Endogenous Production Networks Under Supply Chain Uncertainty

Alexandr Kopytov University of Hong Kong

Kristoffer Nimark Cornell University Bineet Mishra Cornell University

Mathieu Taschereau-Dumouchel Cornell University • Firms rely on complex supply chains to get intermediate inputs

- Firms rely on complex supply chains to get intermediate inputs
- Supply chains are often disrupted by natural disasters, trade barriers, changes in regulations, congestion in transportation links, etc.

- Firms rely on complex supply chains to get intermediate inputs
- Supply chains are often disrupted by natural disasters, trade barriers, changes in regulations, congestion in transportation links, etc.
- These shocks propagate through input-output linkages \rightarrow agg. fluctuations

- Firms rely on complex supply chains to get intermediate inputs
- Supply chains are often disrupted by natural disasters, trade barriers, changes in regulations, congestion in transportation links, etc.
- These shocks propagate through input-output linkages \rightarrow agg. fluctuations
 - Structure of the production network matters for propagation

- Firms rely on complex supply chains to get intermediate inputs
- Supply chains are often disrupted by natural disasters, trade barriers, changes in regulations, congestion in transportation links, etc.
- These shocks propagate through input-output linkages \rightarrow agg. fluctuations
 - Structure of the production network matters for propagation
- But the network is not a fixed object!

- Firms rely on complex supply chains to get intermediate inputs
- Supply chains are often disrupted by natural disasters, trade barriers, changes in regulations, congestion in transportation links, etc.
- These shocks propagate through input-output linkages \rightarrow agg. fluctuations
 - Structure of the production network matters for propagation
- But the network is not a fixed object!
 - Outcome of firms making sourcing decisions

- Firms rely on complex supply chains to get intermediate inputs
- Supply chains are often disrupted by natural disasters, trade barriers, changes in regulations, congestion in transportation links, etc.
- These shocks propagate through input-output linkages \rightarrow agg. fluctuations
 - Structure of the production network matters for propagation
- But the network is not a fixed object!
 - Outcome of firms making sourcing decisions
 - Firms avoid risky suppliers \rightarrow mitigate network propagation

- Firms rely on complex supply chains to get intermediate inputs
- Supply chains are often disrupted by natural disasters, trade barriers, changes in regulations, congestion in transportation links, etc.
- These shocks propagate through input-output linkages \rightarrow agg. fluctuations
 - Structure of the production network matters for propagation
- But the network is not a fixed object!
 - Outcome of firms making sourcing decisions
 - Firms avoid risky suppliers \rightarrow mitigate network propagation

How does uncertainty affect an economy's production network and, through that channel, macroeconomic aggregates?

We construct a model of endogenous network formation under uncertainty

- Firms create links with suppliers to acquire intermediate inputs
- Tradeoff between buying goods whose prices are low vs stable

We construct a model of endogenous network formation under uncertainty

- Firms create links with suppliers to acquire intermediate inputs
- Tradeoff between buying goods whose prices are low vs stable

We characterize the impact of the mechanism on the economy

■ More productive/stable firms → more important role in the network (Domar weight)

We construct a model of endogenous network formation under uncertainty

- Firms create links with suppliers to acquire intermediate inputs
- Tradeoff between buying goods whose prices are low vs stable

We characterize the impact of the mechanism on the economy

- More productive/stable firms → more important role in the network (Domar weight)
- Uncertainty lowers expected GDP
 - Firms seek stability at the cost of lower efficiency

We construct a model of endogenous network formation under uncertainty

- · Firms create links with suppliers to acquire intermediate inputs
- Tradeoff between buying goods whose prices are low vs stable

We characterize the impact of the mechanism on the economy

- More productive/stable firms → more important role in the network (Domar weight)
- Uncertainty lowers expected GDP
 - Firms seek stability at the cost of lower efficiency
- Shocks can have counterintuitive effects
 - Higher firm-level expected productivity can lead to lower expected GDP

We construct a model of endogenous network formation under uncertainty

- · Firms create links with suppliers to acquire intermediate inputs
- Tradeoff between buying goods whose prices are low vs stable

We characterize the impact of the mechanism on the economy

- More productive/stable firms → more important role in the network (Domar weight)
- Uncertainty lowers expected GDP
 - Firms seek stability at the cost of lower efficiency
- Shocks can have counterintuitive effects
 - Higher firm-level expected productivity can lead to lower expected GDP

We calibrate the model to the United States economy

- Network flexibility has large impact on welfare
- Sizable role for uncertainty during high-volatility events like the Great Recession

We construct a model of endogenous network formation under uncertainty

- · Firms create links with suppliers to acquire intermediate inputs
- Tradeoff between buying goods whose prices are low vs stable

We characterize the impact of the mechanism on the economy

- More productive/stable firms → more important role in the network (Domar weight)
- Uncertainty lowers expected GDP
 - Firms seek stability at the cost of lower efficiency
- Shocks can have counterintuitive effects
 - Higher firm-level expected productivity can lead to lower expected GDP

We calibrate the model to the United States economy

- Network flexibility has large impact on welfare
- Sizable role for uncertainty during high-volatility events like the Great Recession

Reduced-form evidence for the model mechanisms

- Links with riskier suppliers are more likely to be destroyed
- Riskier firms have lower Domar weights

Model

Static model with two types of agents

- 1. Representative household: owns the firms, supplies labor and consumes
- 2. Firms: produce differentiated goods using labor and intermediate inputs
 - There are *n* industries/goods, indexed by $i \in \{1, \ldots, n\}$
 - Representative firm that behaves competitively

Each firm *i* has access to a set of production techniques A_i .

A technique $\alpha_i \in \mathcal{A}_i$ specifies

- The set of intermediate inputs to be used in production
- The proportion in which these inputs are combined
- A productivity shifter $A_i(\alpha_i)$ for the firm

Each firm *i* has access to a set of production techniques A_i .

