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Abstract

We propose a model in which risk, at both the micro and the macro levels, is endogenous.

In the model, each firm can choose the mean and the variance of its productivity process, as

well as how it covaries with the productivity of other firms. To study the aggregate impact of

these decisions, we embed the firms into an otherwise standard production network economy.

Through their impact on risk-taking decisions, distortions such as taxes and markups can make

GDP more volatile in equilibrium. The theory also predicts that the productivity of larger firms

and those with smaller markups is less volatile and less correlated with aggregate productivity.

We find support for these predictions in the data. In a calibrated version of the model, removing

distortions significantly reduces GDP volatility.
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1 Introduction

Risk influences the economy in many ways. At the micro level, it affects household decisions to

consume and save, as well as firm choices to produce, invest and innovate. At the macro level, it

manifests itself through aggregate fluctuations and influences decisions that are crucial for growth.

Governments also enact policies to mitigate long-term risks like climate change.

Given its importance, understanding the origin and determinants of risk is crucial. Most of

macroeconomics treats risk as exogenous by assuming that productivity, whether at the aggregate

or firm level, follows a predefined stochastic process. In contrast, this paper explores the idea that

risk is endogenous, and that its quantity and properties are driven, like most things in economics,

by incentives. Under this view, risk can be influenced by economic conditions, and policymakers

can exert some control over it.

That economic agents can influence the risk that they face seems natural. Firms, for instance,

affect how much risk they are exposed to by deciding who to hire, how to organize production, what

projects to pursue, where to locate a plant, which markets to enter, etc. As an example, growing

crops near the shore might provide a steady water supply for irrigation, but it also increases

vulnerability to flooding. Conversely, growing the same crops inland might reduce flood risk at

the expense of higher drought vulnerability. When aggregated, these individual exposure decisions

shape the risk profile of the entire economy. For instance, if many firms choose to locate by the

shore, crop yields become correlated, turning flooding into an aggregate risk factor.

Some stylized features of the data also support the idea that risk is, at least in part, endogenous.

At the aggregate level, the volatility of a country’s GDP is related to its income level, its political

system, the quality of its institutions, etc. At the firm level, the volatility of productivity and

its correlation with aggregate GDP vary systematically with firm size and the size of markups.

These patterns suggest that productivity risk is to some degree shaped by the broader economic

environment.1

To explore the origin of risk and its implications, we develop a parsimonious general equilibrium

endogenous risk model. We focus on the decisions made by firms and, given its importance for

macroeconomic outcomes, on the productivity risk that they face. Instead of modeling every single

decision affecting productivity risk, we adopt a holistic approach and assume that firms can select

their productivity process directly. Specifically, we let them choose the mean and the variance

of their productivity, as well as how it correlates with that of other firms. We make this choice

operational in the model by assuming that there are underlying sources of risk, and that firms can

1See Ramey and Ramey (1995), Alesina et al. (1996), Acemoglu and Zilibotti (1997), and Koren and Tenreyro
(2007; 2013) for work on the link between GDP volatility and country characteristics. In Appendix B.5, we show
evidence that aggregate TFP volatility decreases with per-capita income and increases with the share of government
expenditure in GDP in a cross-section of countries. In Section 7, we provide evidence that the productivity of larger
firms and those with lower markups is less volatile and less correlated with aggregate TFP.
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adjust their exposure to those risk factors.

In the model, managing a firm’s risk exposure requires the use of resources. For instance,

avoiding droughts by planting crops near the shore may involve renting an expensive piece of land,

navigating a rapidly changing market might require skilled managers, etc. These resources are

provided by a representative, risk-averse household at a cost in terms of utility. When making

risk-exposure decisions, firms balance this cost with the benefit of exposure. Consequently, the

presence of risk in this economy is a choice. There could be no aggregate risk at all, but given the

high cost that this would entail, agents generally prefer to tolerate some amount of risk.

We assume that markets are complete, and so firms use the household’s stochastic discount

factor when comparing cash flows in different states of the world. As a result, firms are concerned

with how their risk exposure correlates with the aggregate economy. During downturns, the house-

hold’s marginal utility of consumption is high, making sales in those states particularly valuable.

Firms therefore aim to lower their exposure to pro-cyclical risk factors. Since consumption risk is

influenced by the aggregate of firms’ exposure decisions, this leads to a form of diversification, with

firms seeking exposure to risk factors that are less correlated with those affecting other firms.

One of our objectives is to evaluate the impact of firm-level risk-exposure decisions on aggregate

volatility. To properly capture how micro shocks translate into macro fluctuations, we embed the

firms into an otherwise standard production network economy. The input-output structure implies

that the risk decisions of one firm affect its neighbors through supply chain linkages. The model

also features exogenous wedges, potentially from taxes or markups, that create a gap between the

price at which goods are sold and their production cost. By varying those wedges, we can examine

how taxes and markups affect risk taking decisions and, through that channel, aggregate risk.

We show that there exists a unique equilibrium in this economy, and that this equilibrium can be

characterized as the solution to a distorted planning problem. This problem implies that equilibrium

risk-exposure decisions seek to increase expected GDP, reduce the variance of GDP and reduce the

cost of managing risk. Because of the wedges, risk-exposure decisions are in general inefficient, and

the economy tends to be overexposed to harmful risk factors. We also establish conditions under

which this overexposure decreases expected GDP and increases aggregate volatility.

Our theory predicts how risk-taking behavior varies with firm characteristics. In the firm’s

production function, productivity multiplies the input bundle. As a result, the marginal benefit

of managing productivity risk naturally increases with the size of the firm. Larger firms therefore

tend to be less exposed to harmful risks in equilibrium. As wedges reduce firm sizes, more distorted

firms also tend to be more exposed to harmful risks. We use detailed firm-level data that covers the

near-universe of Spanish firms to evaluate these predictions. Consistent with the theory, we find

that the variance of a firm’s TFP and its covariance with GDP decrease with its size and increase

with its markup.

Well-established facts about stock returns are also consistent with our model. As documented by
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Fama and French (1992), larger firms tend to comove less with the stock market. The mechanisms

of the model provide an explanation for this stylized fact, provided that increases in productivity

benefit a firm’s stock price. Additionally, we find that firms with higher markups exhibit greater

covariance with the aggregate stock market, consistent with our theoretical predictions.

To evaluate the quantitative implications of endogenous risk for the macroeconomy, we provide

a basic calibration of the model to the Spanish economy. Our data covers most firms in Spain, and

we replicate each of them in the calibrated model. We pick key parameters to precisely match data

features relevant to the model’s mechanisms, including each firm’s estimated markup, the volatility

of its productivity, and the covariance of its productivity with GDP.

One key prediction of our model is that wedges tend to make GDP more volatile through their

impact on risk-taking decisions. To evaluate the importance of this mechanism, we conduct an

experiment in which we remove all wedges from the calibrated model. Without wedges, firms find

it valuable to manage risk more aggressively, and the standard deviation of GDP falls from 2.4%

to 1.7%. This suggests that the quantitative impact of distortions such as taxes and markups on

aggregate volatility can be substantial. Without endogenous risk decisions, the removal of wedges

would have no impact on the volatility of GDP.

We also conduct a second experiment in which we mimic an uncertainty shock by doubling

the volatility of the economy’s underlying risk factor. If firms were unable to adjust their risk-

taking decisions, this would increase GDP volatility by 70 basis points. In contrast, when firms

are free to manage their risk, they strongly reduce their exposure in response to the large increase

in fundamental risk, and the volatility of GDP increases by only 20 basis points. This last finding

suggests that frictions and policies that impede firms’ ability to manage risk might have sizable

detrimental effects on aggregate volatility.

Literature review

The main contribution of this paper is to propose a theory of aggregate fluctuations driven by

endogenous risk exposure, thus connecting incentives and risk within the economy. In contrast,

standard representative agent models of the business cycles such as Kydland and Prescott (1982)

assume that TFP follows an exogenous process. In models with individual firms, firm risk is

generally exogenous but aggregate TFP risk can be endogenously driven by the decisions of the

firms (Khan and Thomas, 2008; Clementi and Palazzo, 2016; Bloom et al., 2018, among many). In

contrast, our paper builds on the idea that firms can choose their own productivity process.

The idea that firms have some control over their productivity has a long tradition in the growth

literature. In endogenous (Romer, 1990; Grossman and Helpman, 1991; Aghion and Howitt, 1992)

and semi-endogenous (Jones, 1995) growth models, firms invest in R&D to effectively increase their

productivity. A similar process is at work in models with firm dynamics in the spirit of Klette and
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Kortum (2004). In our model, each firm can also select the mean of its productivity process but,

in contrast to those works, it can also pick its variance and its covariance structure. Aggregate

fluctuations arise as a consequence.

