and already optimally
traded off increasing E[y] against reducing V[y].

We now turn to a key result, which describes how GDP responds to marginal changes
in beliefs.

PROPOSITION 7: If ω ∈ intO, the following hold:
1. The impact of an increase in µi on log GDP is given by

dE[y]
dµi

= ωi︸︷︷︸
Fixed network

−(ρ− 1)ω⊤&H−1 ∂E
∂µi

! and

dV[y]
dµi

= 0︸︷︷︸
Fixed network

−2ω⊤&H−1 ∂E
∂µi

"

2. The impact of an increase in &ij on log GDP is given by

dE[y]
d&ij

= 0︸︷︷︸
Fixed network

−(ρ− 1)ω⊤&H−1 ∂E
∂&ij

! and

dV[y]
d&ij

= ωiωj︸ ︷︷ ︸
Fixed network

−2ω⊤&H−1 ∂E
∂&ij

"

The first part of Proposition 7 describes how log GDP responds to an increase in µi.
On impact, sector i becomes more productive, which has a direct effect of ωi on E[y].
This is the standard Hulten’s theorem effect that occurs when the network is kept fixed
(Corollary 1). When the network is flexible, a reorganization also occurs to take advantage
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of the new µ. Corollary 5 implies that this excess response of E[y] can be computed from
the excess response of V[y], such that

dE[y]
dµi

− ∂E[y]
∂µi

∝ dV[y]
dµi

− ∂V[y]
∂µi

= 2ω⊤&
︸ ︷︷ ︸

dV[y]
dω⊤

×
(

−H−1 ∂E
∂µi

)

︸ ︷︷ ︸
dω
dµi

−0!

where we used (14) and Proposition 3 to compute dV[y]/dµi, and where ∂V[y]/∂µi = 0
by Corollary 1. It follows that the response of the moments of log GDP to a change in µi

depends on how that change affects the Domar weights (−H−1∂E/∂µi) and on how that
movement in Domar weights influences the variance of log GDP (2ω⊤&).

A similar reasoning applies for changes in &ij (point 2 of the proposition). On impact,
a higher &ij leads to an increase in V[y] by the fixed-network term ωiωj , and the ensuing
reorganization of the network can amplify or dampen that direct effect. If V[y] increases
by more than ωiωj , welfare maximization implies that E[y] must also increase, as the
result shows.

The Role of Risk and of the Global Substitution Patterns. For a given equilibrium, one
can compute the expressions in Proposition 7 to fully characterize how GDP would re-
spond to a change in beliefs. This response, in turn, depends on the risk structure & of
the economy and on the global substitution patterns embedded in H−1. We now explore
these two channels more thoroughly.

We can readily characterize the impact of beliefs when there is no uncertainty.

COROLLARY 6: Without uncertainty (&= 0), the moments of GDP respond to changes in
beliefs as if the network were fixed, such that

dE[y]
dµi

= ∂E[y]
∂µi

=ωi! and
dV[y]
d&ij

= ∂V[y]
∂&ij

=ωiωj"

When & = 0, the Domar weights are sufficient to characterize the behavior of GDP,
even though the production network is flexible and can respond to changes in beliefs. It
follows that uncertainty is essential for the economy to depart from Hulten’s theorem.
Intuitively, without uncertainty, the network maximizes expected log GDP, such that at
an interior equilibrium, dE[y]/dα= 0. It follows that even if the network responds to a
marginal change in beliefs, this reorganization has no impact on E[y]. Corollary 6 shows
that this logic also applies when the equilibrium is not interior.

In contrast, when there is uncertainty, whether a change in beliefs amplifies or dampens
the fixed-network effect depends crucially on the global substitution patterns embedded
in H−1. The next result describes what happens when sectors are global complements.