A technique $\alpha_i \in \mathcal{A}_i$ specifies

- The set of intermediate inputs to be used in production
- The proportion in which these inputs are combined
- A productivity shifter $A_i(\alpha_i)$ for the firm

These techniques are Cobb-Douglas production functions

• We identify $\alpha_i = (\alpha_{i1}, \ldots, \alpha_{in})$ with the input shares

$$F(\alpha_{i}, L_{i}, X_{i}) = e^{\varepsilon_{i}} \zeta(\alpha_{i}) A_{i}(\alpha_{i}) L_{i}^{1-\sum_{j=1}^{n} \alpha_{ij}} \prod_{j=1}^{n} X_{ij}^{\alpha_{ij}},$$

Each firm *i* has access to a set of production techniques A_i .

A technique $\alpha_i \in \mathcal{A}_i$ specifies

- The set of intermediate inputs to be used in production
- The proportion in which these inputs are combined
- A productivity shifter $A_i(\alpha_i)$ for the firm

These techniques are Cobb-Douglas production functions

• We identify $\alpha_i = (\alpha_{i1}, \ldots, \alpha_{in})$ with the input shares

$$F(\alpha_{i}, L_{i}, X_{i}) = e^{\varepsilon_{i}} \zeta(\alpha_{i}) A_{i}(\alpha_{i}) L_{i}^{1-\sum_{j=1}^{n} \alpha_{ij}} \prod_{j=1}^{n} X_{ij}^{\alpha_{ij}},$$

Allow adjustment along intensive and extensive margins: $\mathcal{A}_i = \left\{ \alpha_i \in [0, 1]^n : \sum_{j=1}^n \alpha_{ij} \leq \overline{\alpha}_i < 1 \right\}.$

Each firm *i* has access to a set of production techniques A_i .

A technique $\alpha_i \in \mathcal{A}_i$ specifies

- The set of intermediate inputs to be used in production
- The proportion in which these inputs are combined
- A productivity shifter $A_i(\alpha_i)$ for the firm

These techniques are Cobb-Douglas production functions

• We identify $\alpha_i = (\alpha_{i1}, \ldots, \alpha_{in})$ with the input shares

$$F(\alpha_{i}, L_{i}, X_{i}) = e^{\varepsilon_{i}} \zeta(\alpha_{i}) A_{i}(\alpha_{i}) L_{i}^{1 - \sum_{j=1}^{n} \alpha_{ij}} \prod_{j=1}^{n} X_{ij}^{\alpha_{ij}},$$

Allow adjustment along intensive and extensive margins: $\mathcal{A}_i = \left\{ \alpha_i \in [0,1]^n : \sum_{j=1}^n \alpha_{ij} \leq \overline{\alpha}_i < 1 \right\}.$

Example: A car manufacturer can use only steel or only carbon fiber, or a combination of both.

Assumption

 $A_i(\alpha_i)$ is smooth and strictly log-concave.

Implication: There are ideal input shares α_{ii}° that maximize A_i

Assumption

 $A_i(\alpha_i)$ is smooth and strictly log-concave.

Implication: There are ideal input shares α_{ii}° that maximize A_i

Example

$$\log A_i(\alpha_i) = -\sum_{j=1}^n \kappa_{ij} \left(\alpha_{ij} - \alpha_{ij}^\circ\right)^2 - \kappa_{i0} \left(\sum_{j=1}^n \alpha_{ij} - \sum_{j=1}^n \alpha_{ij}^\circ\right)^2,$$

Firms are subject to productivity shocks $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n) \sim \mathcal{N}(\mu, \Sigma)$

- Vector μ captures optimism/pessimism about productivity
- Covariance matrix $\boldsymbol{\Sigma}$ captures uncertainty and correlations

Firms are subject to productivity shocks $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n) \sim \mathcal{N}(\mu, \Sigma)$

- Vector μ captures optimism/pessimism about productivity
- Covariance matrix $\boldsymbol{\Sigma}$ captures uncertainty and correlations

Timing

- 1. Before ε is realized: Production techniques are chosen
 - Beliefs (μ, Σ) affect technique choice \rightarrow production network $\alpha \in \mathcal{A}$ is endogenous
- 2. After ε is realized: All other decisions are taken
 - Only impact of uncertainty on decisions is through technique choice

Firms are subject to productivity shocks $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n) \sim \mathcal{N}(\mu, \Sigma)$

- Vector μ captures optimism/pessimism about productivity
- Covariance matrix $\boldsymbol{\Sigma}$ captures uncertainty and correlations

Timing

- 1. Before ε is realized: Production techniques are chosen
 - Beliefs (μ, Σ) affect technique choice \rightarrow production network $\alpha \in \mathcal{A}$ is endogenous
- 2. After ε is realized: All other decisions are taken
 - Only impact of uncertainty on decisions is through technique choice

Microfound. one technique

Household

The representative household makes decisions after $\boldsymbol{\varepsilon}$ is realized

- Owns the firms
- Supplies one unit of labor inelastically
- Chooses *state-contingent* consumption (*C*₁,..., *C*_n) to maximize

$$u\left(\left(\frac{C_1}{\beta_1}\right)^{\beta_1}\times\cdots\times\left(\frac{C_n}{\beta_n}\right)^{\beta_n}\right),$$

subject to the *state-by-state* budget constraint

$$\sum_{i=1}^n P_i C_i \leq 1,$$

where u is CRRA with relative risk aversion $\rho \geq 1$.

			HD)	L
			D	ы

Household

The representative household makes decisions after $\boldsymbol{\varepsilon}$ is realized

- Owns the firms
- Supplies one unit of labor inelastically
- Chooses *state-contingent* consumption (C_1, \ldots, C_n) to maximize

$$u\left(\left(\frac{C_1}{\beta_1}\right)^{\beta_1}\times\cdots\times\left(\frac{C_n}{\beta_n}\right)^{\beta_n}\right),$$

subject to the *state-by-state* budget constraint

$$\sum_{i=1}^{n} P_i C_i \le 1$$

where u is CRRA with relative risk aversion $\rho \geq 1$.