Closer to our work are papers in the development and growth literature such as Greenwood

and Jovanovic (1990), Acemoglu and Zilibotti (1997) and Cole et al. (2016) in which agents can

choose between low-risk, low-return projects and high-risk, high return projects. When risk is

undiversifiable, agents favor safer projects. As markets become more complete, however, riskier

projects are preferred, leading to faster economic growth. In contrast, markets are always complete

in our model, and we focus on business cycles risk rather than long-run growth. We also investigate

how distortions such as markups and taxes influence aggregate risk-taking behavior.

In the corporate finance literature, managers often select between projects with different risk

levels, but the focus of these papers is usually on the agency problem between firm owners and

managers (Jensen and Meckling, 1976; Ross, 1977). One distinguishing feature of our work is that

firms also select the correlation of their productivity with that of other firms.

Our model shares features with network economies such as Long and Plosser (1983) and Ace-

moglu et al. (2012). Some of the propagation mechanisms at work in these models are also active

here. We also relate to the literature on wedges in production network economies, which includes

Jones (2011), Baqaee and Farhi (2019a), Liu (2019) and Bigio and La’O (2020). In standard

Cobb-Douglas network economies with wedges, aggregate volatility depends only on the variance

of shocks and on the vector of cost-based Domar weights. Both of these objects are independent of

wedges. In contrast, wedges in our setup influence aggregate risk through their impact on exposure

decisions. We are also related to Pellet and Tahbaz-Salehi (2023) and Kopytov et al. (2024) who

study (exogenous) uncertainty in network economies.2

The rest of the paper is organized as follows. We introduce a model of endogenous risk in Section

2 and derive some of its aggregate properties in Section 3. We discuss the existence, uniqueness

and efficiency of the equilibrium in Section 4. We then characterize the firm’s equilibrium risk

taking decisions (Section 5) and their impact on the aggregate economy (Section 6). In Section 7,

we provide firm-level evidence that support the predictions of the model. In Section 8, we calibrate

the model and evaluate its quantitative implications. Section 9 concludes.

2 A model of endogenous risk

We study the origin of risk in an otherwise standard production network economy under uncer-

tainty. The economy is populated by a set of firms, each producing a differentiated good that can

be used either as intermediate input or for consumption. Firms can influence their productivity

2Our work also relates to the endogenous network literature as in Oberfield (2018), Acemoglu and Azar (2020)
and Kopytov et al. (2024). In those papers, firms choose a technique that specifies their suppliers. In our paper,
firms can be interpreted as selecting a technique that specifies their productivity processes.
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process by using resources provided by a risk-averse household. Together, these decisions shape the

risk profile of the aggregate economy.

2.1 Firms and production functions

There are N firms, indexed by i ∈ {1, . . . , N}, each producing a differentiated good.3 Firm i

has access to the constant returns to scale Cobb-Douglas production function

F (δi, Li, Xi) = eai(ε,δi)ζiL
1−

∑N
j=1 αij

i

N∏
j=1

X
αij

ij , (1)

where Li is labor, Xi = (Xi1, . . . , XiN ) is a vector of intermediate inputs and ζi is a normalization

term.4 The matrix α, containing the input shares 0 < αij < 1, describes the production network

in this economy.5

We let firms choose the probability distribution of their total factor productivity ai (ε, δi). To

make this idea operational in the model, we assume that ai (ε, δi) depends on several sources of

risk, collected in the M × 1 vector ε, and on firm i’s exposure to those risks, which is captured by

the M × 1 vector δi. Specifically, we let

ai (ε, δi) = δ⊤i ε, (2)

such that δim determines i’s exposure to riskm. We do not restrict δi to be positive so that firms can

be negatively exposed to a shock. We further assume that ε ∼ N (µ,Σ) is normally distributed.

The vector µ captures the expected level of the risk factors and the positive definite covariance

matrix Σ determines the uncertainty about individual elements of ε and how they covary.

By choosing δi, firm i implicitly selects the mean and the variance of ai, as well as how it

correlates with the productivity of other firms. As we will see, these correlations, in turn, create

aggregate risk, so that firm decisions matter for the risk profile of the aggregate economy. For

instance, if many firms decide to locate their operations in the same region, a localized earthquake

might trigger an economic disaster (Barro, 2006; Carvalho et al., 2021).

Our specification of the sources of risk is purposefully abstract, and we do not take a stance

on what exactly a specific risk factor εm is. In reality, firms make a large number of decisions that

affect their risk profile: where to locate a plant, whom to hire, what project to develop, where to

get financing, and many others. Each of these decisions involves particular tradeoffs and including

3Equivalently, we can think about a continuum of identical firms producing good i.

4To simplify the unit cost expression, given by (9) below, we set ζ−1
i =

(
1−

∑n
j=1 αij

)1−
∑n

j=1 αij ∏n
j=1 α

αij

ij .
5It is natural to think that the risk-taking decisions of a firm affect its (perhaps removed) suppliers and customers

and, through that channel, aggregate quantities. We include input-output linkages in the model to study that
interaction, but they are not essential for some of the mechanisms of the model.
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them all in the model would make it intractable. Instead, we adopt a holistic approach and focus

on how much risk firms take on, and on how correlated that risk is across firms. We introduce the

risk factor structure as a way to tractably model these choices.6

Firms must use risk management resources to adjust their exposure δi. In reality, these resources

can take many forms. A firm might need to rent a piece of land away from the shore to reduce flood

risk and vulnerability to global warming. Hiring an experienced lobbyist might alleviate political

risk. Employing research scientists might make the firm better equipped to face a disruptive new

technology, etc. In the model, these different resources are provided by the representative household

at a cost in terms of utility. Different resources can have different supply elasticities, so that some,

like land, might be hard to adjust. We show in Appendix E.2 that, under some conditions, these

different resources can be aggregated into a single composite resource. For simplicity, we therefore

write the model directly in terms of that composite risk management resource.

To achieve risk exposure δi, we assume that firm i requires Ri = κi (δi) units of risk management

resources. We further let κi (δi) take the quadratic form,

κi (δi) =
1

2
(δi − δ◦i )

⊤Hi (δi − δ◦i ) , (3)

where Hi is a positive-definite M × M matrix. Since firm i can achieve risk exposure δi = δ◦i

without using any resources, we refer to δ◦i as firm i’s natural exposure to the risk factors.7 This

specification is sufficiently rich to allow for both aggregate and firm-specific sources of risk. Indeed,

there can be a risk factor m for which deviating from δ◦jm = 0 is extremely costly for any firm

j ̸= i. In this case, εm is effectively specific to firm i. Similarly, the model can accommodate

risks that cannot be mitigated by assuming that κ is sufficiently steep. Finally, the model can also

accommodate a constant firm-specific TFP shifter by assuming that there exists a degenerate risk

factor m with Σmm = 0 and that deviating from a fixed exposure to m is arbitrarily costly.

Events in this economy unfold in two stages. Before ε is realized, firms choose how much risk

management resources to purchase and make their exposure decisions δ. The household also decides

how many risk management resources to supply at that time. After ε is drawn, consumption, labor

and intermediate inputs are chosen and their respective markets clear. This timing reflects the

facts that risk management decisions (where to locate a plant, which technology to adopt, etc.) are

long-lived and cannot be changed rapidly once the shocks are realized.

6Ideally, we would let firms pick their productivity distributions in an arbitrary way, but the fact that produc-
tivities are correlated across firms creates some issues. For instance, it is not clear whether firm i or j should decide
how their two productivity processes correlate. We use the underlying risk factors as a tractable modeling device to
sidestep these problems while allowing firms to influence their correlation structure.

7As we show in Appendix E.3, most of our results hold in some form without assuming that κi is quadratic, but
the exploration of the model is much more complicated in that case and does not yield important additional insights.
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2.2 Household preferences

A risk-averse representative household supplies one unit of production workers inelastically

and a variable amount R of risk management resources.8 It also owns the firms. The household

values consuming a bundle Y =
∏N

i=1

(
β−1
i Ci

)βi of the different consumption goods. We impose

that
∑N

i=1 βi = 1, so that βi ≥ 0 corresponds to good i’s share of consumption expenditure in

equilibrium. Since Y corresponds to aggregate value added in this economy, we refer to it as GDP.

The household has King, Plosser, and Rebelo (1988) preferences that are given by9

U (Y )V (R) , (4)

where U (Y ) = Y 1−ρ

1−ρ is CRRA with relative risk aversion parameter ρ ≥ 1, and V (R) = V (R)1−ρ

with V (R) = exp (−ηR).10 The elasticity η > 0 controls how costly it is for the household to

supply additional risk management resources. The exponential form implies that the price of risk

management resources is a constant fraction of nominal GDP. We adopt it for tractability but show

in Appendix E.4 that several of our results extend to general convex V functions at the cost of

extra complications.