COROLLARY 7: Suppose thatω ∈ intO. There exists a threshold &̄< 0 such that if &kl > &̄
for all k, l, then the following hold:

1. If all sectors are global complements with sector i, that is, H−1
ik < 0 for k ≠ i, then

dE[y]
dµi

>ωi! and
dV[y]
dµi

> 0"
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2. If all sectors are global complements with sectors i and j, that is, H−1
ik < 0 and H−1

jk < 0
for k ≠ i! j, then

dE[y]
d&ij

< 0! and
dV[y]
d&ij

<ωiωj"

The first part of the corollary shows that, under global complementarities, expected
log GDP responds to expected TFP by more than when the network is fixed. Effectively,
the network is reorganized to amplify the positive impact of the change in beliefs on E[y].
Intuitively, after the increase in µi, the Domar weight of sector i increases (Proposition 2).
Because of the global complementarities, this causes all the other Domar weights to rise
as well (Corollary 3). As long as the covariances &ij are not too negative, this simultaneous
increase in Domar weights pushes the variance of log GDP up. From Proposition 7, it then
follows that E[y] increases by more than ωi. A similar mechanism explains the impact of
a change in &ii and &ij on the moments of GDP, but in this case the economy responds by
less than predicted by Hulten’s theorem.

We can also explore how GDP responds to changes in beliefs under global substitutabil-
ities.

COROLLARY 8: Suppose that ω ∈ intO. Then there exist thresholds &> 0 and &̄> 0 such
that:

1. If all sectors are global substitutes with sector i, that is, H−1
ik > 0 for k ≠ i, and sector i

is not too risky while other sectors are sufficiently risky in the sense that &ji < & for all j
and &jk > &̄ for all j!k ≠ i, then

dE[y]
dµi

<ωi! and
dV[y]
dµi

< 0"

2. If all sectors are global substitutes with sectors i and j, that is, H−1
ik > 0 and H−1

jk > 0 for
k ≠ i! j, and sectors i and j are not too risky while other sectors are sufficiently risky in
the sense that &li < & and &lj < & for all l, and &lk > &̄ for all l!k ≠ i and l!k ≠ j, then

dE[y]
d&ij

> 0! and
dV[y]
d&ij

>ωiωj"

After an increase in µi, the Domar weight of sector i increases (Proposition 2) which
pushes V[y] up, but if &ii is small, this increase in V[y] is also small. Because other sectors
are global substitutes with i, the increase in ωi leads to a decline in all the other Domar
weights. If the variances of those sectors are large relative to &ii, this decline in Domar
weights leads to a substantial decrease in V[y]. By the logic of Proposition 7, this implies
that E[y] must increase by less than its fixed-network term ωi. Through a similar mech-
anism, an increase in &ii leads to an increase in V[y] that is larger than under a fixed
network. In this case, E[y] increases in response to the higher &ii, such that uncertainty
can be beneficial to expected log GDP at the margin.25

25This does not contradict Proposition 6, as Corollary 8 only applies at the margin when &jk > &̄> 0 for all
j!k ≠ i. Eliminating uncertainty altogether would still lead to an increase in E[y].
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FIGURE 3.—The non-monotone impact of beliefs on GDP. Note: There is an arrow from j to i if
αij > 0. Household: ρ = 2"5 and β1 = β2 = β3 = 1

3 − ϵ, β4 = β5 = 3
2ϵ, where ϵ > 0 is very small.

µ = (0"1!0"1!0"1!0"1!−0"08), & is diagonal, with diag(&) = (0"2!0"2!0"2!0"2!0"02). a is as in (2) with
α◦

14 = α◦
15 = α◦

24 = α◦
25 = α◦

34 = α◦
35 = 0"25; all other α◦

ij are zero. H4 = H5 are matrices with −50 on the di-
agonal. H1 = H2 = H3 with [H1]11 = [H1]22 = [H1]33 = −50, [H1]44 = [H1]55 = −2. In panels (a)–(c), µ5 goes
from −0"08 to 0.1; 4 and 5 are substitutes, [H1]45 = −1"9. In panels (d)–(f), &55 goes from 0.02 to 0.2; 4 and 5
are complements, [H1]45 = 1"9.

Counterintuitive Implications of Changes in Beliefs. Corollaries 7 and 8 establish suf-
ficient conditions under which the response of GDP to beliefs can be larger or smaller
than predicted by Hulten’s theorem in the fixed-network economy. But the endogenous
adjustment of the network can also have more extreme consequences: in some cases, an
increase in µ can lead to a decline in E[y] and an increase in & can lead to a decline in
V[y]. To understand why, consider a producer with (on average) low but stable produc-
tivity. The high price of its good makes it unattractive as a supplier. But if its expected
productivity increases, its risk-reward profile improves, and other producers might begin
to purchase from it. Doing so, they might move away from more productive—but also
riskier—producers and expected GDP might fall as a result. A similar mechanism implies
that an increase in the volatility of a sector’s productivity can lead to a decline in V[y]. In
what follows, we provide an example that explicitly illustrates how such counterintuitive
effects may arise.