• We refer to aggregate consumption $Y = \prod_{i=1}^{n} (\beta_i^{-1} C_i)^{\beta_i}$ as GDP.

Details

Firms solve a two-stage problem

- 1. Before ε is drawn: Choose production technique α_i
 - ex ante decision under uncertainty
- 2. After ε is drawn: Choose inputs (L, X)

Firms solve a two-stage problem

- 1. Before ε is drawn: Choose production technique α_i
 - ex ante decision under uncertainty
- 2. After ε is drawn: Choose inputs (L, X)

For a given technique α_i , the cost minimization problem of the firm is

$$\mathcal{K}_i(lpha_i, \mathcal{P}) = \min_{L_i, X_i} \left(L_i + \sum_{j=1}^n \mathcal{P}_j X_{ij} \right), ext{ subject to } \mathcal{F}(lpha_i, L_i, X_i) \geq 1$$

where $K_i(\alpha_i, P)$ is the unit cost of production.

For a given technique α_i , the cost minimization problem of the firm is

$$\mathcal{K}_i(\alpha_i, \mathcal{P}) = \min_{L_i, X_i} \left(L_i + \sum_{j=1}^n \mathcal{P}_j X_{ij} \right), \text{ subject to } \mathcal{F}(\alpha_i, L_i, X_i) \geq 1$$

where $K_i(\alpha_i, P)$ is the unit cost of production.

- 1. Constant returns to scale $\rightarrow K_i$ does not depend on firm size
- 2. Given that each technique is Cobb-Douglas,

$$K_i(\alpha_i, P) = rac{1}{e^{\varepsilon_i} A_i(\alpha_i)} \prod_{j=1}^n P_j^{\alpha_{ij}}.$$

Firms solve a two-stage problem

- 1. Before ε is drawn: Choose production technique α_i
 - ex ante decision under uncertainty
- 2. After ε is drawn: Choose inputs (L, X)

Problem of the firm: Production technique

Firm *i* chooses a technique $\alpha_i \in \mathcal{A}_i$ to maximize profits

 $\alpha_{i}^{*} \in \arg \max_{\alpha_{i} \in \mathcal{A}_{i}} \operatorname{E} \left[\Lambda Q_{i} \left(P_{i} - K_{i} \left(\alpha_{i}, P \right) \right) \right]$

where Q_i is the equilibrium demand for good *i* and Λ is the SDF.

Problem of the firm: Production technique

Firm *i* chooses a technique $\alpha_i \in A_i$ to maximize profits

 $\alpha_{i}^{*} \in \arg \max_{\alpha_{i} \in \mathcal{A}_{i}} \mathbb{E} \left[\Lambda Q_{i} \left(P_{i} - K_{i} \left(\alpha_{i}, P \right) \right) \right]$

where Q_i is the equilibrium demand for good *i* and Λ is the SDF.

Lemma In equilibrium, $\lambda(\alpha^*)$, $k_i(\alpha_i, \alpha^*)$ and $q_i(\alpha^*)$ are normally distributed, and the technique choice of the representative firm in sector *i* solves $\alpha_i^* \in \arg\min_{\alpha_i \in \mathcal{A}_i} \mathbb{E} \left[k_i(\alpha_i, \alpha^*) \right] + \operatorname{Cov} \left[\lambda(\alpha^*), k_i(\alpha_i, \alpha^*) \right].$ (1)

Problem of the firm: Production technique

Firm *i* chooses a technique $\alpha_i \in A_i$ to maximize profits

 $\alpha_{i}^{*} \in \arg \max_{\alpha_{i} \in \mathcal{A}_{i}} \mathbb{E} \left[\Lambda Q_{i} \left(P_{i} - K_{i} \left(\alpha_{i}, P \right) \right) \right]$

where Q_i is the equilibrium demand for good *i* and Λ is the SDF.

Lemma In equilibrium, $\lambda(\alpha^*)$, $k_i(\alpha_i, \alpha^*)$ and $q_i(\alpha^*)$ are normally distributed, and the technique choice of the representative firm in sector *i* solves $\alpha_i^* \in \arg\min_{\alpha_i \in \mathcal{A}_i} \mathbb{E} \left[k_i(\alpha_i, \alpha^*) \right] + \operatorname{Cov} \left[\lambda(\alpha^*), k_i(\alpha_i, \alpha^*) \right].$ (1)

The firm prefers techniques with low

1. expected unit cost

2. unit cost when marg. utility is high ightarrow firm "inherits" the household's risk aversion through λ

Problem of the firm: Production technique

We can expand the two terms to minimize

$$\operatorname{E}\left[\boldsymbol{k}_{i}\left(\alpha_{i},\alpha^{*}\right)\right]=-\boldsymbol{a}_{i}\left(\alpha_{i}\right)+\sum_{j=1}^{n}\alpha_{ij}\operatorname{E}\left[\boldsymbol{p}_{j}\right]$$

Firm prefers techniques with high TFP and low average input prices.

Problem of the firm: Production technique

We can expand the two terms to minimize

$$\mathbf{E}\left[\mathbf{k}_{i}\left(\alpha_{i},\alpha^{*}\right)\right] = -\mathbf{a}_{i}\left(\alpha_{i}\right) + \sum_{j=1}^{n} \alpha_{ij} \mathbf{E}\left[\mathbf{p}_{j}\right]$$

Firm prefers techniques with high TFP and low average input prices.

$$\operatorname{Cov}\left[\lambda, k_{i}\right] = \sqrt{\operatorname{V}\left[\lambda\right]} \times \operatorname{Corr}\left[\lambda, k_{i}\right] \sqrt{\operatorname{V}\left[k_{i}\right]}$$

Firm prefers techniques with low correlation with SDF.