The household decides on how much risk management resources to supply before uncertainty is

realized. In contrast, it makes consumption decisions after ε is drawn. It follows that in each state

of the world the household’s budget constraint is

N∑
i=1

PiCi ≤ WL +WRR+Π, (5)

where Pi is the price of good i, Π is the profit of the firms, WR is the price of risk management

resources and WL is the wage. We take the wage as numeraire so WL = 1.11 We further define

P =
∏N

i=1 P
βi
i as the consumption price index.

There is a complete set of state-ε contingent claims in this economy. Since the household can

trade these claims, their prices reflect the marginal utility of consumption in each state. As usual,

8We keep the supply of workers fixed to simplify the exposition. It is straightforward to make it elastic instead.
9The balanced-growth utility function of King, Plosser, and Rebelo (1988) implies that the substitution and the

income effects associated with the price of risk management resources cancel each other and allows us to derive
closed-form expressions for aggregate quantities. Several of our results also apply more generally, as we show in
Appendix E.4.

10When log Y is normally distributed, maximizing E
[
(1− ρ)−1 Y 1−ρ

]
amounts to maximizing E [log Y ] −

1
2
(ρ− 1)V [log Y ] such that ρ ≶ 1 indicates whether the household likes uncertainty in log consumption or not.

This is a consequence of the usual increase in the mean of a log-normal variable from an increase in the variance of
the underlying normal variable. The presence of ρ in V is an innocuous normalization to simplify some expressions.

11Since the labor market clears in each state of the world, there should technically be a different wage in each
state ε. But given the specific structure of the economy, we show in Appendix E.5 that we can normalize WL = 1 in
each state of the world.
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this implies that firms use the household’s stochastic discount factor,

Λ =
1

P

d [U (Y )V (R)]

dY
, (6)

to discount profits in different states of the world (see Appendix A.1 for a derivation). The problem

of the household also provides a relation between the utility of supplying risk management resources

R and their price WR, given by

−P̄ Y
V ′ (R)

V (R)
= WR. (7)

Since V (R) is exponential, this equation simplifies to ηP̄Y = WR, so that the price of risk manage-

ment is a fraction η of nominal GDP. A higher η therefore implies that risk management is more

expensive.

2.3 Firm problem

Once ε is realized, firms must choose how much labor to hire and how many intermediate inputs

to purchase, given the risk-exposure vector δi that they previously chose. In that case, firm i’s cost

minimization problem is

Ki (δi, P ) = min
Li,Xi

Li +
N∑
j=1

PjXij

 , subject to F (δi, Li, Xi) ≥ 1, (8)

where P = (P1, . . . , Pn) is the vector of prices. Since, for a fixed δi, firm i operates a constant

returns to scale Cobb-Douglas technology, its unit cost of production is

Ki (δi, P ) =
1

eai(ε,δi)

N∏
j=1

P
αij

j . (9)

The cost of producing one unit of good i is therefore equal to the geometric average of the individual

input prices, weighted by their respective shares, and adjusted for total factor productivity, which

depends on the firm’s risk-taking decision.

Given (9), the first stage of the firm’s problem involves choosing risk exposure δi to maximize

expected discounted profits

δ∗i ∈ argmax
δi

E [Λ [PiQi −Ki (δi, P )Qi − κi (δi)WR]] , (10)

where Qi is equilibrium demand for good i. The terms in the inner square bracket are sales, cost of

goods sold and risk management expenditure, respectively. They are multiplied by the stochastic
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discount factor Λ, which reflects the value of cashflows in different states of the world from the

perspective of the representative household. As a result, firms are influenced by the representative

household’s attitude toward risk.

Since firms behave competitively, they take as given the equilibrium objects P , Qi, WR and Λ

when solving (10).12 We can therefore rewrite that equation as

δ∗i ∈ argmin
δi

E [Ki (δi, P )Qi] + Cov

(
Ki (δi, P )Qi,

Λ

E [Λ]

)
+ κi (δi)WR. (11)

Naturally, when firm i chooses its risk exposure δi, it seeks to minimize the expected cost of goods

sold E [Ki (δi, P )Qi] and risk management expenses κi (δi)WR. But, importantly, it also cares

about the comovement of its cost with the stochastic discount factor. Intuitively, the firm prefers

to have a low cost in states with high marginal utility of consumption or, equivalently, with low

GDP. This creates a motive for diversification across firms. As we will see in the next section, GDP

is mostly driven by the risk factors to which firms are exposed the most. As a result, any individual

firm has incentives to move against the crowd and to gain exposure to less popular factors, or to

those that are negatively correlated with GDP.

Finally, as Cov (KiQi,Λ) = Corr (KiQi,Λ)
√
V [KiQi]

√
V [Λ], the variance of the cost of goods

sold V [KiQi] also matters. Since GDP and TFP tend to move hand-in-hand, firm costs and GDP

tend to move in opposite directions, so that Corr (KiQi,Λ) is positive for the typical firm. In

this case, the optimal risk exposure δi seeks to minimize V [KiQi] as well. This can be done, for

instance, by relying less on volatile risk factors or by diversifying exposure by relying on risk factors

that offset each other.

2.4 Equilibrium conditions

Firm i sets its price at an exogenous wedge τi ≥ 0 above its unit cost Ki, such that

Pi = (1 + τi)Ki (δi, P ) for all i ∈ {1, . . . , N} . (12)

These wedges can be interpreted as markups, taxes, or other distortions. When τi = 0 for all i,

prices are fully competitive. For a set of risk-exposure decisions, equations (9) and (12) allow us to

fully characterize the price system as a function of the random productivity shocks ε.13

An equilibrium is defined by the optimality conditions of the household and the firms holding

simultaneously, and all markets clearing.

12Firms behave atomistically, with no control over prices or the demand that they face. As in Kopytov et al.
(2024), this assumption can be microfounded by assuming that each index i corresponds to a sector with many firms,
and that buyers and sellers meet through a search process.

13Due to constant returns to scale, risk management expenses lead to negative profit for τ near zero. To keep firms
in operation, lump-sum transfers from the government can be introduced without affecting the forces of the model.
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Definition 1. An equilibrium is a choice of risk-exposure decisions δ∗ = (δ∗1 , . . . , δ
∗
n) and a stochas-

tic tuple (P ∗,W ∗
R, C

∗, L∗, R∗, X∗, Q∗) such that

1. (Optimal risk-exposure choice) For each i ∈ {1, . . . , N}, the risk-exposure decision δ∗i solves

(10) given prices P ∗, the price for risk management resources W ∗
R, demand Q∗

i , and the

stochastic discount factor Λ∗ given by (6).

2. (Optimal input choice) For each i ∈ {1, . . . , N}, factor demands per unit of output L∗
i /Q

∗
i

and X∗
i /Q

∗
i are a solution to (8) given prices P ∗ and W ∗

R, and the chosen risk exposure δ∗i .

3. (Consumer maximization) The consumption vector C∗ and the supply of risk management

resources R∗ maximize expected utility (4) subject to (5) given prices P ∗ and W ∗
R.

4. (Unit cost pricing) For each i ∈ {1, . . . , N}, P ∗
i solves (12) where Ki (α

∗
i , P

∗) is given by (9).

5. (Market clearing) For each i ∈ {1, . . . , N},

C∗
i +

N∑
j=1

X∗
ji = Q∗

i = Fi (α
∗
i , L

∗
i , X

∗
i ) ,

N∑
i=1

L∗
i = 1, and

N∑
i=1

κi (δ
∗
i ) = R∗. (13)

Conditions 2 to 5 are standard and imply that firms and the household optimize and that

all markets clear at equilibrium prices. Condition 1 emphasizes that risk-taking decisions are

equilibrium objects that depend on the primitives of the economy. These decisions, once aggregated,

shape the risk structure of the macroeconomy.

We have kept the model parsimonious to make the exposition more transparent, but it is

straightforward to extend it in several ways. For instance, many of our results still hold when we

relax the assumption that κi is quadratic. We can similarly relax the functional form assumption on

the disutility of supplying risk management resources V. We work out these extensions in Appendix

E. At the same time, some assumptions are required to keep the model tractable. Without the

Cobb-Douglas structure, for instance, we cannot write a closed-form distribution for the price vector

P under a given δ, which makes solving the model analytically infeasible. Departing from marginal

product pricing would also introduce important complications.

3 Equilibrium prices and GDP

Before describing the firms’ risk-exposure decisions, we first characterize how prices and GDP

behave in this economy. For that purpose, we follow Baqaee and Farhi (2019a) and define the

revenue-based input-output matrix Ω and the cost-based input-output matrix Ω̃ as

Ωij :=
PjXij

PiQi
and Ω̃ij :=

PjXij

WLLi +
∑N

k=1 PkXik

.

11



The elements Ωij and Ω̃ij correspond to firm i’s expenditure on good j as a share of its total sales

and as a share of its input cost gross of risk management expenses. Since firms have Cobb-Douglas

production functions, these shares are constant, with Ω̃ij = αij and Ωij =
αij

1+τi
. This last equation

follows since τi captures the gap between a firm’s revenue and its cost.