In the economy depicted in Figure 3, sectors 4 and 5 use only labor to produce, while
sectors 1 to 3 can also use goods 4 and 5 as inputs. The local TFP shifter functions are
such that, for i ∈ {1!2!3}, the shares of goods 4 and 5 are either local substitutes with
[H−1

i ]45 > 0 in panels (a) to (c), or local complements with [H−1
i ]45 < 0 in panels (d) to (f).

Sector 4 is more productive and volatile than sector 5 (µ4 >µ5 and &44 > &55).
Consider the impact of a positive shock to µ5 when inputs 4 and 5 are substitutes.

The solid blue lines in panels (a) to (c) illustrate the impact of this change, and point O
represents the economy before the change. As we can see, the initial increase in µ5 has a
negative impact on expected log GDP. To understand why, notice that for a small increase
in µ5, sector 5 is still less productive (in expectation) than sector 4, but it now offers a
better risk-reward trade-off. As a result, sectors 1 to 3 increase their shares of good 5 and,
since goods 4 and 5 are substitutes, reduce their shares of good 4. But since µ4 >µ5, this
readjustment leads to a fall in E[y] for a small increase in µ5. At the same time, V[y]
also declines because sector 5 is less volatile than sector 4, in line with Proposition 7. The
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implied changes in E[y] and V[y] thus have opposite impacts on welfare. By Corollary 4,
the overall effect on welfare must be positive though, and this is indeed confirmed in
panel (c). Naturally, as µ5 keeps increasing, E[y] eventually starts to increase as well.

To emphasize the role of the endogenous network for this mechanism, Figure 3 also
shows the effect of the same increase in µ5 when the network is kept fixed (dashed red
lines). From Corollary 1, the marginal impact of µ5 on expected log GDP is equal to its
Domar weight, and increasing µ5 has a positive impact on E[y]. At the same time, V[y]
is unaffected by changes in µ. While an increase in µ5 is welfare-improving in this case,
the effect is less pronounced than in the flexible-network economy. Indeed, in the latter
case, the equilibrium network adjusts precisely to maximize the beneficial impact of the
change in beliefs on welfare, as implied by (38).

We can use a small variation of this economy to illustrate how an increase in an element
of & can lower the variance of log GDP, and simultaneously lower welfare. Start again
from the economy in the left column of Figure 3 (point O) but suppose that inputs 4
and 5 are complements in the production of goods 1 to 3. Consider an increase in the
volatility of sector 5. In response, sectors 1 to 3 start to rely less on sector 5. But since
inputs 4 and 5 are complements, sectors 1 to 3 also reduce their shares of input 4, thus
increasing the overall share of labor which is a safe input. As a result, the variance of
log GDP declines (panel e). Expected log GDP also goes down by Proposition 7 (panel
d). The combined effect on welfare is negative, as predicted by Corollary 4 (panel f). In
this case, the reorganization of the network mitigates the adverse effect of the increase
in volatility on welfare. Instead, if the network is fixed, an increase in &55 does not affect
expected log GDP but leads to an increase in the variance of log GDP. As a result, welfare
drops substantially more than under an endogenous network, as implied by (38).

8. A BASIC CALIBRATION OF THE MODEL

The analysis above highlights the economic forces that determine how the production
network, GDP, and welfare respond to changes in the productivity process. Clearly, the
model is too stylized to capture all the fluctuations in the production network observed in
reality, and other mechanisms, not present in our model, may also be important in prac-
tice. With that caveat in mind, we present in this section results from a basic calibration
of the model to the United States economy to get a sense of the quantitative potential of
our main mechanisms.

Below, we first describe how the model is parameterized and briefly go over which
features of the U.S. economy the model matches well, and in what dimensions it falls
short. Finally, we explore how beliefs shape the production network and investigate how
the changing structure of the network influences aggregate output and welfare in our
stylized model. We keep the analysis succinct but provide more details in Supplemental
Appendix B in Kopytov et al. (2024b).

8.1. Parameterization

The Bureau of Economic Analysis (BEA) provides U.S. sectoral input-output tables for
n = 37 sectors at an annual frequency from 1948 to 2020. From these data, we compute
the input shares αijt of each sector in each year t, the average consumption expenditure
share of each sector βi, and sectoral TFP measured as the Solow residual.