Problem of the firm: Production technique

We can expand the two terms to minimize

$$\mathbb{E}\left[\mathbf{k}_{i}\left(\alpha_{i},\alpha^{*}\right)\right] = -\mathbf{a}_{i}\left(\alpha_{i}\right) + \sum_{j=1}^{n} \alpha_{ij} \mathbb{E}\left[\mathbf{p}_{j}\right]$$

Firm prefers techniques with high TFP and low average input prices.

$$\operatorname{Cov}\left[\lambda,k_{i}
ight]=\sqrt{\operatorname{V}\left[\lambda
ight]} imes\operatorname{Corr}\left[\lambda,k_{i}
ight]\sqrt{\operatorname{V}\left[k_{i}
ight]}$$

Firm prefers techniques with low correlation with SDF.

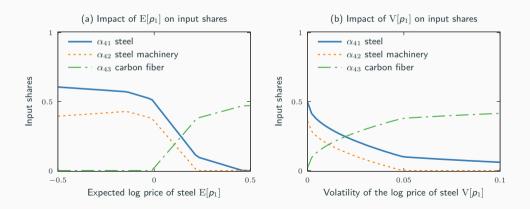
In general Corr $[\lambda, k_i] > 0 \rightarrow$ Minimize variance of k_i

$$\mathbf{V}\left[\mathbf{k}_{i}\right] = \mathsf{cte} + \underbrace{\sum_{j=1}^{n} \alpha_{ij}^{2} \operatorname{V}\left[\mathbf{p}_{j}\right]}_{\mathsf{stable prices}} + \underbrace{\sum_{j \neq k} \alpha_{ij} \alpha_{ik} \operatorname{Cov}\left[\mathbf{p}_{j}, \mathbf{p}_{k}\right]}_{\mathsf{uncorrelated prices}} + \underbrace{2 \operatorname{Cov}\left[-\varepsilon_{i}, \sum_{j=1}^{n} \alpha_{ij}\mathbf{p}_{j}\right]}_{\mathsf{uncorrelated with own }\varepsilon_{i}}$$

Back to our example

• Firm i = 4 can use steel (input 1), steel milling machines (input 2) or carbon fiber (input 3)

$$\mathbf{a}_{4}(\alpha_{4}) = -\sum_{j=1}^{4} \kappa_{j} \left(\alpha_{4j} - \alpha_{4j}^{\circ} \right)^{2} - \psi_{1} \left(\alpha_{41} - \alpha_{42} \right)^{2} - \psi_{2} \left(\left(\alpha_{41} + \alpha_{43} \right) - \left(\alpha_{41}^{\circ} + \alpha_{43}^{\circ} \right) \right)^{2},$$



Definition

An equilibrium is a technique for every firm α^* and a stochastic tuple $(P^*, C^*, L^*, X^*, Q^*, \Lambda^*)$ such that

- 1. (Unit cost pricing) For each $i \in \{1, \ldots, n\}$, $P_i^* = K_i(\alpha_i^*, P^*)$.
- (Optimal technique choice) For each i ∈ {1,..., n}, factor demand L^{*}_i and X^{*}_i, and the technology choice α^{*}_i ∈ A_i solves the firm's problem.
- 3. (Consumer maximization) The consumption vector C^* solves the household's problem.
- 4. (Market clearing) For each $i \in \{1, \ldots, n\}$,

$$egin{aligned} Q_{i}^{*} &= C_{i}^{*} + \sum_{j=1}^{n} X_{ji}^{*}, \ Q_{i}^{*} &= F_{i}\left(lpha_{i}^{*}, \mathcal{L}_{i}^{*}, X_{i}^{*}
ight), \ \sum_{i=1}^{n} \mathcal{L}_{i}^{*} &= 1. \end{aligned}$$

Fixed-network economy

Define a firm's Domar weight ω_i as its sales share

$$\omega_i(\alpha) := \frac{P_i Q_i}{PC}$$

Define a firm's Domar weight ω_i as its sales share

$$\omega_{i}(\alpha) := \frac{P_{i}Q_{i}}{PC} = \beta' \mathcal{L}(\alpha) \mathbf{1}_{i}$$

Domar weights depend on

- 1. Demand from the household through β
- 2. Demand from intermediate good producers through $\mathcal{L}(\alpha) = (I \alpha)^{-1} = I + \alpha + \alpha^2 + \dots$

Define a firm's Domar weight ω_i as its sales share

$$\omega_i(\alpha) := \frac{P_i Q_i}{PC} = \beta' \mathcal{L}(\alpha) \mathbf{1}_i$$

Domar weights depend on

- 1. Demand from the household through β
- 2. Demand from intermediate good producers through $\mathcal{L}(\alpha) = (I \alpha)^{-1} = I + \alpha + \alpha^2 + \dots$
- $\rightarrow\,$ Domar weights capture the importance of a firm as a supplier
- $\rightarrow\,$ Domar weights are constant for a fixed network

Define a firm's Domar weight ω_i as its sales share

$$\omega_i(\alpha) := \frac{P_i Q_i}{PC} = \beta' \mathcal{L}(\alpha) \mathbf{1}_i$$

Domar weights depend on

- 1. Demand from the household through β
- 2. Demand from intermediate good producers through $\mathcal{L}(\alpha) = (I \alpha)^{-1} = I + \alpha + \alpha^2 + \dots$
- \rightarrow Domar weights capture the importance of a firm as a supplier
- $\rightarrow\,$ Domar weights are constant for a fixed network

Lemma (Hulten's Theorem)

Under a given network $\alpha,$ the log of GDP $y = \log Y$ is given by

$$y = \omega(\alpha)'(\varepsilon + a(\alpha)).$$

Proposition (Hulten's Theorem in expectation)

For a fixed network α ,

1. The impact of μ_i on expected log GDP is given by

$$\frac{\partial \operatorname{E}\left[y\right]}{\partial \mu_{i}} = \omega_{i}$$

2. The impact of Σ_{ij} on the variance of log GDP is given by

$$\frac{\partial \operatorname{V}\left[\mathbf{y}\right]}{\partial \Sigma_{ij}} = \omega_i \omega_j$$

3. μ does not affect V[y] and Σ does not affect E[y].