Using Ω and Ω̃, we also define the revenue-based and cost-based Leontief inverse matrices as

L := (I − Ω)−1 = I +Ω+ Ω2 . . . and L̃ :=
(
I − Ω̃

)−1
= I + Ω̃ + Ω̃2 + . . . .

While Ωij and Ω̃ij capture the direct exposure of firm i to firm j as a share of its revenue and cost

respectively, Lij and L̃ij capture both direct and indirect exposures through network linkages.

Finally, we define firm i’s revenue-based Domar weight ωi as the share of its sales in nominal

GDP, such that ωi :=
PiQi

P̄ Y
. The market clearing condition (13) and the first-order conditions of

the household imply that ω⊤ = (ω1, . . . , ωN )⊤ = β⊤L. We define the cost-based Domar weight

vector ω̃ in a similar fashion: ω̃⊤ := β⊤L̃ = β⊤ (I − α)−1.

Using the relation between Ω and Ω̃, the revenue-based Domar weights can also be written in

terms of primitives as

ω⊤ = β⊤
(
I − [diag (1 + τ)]−1 α

)−1
, (14)

where diag (1 + τ) is the diagonal matrix whose ith diagonal element is 1 + τi. One can show

that ω is weakly decreasing in τj , such that higher wedges reduce revenue-based Domar weights,

but leave their cost-based counterparts unchanged. Neither cost-based nor revenue-based Domar

weights depend on risk-exposure decisions. Without input-output linkages (α = 0), both Domar

weight vectors are equal to β.

Combining these definitions with (9) and (12), we can write the vector of log prices as

p = −L̃ (δε− log (1 + τ)) , (15)

where p = (logP1, . . . , logPN ), log (1 + τ) = (log (1 + τ1) , . . . , log (1 + τN )), and δ is the N × M

matrix whose typical element δim is firm i’s exposure to risk factor m. It follows that the price

pi of firm i is high if its productivity ai (εi, δi) = δ⊤i ε is low, or if the productivity of one of its

important suppliers is low, and so on. Equation (15) also makes clear that wedges affect prices in

the same way as a decline in productivity. Finally, since ε is normally distributed, so is p.

While δ describes firms’ individual risk exposure, it will be convenient to work with an aggregate

risk-exposure measure, which we define as ∆ := δ⊤ω̃. An element ∆m =
∑N

i=1 ω̃iδim of that vector

is simply the (cost-based) Domar weighted sum of each firm’s exposure to factor m.

With that definition in hand, we can derive an expression for real GDP.
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Lemma 1. Log (real) GDP y = log Y is given by

y = ∆⊤ε− ω̃⊤ log (1 + τ)− log ΓL, (16)

where the labor share of income ΓL is given by14

ΓL :=
WLL

P̄Y
= 1− τ⊤ (diag (1 + τ))−1 ω. (17)

The first term in (16) shows that the contribution of factor εm to GDP is proportional to its

aggregate exposure ∆m. A factor, then, is an important driver of GDP if many firms, or those with

high Domar weights, are heavily exposed to it. The additional terms in (16) are deterministic and

reflect the role of wedges. When τ = 0, cost-based and revenue-based Domar weights coincide, such

that (16) collapses to y (δ) = ∆⊤ε = ω⊤a (ε, δ), and Hulten’s (1978) theorem applies. As wedges

grow, GDP is distorted from its efficient level.

Equation (16) implies that log GDP is normally distributed. Its moments are then

E [y] = ∆⊤µ− ω̃⊤ log (1 + τ)− log ΓL and V [y] = ∆⊤Σ∆. (18)

The first equation shows that a marginal increase in aggregate exposure ∆m raises expected log

GDP by the expected productivity µm of that factor. Unsurprisingly, gaining exposure to a high-

mean risk factor is beneficial for E [y]. Similarly, an increase in µm has a beneficial impact on E [y]

if the economy is positively exposed to it (∆m > 0), but reduces expected log GDP otherwise.

The second equation in (18) describes the determinants of aggregate risk and is central to our

analysis. It shows that an increase in the variance Σmm of a factor always leads to an increase in

the volatility of GDP. The magnitude of that increase is proportional to ∆2
m, such that its impact

is stronger when ∆m is very positive or very negative. In both cases, the economy is particularly

vulnerable to εm. Correlations also matter. The impact of Σmn on V [y] depends on the sign of

∆m∆n. If the economy is positively or negatively exposed to both risk factors, a higher covariance

increases aggregate risk. In contrast, with positive exposure to one factor and negative exposure

to the other, an increase in covariance stabilizes the economy and V [y] declines with Σmn.

Exposure decisions also affect the variance of GDP. One can show that

dV [y]

d∆m
= 2Cov [y, εm] = 2

M∑
n=1

∆nCov [εn, εm] . (19)

The first equality implies that if εm is positively correlated with GDP, an increase in ∆m adds risk

to the economy and raises V [y]. The second equality follows since the stochastic part of GDP is

∆⊤ε. It implies that the response of V [y] to ∆m depends on how correlated εm is with the other

14To be precise, ΓL is the labor share of income gross of risk management expenses.
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risk factors, and on the economy’s exposure to those factors. If the economy is heavily exposed to

some factor εn (∆n > 0), and that εm and εn are positively correlated, an increase in ∆m adds

on to the risk generated by εn, which contributes to a higher V [y]. In contrast, if εm and εn are

negatively correlated, increasing ∆m offsets some of the fluctuations generated by εn.

Finally, (18) shows that wedges have no direct impact on V [y], and so their only possible

influence on the variance of log GDP must operate through their impact on risk-taking decisions.

We will explore that channel later on.

4 Equilibrium existence, uniqueness and efficiency

In the previous section, we characterized GDP as a function of aggregate risk exposure ∆, but ∆

itself is an equilibrium object that is shaped by the decisions of the firms. In this section, we consider

the full equilibrium mapping in which ∆ is endogenous. We start by introducing the problem of

a social planner and by describing the efficient allocation. We then provide a characterization of

the equilibrium of the model. We also show that there exists a unique equilibrium and that it is in

general inefficient.

4.1 A planning problem

Since there is only one household in this economy, the social planner simply maximizes the ex-

pected utility of that household subject to the resource constraints (13). To describe that problem,

it is convenient to introduce the aggregate cost function κ̄SP , defined as the value function

κ̄SP (∆) := min
δ

− log V

(
N∑
i=1

κi (δi)

)
, subject to ∆ = δ⊤ω̃. (20)

For a given aggregate risk-exposure vector ∆, κ̄SP (∆) corresponds to the smallest possible (log)

utility cost required to achieve ∆. The minimization problem (20) also implicitly defines a function

δSP (∆) that provides the individual risk-exposure matrix δ that minimizes the welfare cost of

achieving ∆.

With those definitions in hand, the problem of the social planner can be written as

WSP := max
∆

∆⊤µ︸ ︷︷ ︸
E[ySP ]

−1

2
(ρ− 1)∆⊤Σ∆︸ ︷︷ ︸

V[ySP ]

−κ̄SP (∆) , (21)

where WSP provides a measure of (log) welfare in the efficient allocation. This problem shows that

the planner seeks to maximize the expected value of log GDP E [ySP ], while minimizing its volatility

V [ySP ] and the risk management cost κ̄SP . Unsurprisingly, the importance of the variance term
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increases with the risk aversion ρ of the household.15 Since the objective function (21) is strictly

concave, there is a unique efficient exposure vector ∆SP that solves the planner’s problem (see proof

of Proposition 1). There is also a unique efficient matrix δSP (∆SP ) that minimizes the utility cost

associated with this risk exposure.

4.2 A distorted planning problem

Wedges imply that the equilibrium allocation differs from the efficient allocation. To charac-

terize the inefficient equilibrium, we rely on a distorted version of the planning problem (21) that

accounts for these distortions. For that purpose, we introduce a distorted version of κ̄SP , defined

as

κ̄ (∆) := min
δ

− log V

(
N∑
i=1

giκi (δi)

)
, subject to ∆ = δ⊤ω̃, (22)

and where gi := (1 + τi)
ω̃i
ωi

≥ 1. We refer to gi as the efficiency gap of firm i. As it multiplies κi

in (22), a higher gi effectively increases the cost of allocating risk management resources to firm

i. When τ = 0, revenue-based and cost-based Domar weights coincide, and all the efficiency gaps

are equal to one. In this case, κ̄ (∆) = κ̄SP (∆) for all ∆. When τ increases, however, so do the

efficiency gaps. Specifically, we can show that

dgi
dτj

=
gi
ωi

ωj

1 + τj
Lji > 0. (23)

An increase in τj reduces firm j’s size, as measured by its revenue-based Domar weight, and so

its demand for inputs from its suppliers decreases as well. It follows that if firm i is a direct or

indirect supplier to j (Lji > 0), its revenue-based Domar weight also shrinks, and its efficiency gap

gi increases. Without input-output linkages (α = 0), the efficiency gaps take a particularly simple

form, gi = 1 + τi, and a change in wedge τi only affects the efficiency gap of firm i.