To calibrate the model, we need to make explicit assumptions about the process for
TFP. For the endogenous productivity shifter Ai(αit), we adopt a particular version of
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form (2) which includes a diagonal component for H̄i and a penalty for deviating from an
ideal labor share (see (A.27) in Supplemental Appendix B in Kopytov et al. (2024b)). We
set the ideal shares (α◦

1! " " " !α
◦
n) equal to the time average of the input shares observed in

the data. The exogenous sectoral productivity process εt is assumed to follow a random
walk with drift,

εt = γ+ εt−1 + ut! (42)

where γ is an n × 1 vector of deterministic drifts and ut ∼ iid N (0!&t) is a vector of
shocks. We further assume that firms know γ and εt−1 at time t, so that the conditional
mean and the covariance of beliefs are given by µt = γ+εt−1 and &t . Importantly, we allow
uncertainty &t to vary over time and estimate it from TFP data using a rolling window that
puts more weight on more recent observations.

We use a simple moment-matching strategy to pin down the (1) relative risk aversion
parameter ρ of the household, (2) the TFP shifter functions H̄i, and (3) the time-varying
beliefs (µt!&t). We describe this procedure in Supplemental Appendix B in Kopytov et al.
(2024b).

The calibrated coefficient of relative risk aversion ρ̂ is 4.3, which is similar to values
used or estimated in the macroeconomics literature. Our procedure also provides time-
series for the vector µt and the matrix &t , and we aggregate these variables across sectors
to obtain economy-wide measures of the expected value µ̄t and the variance &̄t of aggre-
gate TFP. As we might expect, these measures are cyclical, with µ̄t falling and &̄t rising
during recessions. Overall, our measure of aggregate uncertainty &̄t has been relatively
stable since 1980, with occasional sharp spikes, most notably during the Great Recession
of 2007–2009 (see Figure B.1 in Supplemental Appendix B in Kopytov et al. (2024b)).

We next assess how well the calibrated model fits key moments in the data. As we have
seen above, the Domar weights, and how they react to changes in µt and &t , are central
for the mechanisms of the model. The model is able to roughly replicate features of the
empirical Domar weights, with a cross-sectional correlation between the time-averaged
Domar weights in the model and in the data of 0.96. However, the average Domar weight
in the model (0.03) is lower than its data counterpart (0.05).26 Overall, the model can
account for about 40% of the over-time standard deviation of Domar weights, which in-
dicates that other mechanisms, such as technological progress that might expand the set
of available techniques, might be at work in reality.

The mechanisms of the model predict that a decline in the expected productivity of
a sector µi, or an increase in its variance &ii, should push firms to reduce the impor-
tance of that sector as an input provider, leading to a decline in its Domar weight.
Reassuringly, these correlations are visible in the data, where Corr(ωjt!µjt) = 0"1, and
Corr(ωjt!&jjt) = −0"4. The calibrated model is also able to roughly match these correla-
tions, and the corresponding numbers are 0"1 and −0"3.

8.2. The Production Network, Welfare, and Output

To evaluate the quantitative potential of an endogenous production network for welfare
and GDP, we compare the calibrated model to two sets of alternative economies. First,
we compare our baseline model to an economy in which the network is kept completely

26We explain in Supplemental Appendix B in Kopytov et al. (2024b) that this discrepancy can be explained
by our choice to target consumption growth instead of GDP growth in the estimation.
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fixed at its sample average. This exercise therefore informs us about the overall impact
of changes in the structure of the production network. We then investigate the role of
uncertainty alone in shaping the production network. We do so by considering (1) an
economy in which production techniques are chosen as if &t = 0,27 and (2) a perfect-
foresight economy in which firms observe the realization of εt before making technique
choices (the “known εt” economy).28 In both cases, uncertainty is irrelevant for decisions,
and so these exercises allow us to isolate the impact of uncertainty on the production
network and, through that channel, on macroeconomic aggregates.

We find that expected log GDP in the “fixed network” economy is 2"1% lower than in
our baseline calibration with a flexible network. Intuitively, as some sectors become more
productive over time, the goods that they produce become cheaper, and firms would like
to rely more on them. With a flexible network this is possible, and the aggregate economy
becomes more productive as a result. The difference in welfare between the two models
is about 2.1% as well.