Proposition (Hulten's Theorem in expectation)

For a fixed network α ,

1. The impact of μ_i on expected log GDP is given by

$$\frac{\partial \operatorname{E}\left[y\right]}{\partial \mu_{i}} = \omega_{i}$$

2. The impact of $\Sigma_{\textit{ij}}$ on the variance of log GDP is given by

$$\frac{\partial \operatorname{V}\left[y\right]}{\partial \Sigma_{ij}} = \omega_i \omega_j$$

3. μ does not affect V[y] and Σ does not affect E[y].

For a fixed network

- 1. Domar weights ω are enough to understand $\log\,{\rm GDP}$
- 2. Since $\omega_i > 0$ shocks have intuitive impact.

Flexible-network economy

The economy is fully competitive and undistorted by frictions or externalities.

The economy is fully competitive and undistorted by frictions or externalities.

Proposition

- 1. There exists a unique equilibrium and it is efficient
- 2. That equilibrium production network solves

$$\mathcal{W} := \max_{\alpha \in \mathcal{A}} \mathbb{E}\left[\mathbf{y}(\alpha)\right] - \frac{1}{2}\left(\rho - 1\right) \mathbb{V}\left[\mathbf{y}(\alpha)\right]$$

The economy is fully competitive and undistorted by frictions or externalities.

Proposition

- 1. There exists a unique equilibrium and it is efficient
- 2. That equilibrium production network solves

$$\mathcal{W} := \max_{\alpha \in \mathcal{A}} \mathbb{E}\left[\mathbf{y}\left(\alpha\right)\right] - \frac{1}{2}\left(\rho - 1\right) \mathbb{V}\left[\mathbf{y}\left(\alpha\right)\right]$$

Implications

- 1. The planner prefers networks that balance high $E[y(\alpha)]$ with low $V[y(\alpha)]$
- 2. Complicated network formation problem \rightarrow simpler optimization problem.

Economic forces at work

Domar weights are constant when the network is fixed. But when it is flexible...

Proposition

The Domar weight ω_i of firm *i* is increasing in μ_i and decreasing in Σ_{ii} .

Impact of beliefs on the network

Domar weights are constant when the network is fixed. But when it is flexible...

Proposition

The Domar weight ω_i of firm *i* is increasing in μ_i and decreasing in Σ_{ii} .

Intuition

- 1. Equilibrium: Firms rely more on high- μ_i and low- Σ_{ii} firms as suppliers.
- 2. Planner: Planner wants high- μ_i and low- Σ_{ii} firms to be more important for GDP.

Domar weights are constant when the network is fixed. But when it is flexible...

Proposition

The Domar weight ω_i of firm *i* is increasing in μ_i and decreasing in Σ_{ii} .

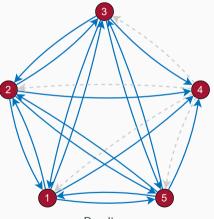
Intuition

- 1. Equilibrium: Firms rely more on high- μ_i and low- Σ_{ii} firms as suppliers.
- 2. Planner: Planner wants high- μ_i and low- Σ_{ii} firms to be more important for GDP.

 ${\sf Flexible\ network} \rightarrow {\sf beneficial\ changes\ are\ amplified\ while\ adverse\ changes\ are\ mitigated.$

Example: Impact of beliefs on the network

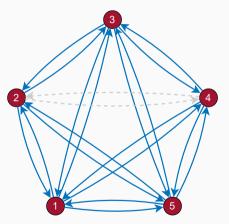
Simple example of possible substitution patterns



Baseline

Example: Impact of beliefs on the network

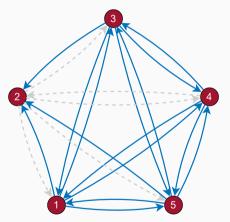
Simple example of possible substitution patterns



Small increase in $\Sigma_{22} \rightarrow$ Firms also purchase from 4 to diversify

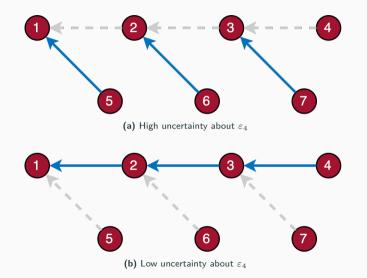
Example: Impact of beliefs on the network

Simple example of possible substitution patterns



Large increase in $\Sigma_{22} \rightarrow$ Firms drop 2 as a supplier

Example: Cascading effect of uncertainty



Proposition

Uncertainty lowers expected GDP in equilibrium, in the sense that E[y] is largest when $\Sigma = 0_{n \times n}$.

Proposition

Uncertainty lowers expected GDP in equilibrium, in the sense that E[y] is largest when $\Sigma = 0_{n \times n}$.

Intuition

1. Equilibrium: With uncertainty, firms seek stability at the cost of expected productivity.

Proposition

Uncertainty lowers expected GDP in equilibrium, in the sense that E[y] is largest when $\Sigma = 0_{n \times n}$.