The function κ̄ will play an important role in our analysis, and so it is useful to derive some of

its properties right away.

Lemma 2. The aggregate cost function κ̄ is given by

κ̄ (∆) =
1

2
(∆−∆◦)⊤∇2κ̄ (∆−∆◦) , (24)

15Notice that (21) does not depend directly on the individual risk-exposure decisions δ. Given the definition of
κ̄SP (∆), the impact of δ on welfare operates only through the aggregate risk exposure ∆.
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where ∆◦ := (δ◦)⊤ ω̃, and where the Hessian matrix of κ̄ is given by

∇2κ̄ = η

(
N∑
i=1

ω̃2
i

gi
H−1

i

)−1

. (25)

This result shows that the distorted utility cost κ̄ (∆) of reaching aggregate exposure ∆ is a

quadratic function of ∆. When all firms adopt their natural risk-exposure levels, δ = δ◦, the

aggregate exposure is also at its natural level ∆◦ = (δ◦)⊤ ω̃, and the cost of reaching that exposure

is κ̄ (∆◦) = 0. Whenever ∆ departs from ∆◦, the utility cost increases by an amount that depends

on the curvature ∇2κ̄ of κ̄. As (25) shows, this curvature is a weighted harmonic average of the

underlying individual curvature matrices ∇2κi = Hi. Intuitively, if all firms must pay a large cost

to gain exposure to some risk factor m (large [Hi]mm for all i), then the aggregate cost of increasing

∆m is also large. Having firms with higher cost-based Domar weights imply that a given change

in ∆ = δ⊤ω̃ can be achieved via smaller, and therefore less costly, movements in δ, and so ∂κ̄/

∂ω̃i < 0. On the other hand, allocating risk management resources to highly distorted firms (large

gi) is costly, and ∂κ̄/∂τi > 0.

We can use the definition of κ̄ to characterize the equilibrium and some of its basic properties.

Proposition 1. There exists a unique equilibrium, and its aggregate risk exposure ∆∗ solves

Wdist := max
∆

∆⊤µ− ω̃⊤ log (1 + τ)− log ΓL︸ ︷︷ ︸
E[y]

−1

2
(ρ− 1)∆⊤Σ∆︸ ︷︷ ︸

V[y]

−κ̄ (∆) . (26)

Without wedges (τ = 0), the equilibrium is efficient.

Proposition 1 shows that the equilibrium allocation is the solution to a fictitious planning

problem distorted by wedges. Wedges enter (26) by distorting expected log GDP E [y] and by

increasing the cost of risk exposure embedded in κ̄. Since, however, ∆ does not interact with the

wedges in E [y], only the distortions in κ̄ affect the equilibrium exposure decisions.

Why are distortions in κ̄ needed to replicate the equilibrium? From the planner’s perspective,

the impact on GDP of firm i’s risk exposure δi is proportional to its cost-based Domar weight ω̃i.

From the equilibrium’s perspective, however, the firm makes decisions to minimize its production

cost KiQi, which, using the definition of revenue-based Domar weights, is proportional to ωi/

(1 + τi). The effective cost of risk exposure must therefore be adjusted by the ratio of these

quantities, the efficiency gap gi, for problem (26) to yield the equilibrium allocation. When wedges

vanish, the two functions κ̄ and κ̄SP become identical and the equilibrium coincides with the efficient

allocation. The wedges τ are therefore the only source of inefficiency in this model.

16



5 Forces shaping risk-exposure decisions

In this section, we solve the model and provide expressions for the equilibrium risk-exposure

decisions. We also explore how primitives of the economy, such as the moments of the risk factors

and the wedges, affect those decisions.

Our analysis relies on the optimality conditions of the fictitious planner’s problem.

Lemma 3. The equilibrium aggregate risk exposure ∆ solves

E (∆) = ∇κ̄ (∆) , (27)

where the marginal value of aggregate risk exposure E is given by

E := E [ε] + Cov [λ, ε] , (28)

and where λ = logΛ is the log of the stochastic discount factor.

This lemma follows directly from the first-order condition of the fictitious planner. It states that

the marginal utility cost ∇κ̄ of aggregate exposure is equal to its marginal benefit to the household’s

expected utility of consumption, which is given by the vector E . Unsurprisingly, the expression for

E implies that exposure to factors with high expected value E [εm] = µm is particularly valuable.

Moreover, factors that are highly correlated with the stochastic discount factor λ also have high

exposure value. These factors perform well when the household is poor, and they therefore provide

insurance in high marginal utility states. Given E ’s definition, we say that a risk factor εm is good

if Em > 0, and that it is bad if Em < 0.

Using the definition of the stochastic discount factor (6), we can simplify the expression for E .

Lemma 4. The equilibrium marginal value of exposure vector E can be written as

E = µ− (ρ− 1)Σ∆. (29)

To understand this equation, consider first an economy in which there is a single risk-factor. In

this case, we can represent the relationship between E and ∆ on a simple graph, as in the left panel

of Figure 1. That figure also shows the quadratic relationship between ∆ and V [y] implied by (18).

It is clear from this figure that if the economy is already heavily exposed to the risk factor (∆ > 0),

any further increase in ∆ would add to aggregate volatility. In contrast, under negative exposure

(∆ < 0), any marginal increase in ∆ lowers aggregate volatility. Since the household dislikes

uncertainty, a high-exposure risk factor tends to have a negative marginal value of exposure E ,
while a negative exposure factor has a positive E . In fact, E is always linearly decreasing in ∆ as

(29) and Figure 1 show. When there is more than one risk factor, correlations matter as well. If
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the economy is heavily exposed to factors that covary with εm, any increase in ∆m would raise

aggregate volatility. In that case, the marginal value of exposure to εm would be low.

The moments of a risk factor also influence E . Let 1m be the mth standard basis vector, then16

∂E
∂µm

= 1m and
∂E

∂Σmn
= −1

2
(ρ− 1) (∆m1n +∆n1m) . (30)

Therefore, an increase in µm always makes factor m more attractive but leaves the marginal value

of exposure to all other factors unchanged. The second equation in (30) describes how changes in

the covariance matrix Σ affect the attractiveness of the risk factors. To understand the intuition

behind it, consider the right panel of Figure 1 which shows what happens when uncertainty Σ

increases. In this case, we see that ∆ has a stronger impact on the variance of GDP. It follows

that marginal increases in ∆ are now more harmful for ∆ > 0 and more beneficial for ∆ < 0. As

a result, the relationship between E and ∆ becomes steeper, as Figure 1 and equation (30) show.

When there is more than one factor, a similar reasoning applies to changes in covariances. An

increase in Σmn decreases the marginal value of exposure to both factors m and n if ∆m > 0 and

∆n > 0. In this case, the larger covariance implies that a marginal increase in ∆m or ∆n would

translate into a larger increase in aggregate risk. The opposite happens when ∆m < 0 and ∆n < 0.

Equation (30) also shows that a higher risk aversion ρ magnifies the impact of Σ on E .

Figure 1: Impact of ∆ on V [y] and E in an economy with a single risk factor
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5.1 Aggregate and individual risk exposure

From (27), we can solve for the equilibrium exposure decisions in closed-form.

16Whenever we take derivatives with respect to off-diagonal elements of Σ, we simultaneously change Σmn and
Σnm to keep Σ symmetric and divide the result by two.
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Proposition 2. The equilibrium individual and aggregate risk-exposure decisions are given by

δi = δ◦i +
1

η

ωi

1 + τi
H−1

i E and ∆ = ∆◦ +H−1E◦, (31)

where E◦ := µ− (ρ− 1)Σ∆◦ and where the M ×M positive definite matrix H−1 is

H−1 :=
(
∇2κ̄+ (ρ− 1)Σ

)−1
. (32)

The first part of (31) characterizes individual risk-taking decisions. Whenever risk factors are

not neutral (E ≠ 0), firms actively manage their risk exposure, which leads to deviations from δ◦i .

The size of these deviations depends on H−1
i , which captures the elasticity of the cost function κi.

Since Hi is positive definite, H−1
i has a positive diagonal, and an increase in Em always leads to an

increase in δim. Firms are therefore more exposed to attractive risk factors.

In contrast, the response of δin for n ̸= m can be positive or negative depending on the sign

of
[
H−1

i

]
mn

. If
[
H−1

i

]
mn

> 0, we say that risk factors m and n are local complements in the risk

management of firm i. In this case, an increase in Em also leads to an increase in δin. If, instead,[
H−1

i

]
mn

< 0, we say that m and n are local substitutes, and a beneficial change to Em makes the

firm move away from risk factor n.