When we isolate the role of uncertainty, however, these numbers become smaller. In
line with the theory, the baseline economy is, on average, less productive and less volatile
than under the “as if &t = 0” alternative, but the numbers are small, on the order of
0.01% for E[y] and 0.10% for V[y]. This suggests that, for most of the sample period,
uncertainty is sufficiently low that firms simply buy their inputs from the most productive
suppliers without much concern for any risk involved.29

The differences between our calibrated economy and the “no uncertainty” alternatives
are, however, larger during high-uncertainty episodes like the Great Recession.30 The
top row of Figure 4 shows that expected log GDP in the baseline economy is about 0.25%
lower in 2009 than in the alternative “as if &t = 0” economy. Because of the large increase
in uncertainty, firms adjust their production techniques toward safer but less productive
suppliers to avoid potentially large increases in costs. The result in terms of aggregate
volatility is visible in the top-right panel, where we see that log GDP is about 2.4% less
volatile in 2009 in the baseline economy. Interestingly, realized log GDP, shown in the left-
bottom panel, is substantially higher in the baseline economy than in the “as if &t = 0”
alternative. Essentially, firms took out an insurance against particularly bad TFP draws
and opted for safer suppliers. When these fears were realized, this insurance policy paid
off so that the baseline economy fared about 2.7% better in terms of realized log GDP
compared to the alternative.

The right-bottom panel provides the same information for the “known εt” alternative.
In this case, beliefs (µt!&t), and in particular uncertainty, play no role in shaping the
network and, from the planner’s problem, the optimal network is simply the one that
maximizes (realized) consumption. It follows that realized consumption (or GDP) is al-
ways larger than in the baseline model. Unsurprisingly, the difference is particularly pro-

27Specifically, we set &= 0 when solving the problem of the social planner (21) for the equilibrium network
α∗. We then reintroduce uncertainty when computing the moments of GDP and welfare.

28One interpretation is that adopting a new technique is immediate, so that firms can wait to pick the best
technique for a particular εt draw. Techniques and intermediate input choices are thus made simultaneously
and conditional on observed prices.

29As in Lucas (1987), the utility cost of business cycles is, on average, small in our model and the planner
does not want to sacrifice much in terms of the level of GDP for a reduction in its volatility. We provide the
same moments for the “known εt” economy in Supplemental Appendix B.4 in Kopytov et al. (2024b).

30The differences between our calibrated and fixed-network economies are also particularly large during
volatile periods, when adjusting the network is most beneficial. In Supplemental Appendix J in Kopytov et al.
(2024a), we show that allowing the network to adjust leads to large gains in expected GDP during the Great
Recession.
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FIGURE 4.—The role of uncertainty in the postwar period. Note: The differences between the series implied
by the baseline model (without tildes) and the two alternatives (marked by tildes): the “as if &t = 0” alternative
(panels (a) to (c)) and the “known εt” alternative (panel (d)). All economies are hit by the same shocks that are
filtered out from the TFP data under our baseline model. All differences are expressed in percentage terms.
Expected log GDP E[y] and expected standard deviation of log GDP

√
V[y] are evaluated before εt is realized.

nounced during episodes of high uncertainty, when knowing εt provides a larger advan-
tage, and reaches a high of 3% during the Great Recession.31

Overall, our findings suggest that, while uncertainty might have a limited impact on the
economy on average, it may play a larger role in shaping the production network during
high-uncertainty periods, with consequences for expected and realized GDP, as well as
for welfare. Given the stylized nature of the model, these findings should be interpreted
with caution. The model abstracts from other forces that might affect the production net-
work, such as changes in demand and technological progress that would expand the set
of production techniques. Similarly, the production function might not be Cobb–Douglas
in reality, in which case changes in prices would affect Domar weights. We also made the
implicit assumption that it takes one year (the frequency of our data) for firms to change
production techniques. While this assumption might be reasonable for some sectors, it
is likely that the time it takes to retool a factory varies significantly by industry, or even
depending on what the new and the old techniques are.32 While we believe that the mech-
anisms that we explore in this paper would still be present in a richer model, more work
would be needed to fully assess their importance.