Intuition

- 1. Equilibrium: With uncertainty, firms seek stability at the cost of expected productivity.
- 2. Planner: Only objective is to maximize E[y].

$$\mathcal{W} := \max_{\alpha \in \mathcal{A}} \mathbb{E}\left[y(\alpha) \right] - \frac{1}{2} \left(\rho - 1 \right) \mathcal{V}\left[y(\alpha) \right]$$

Effect of beliefs on welfare

Proposition

1. The impact of μ_i on welfare is given by

$$\frac{d\mathcal{W}}{d\mu_i} = \omega_i$$

2. The impact of Σ_{ij} on welfare is given by

$$\frac{d\mathcal{W}}{d\Sigma_{ij}} = -\frac{1}{2} \left(\rho - 1\right) \omega_i \omega_j$$

Effect of beliefs on welfare

Proposition

1. The impact of μ_i on welfare is given by

$$\frac{d\mathcal{W}}{d\mu_i} = \omega_i$$

2. The impact of Σ_{ij} on welfare is given by

$$\frac{d\mathcal{W}}{d\Sigma_{ij}} = -\frac{1}{2} \left(\rho - 1\right) \omega_i \omega_j$$

The impact of beliefs on welfare is intuitive

- 1. Higher expected productivity increases welfare
- 2. Higher correlation or uncertainty lowers welfare

Impact of shocks on

- Welfare: intuitive
- GDP when the network is fixed: intuitive
- GDP when the network is flexible: ???

Effect of beliefs on GDP

Impact of shocks on

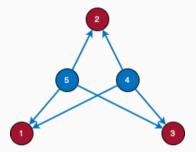
- Welfare: intuitive
- GDP when the network is fixed: intuitive
- GDP when the network is flexible: ???

Decompose a shock to, say, μ_i as

Two effects

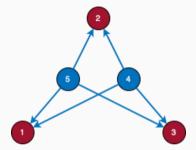
- 1. Direct impact keeping the network fixed = Domar weight
- 2. Indirect impact that take into account the network adjustment = ???

Example: Counterintuitive impact of a change in (μ, Σ)



- Firm 4 is risky (high Σ_{44}) but productive (high μ_4)
- Firm 5 is safe (low Σ_{55}) but unproductive (low μ_5)

Example: Counterintuitive impact of a change in (μ, Σ)



- Firm 4 is risky (high Σ_{44}) but productive (high μ_4)
- Firm 5 is safe (low Σ_{55}) but unproductive (low μ_5)
- Increase μ_5 : Move away from high- μ firm 4 toward low- μ firm 5 $\Rightarrow E[y]$ falls

Quantitative exploration

Data

Annual United States data from 1947 to 2020 about 37 sectors

Calibration

- Consumption shares β and ideal shares α° taken from the data
- Risk-aversion ρ and cost of deviating κ are estimated
- ε_t is random walk with drift and time-varying uncertainty and is estimated

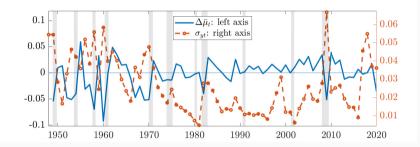
Calibrated economy

Estimated risk aversion: $\rho = 4.27$

Calibrated economy

Estimated risk aversion: $\rho = 4.27$

Estimated evolution of beliefs

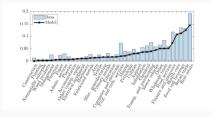


$$\Delta \bar{\mu}_t = \sum_{j=1}^n \omega_{jt} \Delta \mu_{jt}$$
 and $\sigma_{yt} = \sqrt{\mathcal{V}[y]} = \sqrt{\omega'_t \Sigma_t \omega_t}$.

▶ κ's

Calibrated economy: Domar weights

The calibrated Domar weights fit the data reasonably well



Beliefs have the expected impact on Domar weights

	Statistic	Data	Model
(1)	Average Domar weight $ar{\omega}_j$	0.047	0.032
(2)	Standard deviation $\sigma\left(\omega_{j} ight)$	0.0050	0.0021
(3)	Coefficient of variation $\sigma\left(\omega_{j} ight)/ar{\omega}_{j}$	0.11	0.07
(4)	$Corr\left(\omega_{jt},\mu_{jt} ight)$	0.08	0.08
(5)	$Corr\left(\omega_{jt},\Sigma_{jjt} ight)$	-0.37	-0.31

Two useful counterfactuals

- 1. Fixed-network economy
 - No change in network \rightarrow capture the full effect of network adjustments
- 2. "as if $\Sigma = 0$ " economy
 - Uncertainty has no impact on network \rightarrow capture the impact of uncertainty
 - Recall: only impact of uncertainty on expected GDP is through the network

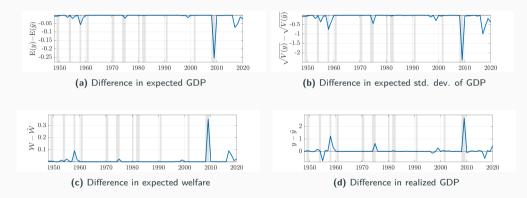
Two useful counterfactuals

- 1. Fixed-network economy
 - No change in network \rightarrow capture the full effect of network adjustments
- 2. "as if $\Sigma = 0$ " economy
 - Uncertainty has no impact on network ightarrow capture the impact of uncertainty
 - Recall: only impact of uncertainty on expected GDP is through the network

	Baseline model compared to		
	Fixed network	As if $\Sigma=0$	
Expected GDP $E[y(\alpha)]$	+2.122%	-0.008%	
Std. dev. of GDP $\sqrt{\mathrm{V}\left[y\left(lpha ight) ight]}$	+0.131%	-0.105%	
Welfare \mathcal{W}	+2.109%	+0.010%	

The Great Recession

Calibrated model vs As if $\Sigma=0$ alternative



During periods of high volatility, uncertainty matters.

Reduced-form evidence for the model mechanisms

Links with riskier suppliers are more likely to be destroyed

Use detailed U.S. data on firm-to-firm relationship (Factset 2003–2016)

Regress a dummy for link destruction on supplier uncertainty measures

Instruments from Alfaro, Bloom and Lin (2019)

	Dummy for last year of supply relationship			
	(1) OLS	(2) IV	(3) IV	
ΔVol_{t-1} of supp.	0.026**	0.097***	0.1494**	
	(0.010)	(0.029)	(0.064)	
1st moment of IVs	No	Yes	Yes	
Type of volatility	Realized	Realized	Implied	
Fixed effects	Yes	Yes	Yes	
Observations	35,629	35,620	26,195	
<i>F</i> -statistic	—	39.0	23.2	

All specifications include year \times customer \times supplier industry (2SIC) fixed effects. Standard errors are two-way clustered at the customer and the supplier levels. *F*-statistics are Kleibergen-Paap. *, *** indicate significance at the 10%, 5%, and 1% levels, respectively.