These substitution patterns can be used to describe physical constraints that a firm might face

when managing risk. For instance, suppose that a firm can locate its plant in a single location: by

the shore, where floods can happen, or in a plain, where droughts occur. The Hessian Hi can be

parametrized to capture that situation by imposing that exposure to either flood or drought risk is

affordable, but that exposure to both risks is prohibitively costly. In this case, flood and drought

risks would be local substitutes.

The size of the firm also matters for exposure decisions. Intuitively, since the impact of produc-

tivity scales with the input bundle, the benefit of managing risk increases with the cost of goods

sold KiQi. In contrast, its cost κi (δi)WR does not. It follows that large firms find it more cost-

efficient to spend on risk management. Furthermore, since KiQi ∝ ωi/ (1 + τi), firms with high

revenue-based Domar weights and those with low markups have greater incentives to manage risk,

as (31) shows. More concretely, we can show that

∂E⊤δi
∂ωi

> 0 and
∂E⊤δi
∂τi

< 0,

such that higher revenue-based Domar weight firms and those with lower markups tend to be more

exposed to good risk factors (E > 0) and less exposed to bad ones. This relationship between size

and risk-taking behavior plays an important role in the mechanisms of the model.17 In Section 7

17In Acemoglu and Zilibotti (1997) and Koren and Tenreyro (2013), incentives to diversify scale with size. In
our model, large firms spend more on risk management than small firms, but these expenditures as a share of sales
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we will see that it helps explain several features of the data.18

The supply elasticity of risk-management resources η also matters for risk-taking decisions.

When η is large, the economy struggles to provide more resources when needed, and so δi tends to

stay close to δ◦i . In contrast, when η is small, large adjustments can be easily achieved.

The second part of (31) provides a closed-form expression for aggregate risk exposure ∆. We see

that ∆ depends on a vector E◦, which corresponds to the marginal benefit vector E when aggregate

exposure ∆ is at its natural level ∆◦. The impact of E◦ on ∆ is mediated by a matrix H−1, given

by (32). Since H−1 is positive definite, if a risk factor m is naturally attractive (E◦
m > 0), firms

and the aggregate economy tend to be exposed to it. Whether a naturally attractive risk factor m

contributes to exposure to another factor n ̸= m depends, however, on global substitution patterns

that are encoded in the matrix H−1. If
[
H−1

]
mn

> 0, we say that risk factors m and n are global

complements, in which case an increase in E◦
m leads, all else equal, to an increase in ∆n. If, instead,[

H−1
]
mn

< 0, we say that m and n are global substitutes, in which case an increase in E◦
m leads to

a decline in ∆n.

Equation (32) implies that these global substitution patterns depend on the Hessian matrix ∇2κ̄

of the aggregate cost function κ̄. An element (m,n) of ∇2κ̄ captures how an increase in exposure

to factor m changes the marginal cost of gaining exposure to factor n. Recall from (25) that ∇2κ̄

an average of the Hessians of the underlying individual cost functions (κ1, . . . , κN ). It follows that

∇2κ̄ captures the global impact of the local substitution patterns embedded in (κ1, . . . , κN ). The

global substitution patterns also depend on the response of the value of exposure to a change in ∆,

which is given by dE/d∆ = − (ρ− 1)Σ. Intuitively, a positive correlation between two risk factors

m and n contributes to these two factors being global substitutes. Indeed, if ∆m increases, the

fictitious planner would favor a decline in ∆n to avoid too much aggregate risk. Unsurprisingly,

the intensity of that channel depends on the household’s risk aversion ρ.

5.2 Beliefs and aggregate risk exposure

It is clear from the definition of E that the moments (µ,Σ) affect how attractive the risk factors

are. The following result describes their impact on risk-taking decisions.

Proposition 3. Let γ denote either the mean µm or an element Σmn of the covariance matrix.

The response of the equilibrium aggregate risk exposure ∆ to a change in γ is given by

d∆

dγ
= H−1∂E

∂γ
, (33)

where ∂E
∂γ is given by (30).

decrease with firm size. In Appendix B.6, we provide evidence consistent with these patterns.
18When calibrating the model in Section 8 we allow Hi to depend on ω̃i to allow more flexibility between risk

management costs and firm size.

20



Proposition 3 shows that the impact of a change in a moment γ on ∆ operates through its direct

impact on exposure value E , as captured by ∂E/∂γ in (33). That is, a change in γ makes some risk

factors more or less attractive than before, and this triggers an adjustment of risk-taking decisions

through the matrix H−1. Since H−1 is positive definite, it is straightforward to characterize the

outcome of that adjustment process.

Corollary 1. An increase in the expected value µm of risk factor m leads to an increase in aggregate

risk exposure ∆m. An increase in the variance Σmm of risk factor m leads to a decrease in ∆m if

∆m > 0 and to an increase in ∆m if ∆m < 0.

An increase in µm makes exposure to εm more attractive in terms of its contribution to the

household’s expected consumption utility without affecting the cost κ̄ of achieving that exposure.

Through the maximization problem of the fictitious planner (26), those changes lead to a higher

∆m. The impact of Σ is more subtle. Recall from (18) that the sensitivity of the variance of

GDP to Σmm depends on the absolute value of ∆m. Indeed, an increase in Σmm makes GDP more

volatile even if ∆m < 0. It follows that a higher Σmm makes the fictitious planner reduce |∆m|,
which explains the second part of the corollary.

As in Proposition 2, the global substitution matrix H−1 controls how changes in the attractive-

ness of a risk factor εm affect exposure to another factor, say εn. To better understand how these

substitution patterns work, consider a simple economy in which three firms can be exposed to two

sources of risk, as in panel (a) of Figure 2. Risk 1 is a good risk with E1 > 0, while risk 2 is bad

with E2 < 0. The cost functions κ are parametrized so that firm 1 is only exposed to the good

risk and cannot adjust its exposure. Similarly, firm 3 is only exposed to the bad risk. Firm 2, in

contrast, is free to change its exposure to the two risk factors, and its cost function κ2 is such that

δ21 and δ22 are substitutes. All firms use labor to produce but, in addition, firm 2 uses goods from

firms 1 and 3 (see the caption of Figure 2 for exact parametrization).

One can think of many real-world examples that roughly fit this simple framework. For in-

stance, firm 2 might only have a limited amount of resources (management attention or specialized

scientists) that can be allocated to promising R&D research (good risk) or to mitigating the impact

of a potential epidemic on operations (bad risk). Another example may involve two regions, such

that region 1 is more productive than region 2 (for instance, due to better climate). Firm 1 cannot

move from region 1 and is thus only exposed to risk 1, while firm 3 cannot move from region 2

and is therefore exposed to risk 2 only. Firm 2, in contrast, can locate its plants in both regions.

In this context, δ21 and δ22 are substitutes if it is challenging for firm 2 to manage geographically

dispersed plants.

Panel (b) in Figure 2 shows what happens to the equilibrium aggregate risk exposure when

the bad factor becomes more risky. When Σ22 increases, E2 declines and risk factor 2 becomes

less attractive. As a result, firm 2 reduces its exposure to it, and since the other firms’ exposures
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are fixed, ∆2 declines. As the two risk factors are substitutes, increasing δ21 then becomes cost

effective, and the overall economy’s exposure to the good factor increases.

Figure 2: Impact of parameters in a simple economy

(a) Structure of the economy (b) Impact of Σ22 on ∆ (c) Impact of τ2 on ∆

Notes. Panel (a): The structure of the economy; there is an arrow from firm j to firm i if αij > 0, and from risk factor m to
firm i if δim ̸= 0. Panels (b) and (c): effects of changes in parameters. Initial parametrization is as follows. Household: ρ = 2
and β2 = 0.8, β1 = β3 = 0.1. Network: α21 = α23 = 0.25, all other entries of α are zero. Beliefs: µ = (0.75, 0), Σ is diagonal
with diag (Σ) = (0.5, 0.5). Risk exposures: δ◦11 = δ◦32 = 1, δ◦22 = 1.9, δ◦12 = δ◦21 = δ◦31 = 0, H1 = H3 are diagonal with very
large entries on the main diagonals; H2,11 = H2,22 = 1, H2,12 = H2,21 = 0.75. Wedges: τ = 0. In panel (b), Σ22 changes from
0.5 to 1. In panel (c), τ2 changes from 0 to 1.

5.3 Wedges and aggregate risk exposure

Wedges affect the size of firms and, through that channel, risk-exposure decisions.

Proposition 4. The response of the equilibrium aggregate risk exposure ∆ to a change in wedge τi

is given by
d∆

dτi
=

dH−1

dτi
E◦, (34)

where

dH−1

dτi
= −H−1

 N∑
j=1

∂∇2κ̄

∂gj

dgj
dτi

H−1,

and where the response of the efficiency gap dgj/dτi is given by (23), and ∂∇2κ̄/∂gj is a positive

definite matrix.19

Wedges affect the equilibrium risk exposure ∆ through the curvature of the aggregate cost

function κ̄. Specifically, from (23), an increase in τi leads to a higher efficiency gap gj for all j.