9. MODEL-FREE EVIDENCE FOR THE MECHANISMS

The model proposed in this paper relies on simplifying assumptions for tractability. In
this section, we present additional evidence in support of the main mechanisms of the

31Since εt is known in this exercise, E[y] = W = y and V[y] = 0, and so we do not report these moments
in Figure 4. Alternatively, one can compute E[y], V[y], and W before εt is known but still assuming that
the production network is chosen optimally for the given realized draw of εt . We report these moments in
Supplemental Appendix B.4 in Kopytov et al. (2024b).

32In the car industry, General Motors took about one year to retool a factory for electric vehicle production
(Lutz (2021)), but it took Ford eight weeks to switch from using steel to aluminum for the body of the F-150
(Dean (2015)).
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model that does not rely on this structure. Through firm-level regressions that closely
follow Alfaro, Bloom, and Lin (2019), we document that (1) higher uncertainty about a
firm leads to a decline in its Domar weight, and (2) network connections involving riskier
suppliers are more likely to break down. We test these predictions at the firm level to take
advantage of the abundance of data and of instrumental variables that are available at
this level of aggregation. Supplemental Appendix G in Kopytov et al. (2024a) describes
the data and the instruments in detail.

9.1. Uncertainty and Domar Weights

We first test the model’s prediction that Domar weights decrease with uncertainty. We
use annual U.S. data from 1963 to 2016 provided by Compustat. Our main variables of
interest are a firm’s Domar weight, constructed by dividing its sales by nominal GDP, and
a measure of its stock price volatility, which we use as a proxy for uncertainty.33 We then
regress the change in Domar weight on the change in stock price volatility. The results
are presented in the first column of Table I. In column (2), we follow Alfaro, Bloom,
and Lin (2019) and address potential endogeneity concerns by instrumenting stock price
volatility with industry-level exposure to ten aggregate sources of uncertainty shocks. In
column (3), we use option prices to back out an implied measure of future volatility. In
all cases, we find a negative and significant relationship between uncertainty and Domar
weights. The effect is also economically large with a decline in Domar weight of about
18% following a doubling in firm-level volatility (roughly a 3.3 standard deviation volatility

TABLE I
DOMAR WEIGHTS AND UNCERTAINTY.

Change in Domar Weight
(1) OLS (2) IV (3) IV

1Volatilityi!t−1 −0"058 −0"137 −0"218
(0"004) (0"034) (0"073)

1st moment 10IVi!t−1 No Yes Yes
Type of volatility Realized Realized Implied
Fixed effects Yes Yes Yes
Observations 112,563 27,380 17,151
F-statistic – 14.2 9.8

Note: Table presents OLS and 2SLS annual regression results of firm-level volatility. The dependent variable is the growth rate in
Domar weight. Supplier 1Volatilityi!t−1 is the 1-year lagged change in firm-level volatility. Realized volatility is the 12-month standard
deviation of daily stock returns from CRSP. Implied volatility is the 12-month average of daily (365-day horizon) implied volatility of
at-the-money-forward call options from OptionMetrics. As in Alfaro, Bloom, and Lin (2019), “we address endogeneity concerns on
firm-level volatility by instrumenting with industry-level (3SIC) non-directional exposure to 10 aggregate sources of uncertainty shocks.
These include the lagged exposure to annual changes in expected volatility of energy, currencies, and 10-year treasuries (as proxied
by at-the-money forward-looking implied volatilities of oil, 7 widely traded currencies, and TYVIX) and economic policy uncertainty
from Baker, Bloom, and Davis (2016). [. . . ] To tease out the impact of 2nd moment uncertainty shocks from 1st moment aggregate
shocks we also include as controls the lagged directional industry 3SIC exposure to changes in the price of each of the 10 aggregate
instruments (i.e., 1st moment return shocks). These are labeled 1st moment 10IVt−1.” See Alfaro, Bloom, and Lin (2019) for more
details about the data and the construction of the instruments. All specifications include year × industry (2SIC) fixed effects. Standard
errors (in parentheses) are clustered at the industry (3SIC) level. F -statistics are Kleibergen–Paap.

33Ersahin, Giannetti, and Huang (2022) used textual analysis of earning conference calls to measure firm-
level supply chain risk, and found that it is positively correlated with stock price volatility. They also found that
firms respond to higher supply chain risks by switching to a wider range of less risky suppliers.
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TABLE II
LINK DESTRUCTION AND SUPPLIER VOLATILITY.