• Doubling volatility \rightarrow 12 p.p. increase in probability link destroyed (IV)

Domar weights and uncertainty in the data

Firms with higher uncertainty have lower Domar weights, in line with the model

• Specifications, uncertainty measures and instruments from Alfaro, Bloom and Lin (2019)

	C	hange in Domar weig	ht
	(1) OLS	(2) IV	(3) IV
Δ Volatility _{<i>i</i>,<i>t</i>-1}	-0.043***	-0.250***	-0.672***
	(0.004)	(0.076)	(0.185)
1st moment of IVs	No	Yes	Yes
Type of volatility	Realized	Realized	Implied
Fixed effects	Yes	Yes	Yes
Observations	111,587	26,962	16,862
<i>F</i> -statistic	—	17.0	9.8

All specifications include year and firm fixed effects. Standard errors are clustered at the industry (3SIC) level. F-statistics are Kleibergen-Paap. *, **, *** indicate significance at the 10%, 5%, and 1% levels, respectively.

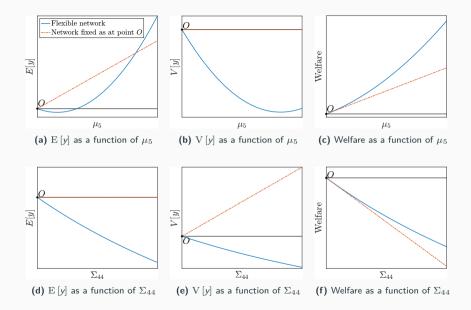
Conclusion

Main contributions

- We construct a model in which beliefs, and in particular uncertainty, affect the production network.
- During periods of high uncertainty firms purchase from safer but less productive suppliers which leads to a decline in GDP.
- Mechanism might be quantitatively important during periods of high uncertainty.

Future research

- Use firm-level data to calibrate the model firm-to-firm network is more sparse and links are often broken.
- Use the model to evaluate the impact of uncertainty on global supply chains.



A Back

More about the data

United States data from vom Lehn and Winberry (2021)

• Input-output tables, sectoral total factor productivity, consumption shares

Mining	Utilities	Construction
Wood products	Nonmetallic minerals	Primary metals
Fabricated metals	Machinery	Computer and electronic manuf.
Electrical equipment manufacturing	Motor vehicles manufacturing	Other transportation equipment
Furniture and related manufacturing	Misc. manufacturing	Food and beverage manufacturing
Textile manufacturing	Apparel manufacturing	Paper manufacturing
Printing products manufacturing	Petroleum and coal manufacturing	Chemical manufacturing
Plastics manufacturing	Wholesale trade	Retail trade
Transportation and warehousing	Information	Finance and insurance
Real estate and rental services	Professional and technical services	Mgmt. of companies and enterprises
Admin. and waste mgmt. services	Educational services	Health care and social assistance
Arts and entertainment services	Accommodation	Food services
Other services		

• Average share of 1.4% with standard deviation of 0.5% over time

More about the estimation

Preferences

- Consumption shares β are taken directly from the data
- Relative risk aversion ρ is **estimated**

Production technique productivity shifters

- Function A_i as described earlier
- Set ideal shares α_{ii}° to their data average
- Costs κ_{ij} of deviating from α_{ij}° are **estimated**

Process for exogenous shocks ε_t

- Random walk with drift $\varepsilon_t = \gamma + \varepsilon_{t-1} + u_t^{\varepsilon}$, with $u_t^{\varepsilon} \sim \text{iid } \mathcal{N}(0, \Sigma_t)$.
- Drift vec. γ and cov. mat. Σ_t are backed out from the data given (ρ, κ) .

Loss function: Target the full set of shares α_{ijt} and the GDP growth.

More about the calibration

- Random walk with drift $\varepsilon_t = \gamma + \varepsilon_{t-1} + u_t$, with $u_t \sim \text{iid } \mathcal{N}(0, \Sigma_t)$.
 - We estimate the vector γ by averaging $\Delta \varepsilon_t = \varepsilon_t \varepsilon_{t-1}$ over time
 - We estimate Σ_t as

$$\hat{\Sigma}_{ijt} = \sum_{s=1}^{t-1} \lambda^{t-s-1} u_{is} u_{js}$$

where $\hat{\lambda} = 0.47$ is set to the sectoral average of the corresponding parameters of a GARCH(1,1) model estimated on each sector's productivity innovation u_{it}

The function $\zeta(\alpha_i)$ is

$$\zeta(\alpha_i) = \left[\left(1 - \sum_{j=1}^n \alpha_{ij} \right)^{1 - \sum_{j=1}^n \alpha_{ij}} \prod_{j=1}^n \alpha_{ij}^{\alpha_{ij}} \right]^{-1}$$

This functional form allows for a simple expression for the unit cost ${\boldsymbol K}$

▲ Back

- Each industry $i \in \{1, \ldots, n\}$ has a continuum of firms $l \in [0, 1]$.
- Buyers use *shoppers* to purchase goods
 - Shoppers face an information problem and cannot differentiate between producers within an industry
 - Uniform allocation: each producer gets mass *Q_idl* of shoppers
 - Shoppers from firm *m* in industry *j* faces average price $\tilde{P}_{i}^{jm} = \int_{0}^{1} \tilde{P}_{il}^{jm} dl$ for good *i*.
- When a shopper *m* from *j* meets a producer *l* from $i \rightarrow \text{Nash}$ bargaining

$$\tilde{P}_{il}^{jm} - K_i \left(\alpha_i^{\prime}, \left\{ \tilde{P}_k^{jl} \right\}_k \right) = \gamma \left(B_i^{jm} - K_i \left(\alpha_i^{\prime}, \left\{ \tilde{P}_k^{jl} \right\}_k \right) \right)$$