This, in turn, means that firms find risk management less appealing, and the curvature of the

aggregate cost function increases, in the sense that ∂∇2κ̄/∂gj is a positive definite matrix. These

changes in curvature then affect H−1 to influence ∆.

19We give an expression for ∂∇2κ̄/∂gj in the proof of this proposition.
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Proposition 4 provides a general characterization of the impact of τ , but we can get a sharper

result under a particular parametrization of the covariance matrix and of the individual cost func-

tions.

Definition 2. An economy is diagonal if the risk factors are uncorrelated (diagonal Σ), and the

individual risk exposures are neither complements nor substitutes in the individual cost functions

(κ1, . . . , κN ) (diagonal Hi for all i).

Correlations between risk factors and complex substitution patterns can give rise to interesting

mechanisms, but they often obscure some simpler forces that are at work in the economy. To

highlight those forces, we will sometimes simplify the analysis by focusing on diagonal economies.

For instance, the following result describes the impact of τ in such a setting.

Corollary 2. In a diagonal economy, a higher wedge τi increases ∆m for all m such that Em < 0

(bad risks) and decreases ∆m for all m such that Em > 0 (good risks).

This result shows that wedges push firms to increase their exposure to bad risks and to decrease

their exposure to good risks. Intuitively, an increase in τi makes firms shrink in terms of their

cost of goods sold. This implies that risk management become less cost-effective: since the firm is

smaller, managing its TFP is now less rewarding. As a result, firms spend less to get exposure to

good risk factors and to reduce exposure to bad risk factors. As we will see in the next section,

this has important implications for welfare.

The last panel of Figure 2 shows what happens to the example economy of panel (a) when

firm 2’s wedge increases. As a result of its higher sales price, firm 2 shrinks, which makes risk

management relatively more costly. It follows that aggregate exposure to the good risk factor

declines and exposure to the bad risk factor increases.

So far, we have characterized how risk-taking decisions are affected by the moments (µ,Σ) of

the risk factors and the wedges τ . It is, however, straightforward from (30) to describe how any

parameter affects ∆. For instance, in Appendix E.1 we also explore how changes in the production

network α affect ∆. Our main finding there is that if a change in αij leads to an increase in

revenue-based Domar weights, the affected firms manage risk more aggressively in response.

5.4 Equilibrium and efficient risk exposure

Proposition 4 implies that the distortions matter for risk-taking decisions. The following lemma

shows that as a result the equilibrium ∆ departs from its efficient level.

Lemma 5. Suppose that τj > 0 for at least one firm j. Then (∆−∆SP )
⊤ E◦ < 0, where ∆

and ∆SP are the aggregate risk exposure vectors in the equilibrium and the efficient allocation,

respectively.
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When there is a single risk factor, Lemma 5 implies that the equilibrium is overexposed to bad

natural risks (E◦ < 0) and underexposed to good natural risks (E◦ > 0), compared to the efficient

allocation. Intuitively, wedges distort firms’ incentives to manage their risk exposures and, when

aggregated, those decisions lead to a departure from ∆SP . When there are multiple risk factors,

Lemma 5 shows that these forces operate on average. For instance, if there are only two risk factors,

one good and one bad, the equilibrium can be overexposed to the good natural risk only if it is

severely overexposed to the bad risk as well.

In a diagonal economy, this over/under exposure result applies factor by factor, as the next

corollary shows.

Corollary 3. Suppose that the economy is diagonal and that τj > 0 for at least one firm j. Then

the sign of ∆i −∆SP,i is the opposite of the sign of E◦
i .

We will see in the next section how over/under exposure to risk factors matters for welfare.

6 GDP and welfare

As we have seen, changes in the environment affect the economy’s risk profile. In this section,

we study the impact of that mechanism on the moments of GDP and on welfare.

6.1 Moments of GDP

An increase in a parameter χ can influence the moments of GDP through two channels. First,

it might trigger an adjustment in ∆, and that adjustment might, in turn, affect GDP. This is the

main channel that we are interested in in this paper. Second, an increase in χ may also have a

direct impact on GDP that operates independently of χ’s influence on ∆. For instance, an increase

in wedges τ , on its own, can reduce GDP. This second channel is not specific to our model and, in

many cases, has already been studied in the literature. In what follows, we therefore focus on the

role played by changes in risk-exposure decisions, and filter out the impact of the second channel

(denoted using partial derivatives in the expressions).

The following result describes how a change in a parameter affects GDP through its impact on

∆.20

Proposition 5. Let χ denote either µm, Σmn, or τi. Then the impact of a change in χ on the

moments of log GDP is given by

dE [y]

dχ
− ∂ E [y]

∂χ
= µ⊤d∆

dχ
and

dV [y]

dχ
− ∂V [y]

∂χ
= 2∆⊤Σ

d∆

dχ
, (35)

20Propositions 5 and 7 also apply when χ denotes a network link αij . In that case, the term d∆/dχ is given by
(83) in Appendix E.1.
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where partial derivatives indicate that ∆ is kept fixed, and where d∆
dχ is given by (33) for χ = µi or

χ = Σmn, and by (34) for χ = τi.

Proof. The result follows directly from (18).

The first expression in (35) shows that the response of E [y] to χ depends on the mean µ of the

risk factors whose exposure responds to χ. For instance, recall that an increase in µm raises ∆m

(Corollary 1). If µm > 0, this additional exposure has a beneficial impact on E [y]. In contrast,

expected GDP declines if µm < 0. In general, a change in χ affects the economy’s exposure to

many risk factors, and so the first equation in (35) sums over all of them to get the overall effect

on E [y].

The impact of χ on the variance of log GDP V [y] works in a similar way, but in this case the

correlations between the affected risk factors must be taken into account. Indeed, we can rewrite

the second expression in (35) as

dV [y]

dχ
− ∂V [y]

∂χ
= 2Cov

[
y,

(
d∆

dχ

)⊤
ε

]
.

It follows that the impact of χ depends on whether the risk factors whose exposure changes are

positively or negatively correlated with log GDP. For example, since an increase in µm raises ∆m,

that change will lead to an increase in V [y] if εm is positively correlated with y.

We can further characterize the impact of (µ,Σ) on GDP in a diagonal economy.

Corollary 4. In a diagonal economy, the following statements hold.

1. The impact of an increase in µm on GDP satisfies

sign

(
dE [y]

dµm
− ∂ E [y]

∂µm

)
= sign (µm) and sign

(
dV [y]

dµm
− ∂V [y]

∂µm

)
= sign (∆m) . (36)

2. The impact of an increase in Σmm on GDP satisfies

sign

(
dE [y]

dΣmm
− ∂ E [y]

∂Σmm

)
= −sign (µm∆m) and

dV [y]

dΣmm
− ∂V [y]

∂Σmm
< 0. (37)

The first result describes how an increase in µm affects GDP through its impact on ∆. As

explained above, E [y] rises in response if µm > 0 and decreases otherwise. The response of V [y],

in contrast, depends on whether the economy is positively or negatively exposed to m. Suppose

that ∆m > 0. Then the increase in µm makes ∆m even more positive which makes the economy

exposed to more risk, and V [y] rises as a result. If ∆m < 0 instead, the increase in µm makes ∆m

less negative, and so the economy is less vulnerable to shock m.
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The second part of Corollary 4 offers similar expressions for the impact of an increase in variance.

From Corollary 1, we know that an increase in Σmm leads to a decline in |∆m|. This implies a

beneficial impact on E [y] if µm∆m < 0, but a decline in E [y] otherwise. In contrast, the impact

of Σmm on the variance of GDP via ∆ is unambiguous. Since |∆m| shrinks, the economy becomes

less sensitive to εm, and V [y] declines as well.

We can similarly characterize how wedges affect GDP. When there is a unique risk factor, this

characterization is straightforward.

Corollary 5. Suppose that there is a single risk factor. Then

sign

(
dE [y]

dτi
− ∂ E [y]

∂τi

)
= −sign (µE) and sign

(
dV [y]

dτi
− ∂V [y]

∂τi

)
= −sign (∆E) . (38)

To get some intuition for this result, it helps to fix ideas and suppose, for instance, that there

is a unique risk factor that is bad (E < 0), and that firms are on average positively exposed to

it (∆ > 0). That risk factor could be, for example, an underlying productivity shock that drives

the business cycle. Since wedges raise bad risk exposures (Corollary 2), we know that increasing

τi makes firms more exposed to the risk factor, that is, ∆ increases. Whether this has a positive

impact on E [y] depends on the sign of µ. If µ > 0, then E [y] also increases, while it declines

if µ < 0. Wedges also affect GDP volatility. In this case, since ∆ > 0, increasing τi makes the

economy even more exposed to the risk factor, and V [y] increases. As this example shows, the

mechanisms of the model therefore provides novel channel through which wedges can increase GDP

volatility.