Dummy for Last Year of Supply Relationship
(1) OLS (2) IV (3) IV

1Volatilityt−1 of supplier 0"026 0"097 0"144
(0"012) (0"035) (0"063)

1st moment 10IVt−1 of supplier No Yes Yes
Type of volatility Realized Realized Implied
Fixed effects Yes Yes Yes
Observations 35,629 35,620 26,195
F-statistic – 22.9 10.4

Note: Table presents OLS and 2SLS annual regression results of firm-level volatility. The dependent variable is a dummy variable
that equals 1 in the last year of a supply relationship and zero otherwise. We limit the sample to relationships that have lasted at least
five years. The IV estimates remain significant when relationships of other lengths are considered. Supplier 1Volatilityt−1 is the 1-
year lagged change in supplier-level volatility. Realized volatility is the 12-month standard deviation of daily stock returns from CRSP.
Implied volatility is the 12-month average of daily (365-day horizon) implied volatility of at-the-money-forward call options from
OptionMetrics. As in Alfaro, Bloom, and Lin (2019), “we address endogeneity concerns on firm-level volatility by instrumenting with
industry-level (3SIC) non-directional exposure to 10 aggregate sources of uncertainty shocks. These include the lagged exposure to
annual changes in expected volatility of energy, currencies, and 10-year treasuries (as proxied by at-the-money forward-looking implied
volatilities of oil, 7 widely traded currencies, and TYVIX) and economic policy uncertainty from Baker, Bloom, and Davis (2016). [. . . ]
To tease out the impact of 2nd moment uncertainty shocks from 1st moment aggregate shocks we also include as controls the lagged
directional industry 3SIC exposure to changes in the price of each of the 10 aggregate instruments (i.e., 1st moment return shocks).
These are labeled 1st moment 10IVt−1.” See Alfaro, Bloom, and Lin (2019) for more details about the data and the construction of
the instruments. All specifications include year × customer × supplier industry (2SIC) fixed effects. Standard errors (in parentheses)
are two-way clustered at the customer and the supplier industry (3SIC) levels. F -statistics are Kleibergen–Paap.

shock), according to the IV estimates. Overall, these results provide evidence that higher
uncertainty leads to lower Domar weights, in line with the predictions of our theoretical
model.

9.2. Uncertainty and Link Destruction

We conduct a similar exercise, this time at the firm-to-firm relationship level, to investi-
gate whether higher supplier uncertainty is associated with a higher likelihood of link de-
struction. We proceed by combining the uncertainty data described above with data from
2003 to 2016 about firm-level supply relationships provided by Factset. We then regress a
dummy variable that equals 1 in the last year of a relationship on the change in the sup-
plier’s stock price volatility. The results are presented in column (1) of Table II. As in the
last exercise, column (2) uses industry-level sensitivity to aggregate shocks as instruments,
and column (3) uses implied volatility from option prices as a measure of uncertainty.
In all cases, we find a positive and statistically significant relationship between supplier
volatility and the end of supply relationships, which is consistent with buyers moving away
from riskier suppliers. The effect is also economically large with a doubling in volatil-
ity associated with a 12 percentage point increase in the likelihood that a relationship is
destroyed, according to the IV estimates.

10. CONCLUSION

We construct a model in which agents’ beliefs about productivity affect the structure
of the production network and, through that channel, macroeconomic aggregates such
as output and welfare. We prove that the unique equilibrium is efficient, and that it is
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characterized by a trade-off between the expected level and the volatility of GDP. We also
prove that the presence of uncertainty, through its effect on the network, unambiguously
lowers expected log GDP. When calibrated to the United States economy, the model
predicts that the impact of uncertainty on the network can potentially have a sizable effect
on GDP and welfare during periods of high uncertainty such as the Great Recession.

The model is tractable and can serve as a framework to study various related questions.
For instance, with adjustments, our closed economy model could be adapted to study
uncertainty about international supply chains. Such a model could inform recent policy
discussions about onshoring by spelling out both the benefits and the costs of reallocating
production to locations with lower geopolitical risk. It would also be natural to extend
our analysis to a model calibrated to firm-level data, and to allow firms to enter and exit.
However, such an extension would be more involved, as it would necessitate moving away
from the perfect competition framework proposed here. Finally, we believe that in reality
dynamic considerations might play an important role when firms are deciding to create
relationships with suppliers, and so a dynamic version of our model could be a worthwhile
extension.
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