Technique choice problem

$$\max_{\alpha_{i}^{\prime}\in\mathcal{A}_{i}} \mathbb{E}\left[\Lambda\sum_{j=0}^{n} \mathcal{Q}_{ji} dl \int_{0}^{1} \gamma\left(\mathcal{B}_{i}^{jm}-\mathcal{K}_{i}\left(\alpha_{i}^{\prime},\left\{\tilde{\mathcal{P}}_{k}^{jl}\right\}_{k}\right)\right) dm\right] \longrightarrow \min_{\alpha_{i}^{\prime}\in\mathcal{A}_{i}} \mathbb{E}\left[\Lambda\mathcal{Q}_{i}\mathcal{K}_{i}\left(\alpha_{i}^{\prime},\left\{\tilde{\mathcal{P}}_{k}^{jl}\right\}_{k}\right)\right]$$

- Take limit $\gamma \to 0$
 - Nash bargaining implies $\tilde{P}_{il}^{jm} = K_i \left(\alpha_i^l, \left\{ \tilde{P}_k^{jl} \right\}_k \right) \to \tilde{P}_{il}^{jm}$ does not depend on $j, \ m \to \tilde{P}_i^{jm} \equiv P_i$.
 - $K_i\left(\alpha_i^l, \left\{\tilde{P}_k^{il}\right\}_k\right) \to K_i\left(\alpha_i^l, P\right)$
 - Cost minimization problem

$$\min_{\alpha_{i}^{l} \in \mathcal{A}_{i}} \mathbb{E}\left[\Lambda \mathcal{Q}_{i} \mathcal{K}_{i}\left(\alpha_{i}^{l}, \left\{\tilde{\mathcal{P}}_{k}^{jl}\right\}_{k}\right)\right] \longrightarrow \min_{\alpha_{i}^{l} \in \mathcal{A}_{i}} \mathbb{E}\left[\Lambda \mathcal{Q}_{i} \mathcal{K}_{i}\left(\alpha_{i}^{l}, \mathcal{P}\right)\right]$$

• We have the same pricing equation as in benchmark model with all firms in *i* choosing same technique

▲ Back

Given the log-normal nature of uncertainty $\rho \leq 1$ determines whether the agent is risk-averse or not. To see this, note that when $\log C$ normally distributed, maximizing

 $\mathrm{E}\left[\mathcal{C}^{1ho}
ight]$

amounts to maximizing

$$\operatorname{E}\left[\log \mathcal{C}\right] - \frac{1}{2}\left(\rho - 1\right) \operatorname{V}\left[\log \mathcal{C}\right].$$

Assumption (Weak complementarity)

For all
$$i \in \mathcal{N}$$
, the function a_i is such that $\frac{\partial^2 a_i(\alpha_i)}{\partial \alpha_{ij} \partial \alpha_{ik}} \geq 0$ for all $j \neq k$.

Lemma

Let $\alpha^* \in \operatorname{int}(\mathcal{A})$ be the equilibrium network and suppose that the assumption holds. There exists a $\overline{\Sigma} > 0$ such that if $|\Sigma_{ij}| < \overline{\Sigma}$ for all *i*, *j*, there is a neighborhood around α^* in which

1. an increase in μ_j leads to an increase in the shares α_{kl}^* for all k, l;

- 2. an increase in Σ_{ij} leads to a decline in the shares α_{kl}^* for all k, l;
- 3. an increase in Σ_{ij} leads to a decline in the shares α_{kl}^* for all k, l.

Back

Details of the simulation:

- 1. *a* function: κ equal to 1, except $\kappa_{ii} = \infty$, α° are 1/10 except $\alpha_{ii}^{\circ} = 0$.
- 2. $\rho = 5$, $\beta = 0.2$. $\mu = 0.1$ except for $\mu_4 = 0.0571$. $\Sigma = 0.3 \times I_{n \times n}$ in Panel (a).
- 3. Panel (b): same as Panel (a) except $Corr(\varepsilon_2, \varepsilon_4) = 1$.
- 4. Panel (c): same in Panel (a) except $\Sigma_{22} = 1$.

Calibrated κ

We assume that $\kappa = \kappa^i \times \kappa^j$ where κ^i is an $n \times 1$ column vector and κ^j is an $1 \times (n+1)$ row vector.

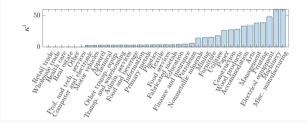
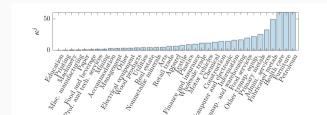


Figure 1: Vector of costs κ^i



Details of regressions

Volatility measures

- Supplier ΔVol_{t-1} is the 1-year lagged change in supplier-level volatility.
- Realized volatility is the 12-month standard deviation of daily stock returns from CRSP.
- Implied volatility is the 12-month average of daily (365-day horizon) implied volatility of at-the-money-forward call options from OptionMetrics.

Instrument

As in Alfaro et al. 2019 "we address endogeneity concerns on firm-level volatility by instrumenting with industry-level (3SIC) non-directional exposure to 10 aggregate sources of uncertainty shocks. These include the lagged exposure to annual changes in expected volatility of energy, currencies, and 10-year treasuries (as proxied by at-the-money forward-looking implied volatilities of oil, 7 widely traded currencies, and TYVIX) and economic policy uncertainty from Baker et al 2016. [...] To tease out the impact of 2nd moment uncertainty shocks from 1st moment aggregate shocks we also include as controls the lagged directional industry 3SIC exposure to changes in the price of each of the 10 aggregate instruments (i.e., 1st moment return shocks). These are labeled 1st moment 1st moment of IVs."