When there are more than one risk factor, the response of the economy to a change in wedges

depends on how correlated the risk factors are and on the substitution patterns in the firms’ cost

functions. To get a better sense of the forces at work, we can go back to the example economy of

Figure 2. The first panel of Figure 3 shows the impact of raising τ2 on E [y]. Recall from the second

panel of Figure 2 that increasing τ2 makes the economy more exposed to risk 2 (the bad risk) and

less exposed to risk 1 (the good risk). Since under our parametrization µ1 > 0 and µ2 = 0, this

triggers a decline in E [y]. Notice that this decline is more pronounced than if ∆ remained fixed

(red line). In that case, the increase in τ2 would lower GDP only through the usual distortionary

effects in network economies. We see that the endogenous risk management decisions of the firms

make the response to an increase in wedges more severe.

The second panel of Figure 3 shows the response of V [y] to the same increase in τ2. Both risk

factors have the same variance, but given our parametrization, the increase in ∆2 is stronger than

the decline in ∆1. It follows that the increase in τ leads to a rise in the volatility of log GDP.

Notably, since V [y] does not directly depend on τ (see (18)), V [y] would be unaffected by wedges

if ∆ remained constant. This is illustrated by the red line in the panel.
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Figure 3: The moments of GDP and welfare react to changes in the environment

(a) Impact of τ2 on E [y] (b) Impact of τ2 on V [y] (c) Impact of τ2 on W

Notes. The structure of the economy is given in panel (a) of Figure 2. Initial parametrization is as follows. Household: ρ = 2
and β2 = 0.8, β1 = β3 = 0.1. Network: α21 = α23 = 0.25, all other entries of α are zero. Beliefs: µ = (0.75, 0), Σ is diagonal
with diag (Σ) = (0.5, 0.5). Risk exposures: δ◦11 = δ◦32 = 1, δ◦22 = 1.9, δ◦12 = δ◦21 = δ◦31 = 0, H1 = H3 are diagonal with very
large entries on the main diagonals; H2,11 = H2,22 = 1, H2,12 = H2,21 = 0.75. Wedges: τ = 0. In all panels, τ2 changes from
0 to 1. The red dot-dashed lines show how variables change with τ2 holding ∆ = ∆(τ = 0) fixed, and the blue solid lines take
into account endogenous adjustments in ∆.

6.2 Welfare

In the previous section, we have characterized how changes in model primitives affect GDP

through their impact on risk-exposure decisions. But what the household ultimately cares about

is welfare, an object that combines the moments of GDP with the disutility of managing risk. In

this section, we evaluate the consequences of risk management decisions for welfare.

We begin by characterizing how welfare reacts to changes in the environment when there are

no distortions.

Proposition 6. Without wedges (τ = 0), the impact of the moments (µ,Σ) on welfare is given by

dW
dµm

=
∂W
∂µm

= ∆m and
dW
dΣmn

=
∂W
∂Σmn

= −1

2
(ρ− 1)∆m∆n.

Furthermore, the impact of the wedge τi on welfare is given by

dW
dτi

=
∂W
∂τi

= 0.

Proof. When τ = 0, the objective function Wdist of the fictitious planner coincides with welfare.

The result then follows from the envelope theorem.

This result shows that making εm more productive on average (higher µm) benefits welfare if

the economy is positively exposed to εm. In contrast, if ∆m < 0, increasing µm leads to a welfare

loss. The proposition also shows that making εm more risky (higher Σmm) is always detrimental
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to welfare. Finally, an increase in the covariance Σmn hurts welfare if the economy is positively or

negatively exposed to both risk factors. If, instead, ∆m and ∆n have opposite signs, the increase

in Σmn is beneficial since the shocks are more likely to offset each other in this case.

Proposition 6 also shows that welfare responds to a marginal change in a parameter as if

the risk-exposure decisions were kept fixed. This is a consequence of the envelope theorem. In the

absence of wedges, the equilibrium is efficient and so ∆ maximizes welfare. Any marginal movement

around ∆ must therefore have no impact on welfare.21 The situation is, however, different in the

presence of wedges, in which case the response of risk exposure can have a first-order effect.

To evaluate the response of welfare in a distorted equilibrium, it is helpful to introduce the

function κ̄V (∆) which captures the equilibrium utility loss associated with a given risk-exposure

vector ∆. It is defined as

κ̄V (∆) := − log V

(
N∑
i=1

κi (δi (∆))

)
, (39)

where δi (∆) is the distorted equilibrium exposure given by the first expression in (31). Unlike κ̄, the

weights of the different firms in κ̄V are not themselves distorted by the efficiency gaps (g1, . . . , gN ).

As a result, κ̄V properly measures the disutility of equilibrium risk management decisions, and

we can use it to compute welfare. The function κ̄V also differs from the planner’s cost function

κ̄SP since it uses the (distorted) equilibrium risk-exposure matrix δ as input instead of its efficient

counterpart.

We can use κ̄V to describe how a change in the environment affects welfare. As before, we focus

on the role played by the response of the exposure vector ∆ by filtering out the fixed-exposure

effect ∂W/∂χ.

Proposition 7. Let χ denote either µm, Σmn, or τi. Then the impact of a change in χ on welfare

is given by
dW
dχ

− ∂W
∂χ

= (E −∇κ̄V )
⊤ d∆

dχ
= (∇κ̄−∇κ̄V )

⊤ d∆

dχ
, (40)

where partial derivatives indicate that ∆ is kept fixed, and where d∆/dχ is given by (33) for χ = µi

or Σmn, and by (34) for χ = τi.

The first equality in (40) highlights the two channels through which a change in χ affects welfare

via ∆. First, the response d∆/dχ of the risk-exposure vector triggers a change in the expected utility

of consumption that is proportional to the marginal benefit of that exposure, as captured by E . For
instance, an increase in the expected value µm of a good risk factor triggers an increase in welfare

through that channel. Second, the response of ∆ also triggers a change in risk management costs

that is proportional to ∇κ̄V . If the economy is already heavily exposed to εm (∆m > ∆◦
m), the

same increase in µm leads to a large increase in costs, which reduces welfare.

21Similarly, since τ = 0 maximizes W, a marginal increase in wedges from that point has no impact on welfare, as
Proposition 6 shows (Baqaee and Farhi, 2019a; Bigio and La’O, 2020).
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The second equality in (40) follows since in equilibrium the benefit of exposure E must be equal

to its marginal cost as it is perceived by the fictitious planner, ∇κ̄. When there are distortions, this

perceived cost deviates from the true marginal cost of exposure ∇κ̄V , and welfare can be affected

by ∆ as a result. The gap ∇κ̄ − ∇κ̄V therefore provides a measure of how important distortions

are for the impact of risk exposure on welfare.

To further explore the impact of χ on welfare, we therefore need to characterize the gap between

∇κ̄ and ∇κ̄V . In general, one can compute these objects and look at their difference. We can

however sign that gap in a simple way in a diagonal economy.

Lemma 6. Suppose that the economy is diagonal and that τj > 0 for at least one firm j. Then the

sign of [∇κ̄]i − [∇κ̄V ]i is the same as the sign of Ei.

Since in equilibrium we must have E = ∇κ̄, the gradient [∇κ̄]i must be positive if εi is a good

risk factor and negative otherwise. Because of the wedges, however, the fictitious planner perceives

that adjusting ∆ is costlier than it really is, which implies that κ̄V is flatter than κ̄. It follows that

for a good risk factor, the true marginal cost is lower than the perceived one, and [∇κ̄]i−[∇κ̄V ]i > 0.

The opposite is true for a bad risk factor.

We can combine this insight with Proposition 7 to characterize the impact of (µ,Σ) on welfare

in a diagonal economy.

Corollary 6. Suppose that the economy is diagonal and that τj > 0 for at least one firm j. Then

the following holds.

sign

(
dW
dµm

− ∂W
∂µm

)
= sign (Em) and sign

(
dW

dΣmm
− ∂W

∂Σmm

)
= −sign (∆mEm) .

From the previous discussion, we know that the distortions imply that for a good risk factor

(Em > 0), the marginal benefit Em of increasing ∆m is larger than the true utility cost ∇κ̄V of

that increase. It follows that higher exposure to that risk factor is beneficial. This explains why

an increase in µm leads to an increase in welfare, on top of the fixed-exposure effect, if Em > 0. In

contrast, if εm is a bad risk factor, the marginal benefit of exposure is lower than the true marginal

cost, and the same increase in µm is detrimental to welfare, as the corollary shows. A similar result

holds for an increase in Σmm. Suppose that εm is good, so that Em− [∇κ̄V ]m > 0 by Lemma 6, and

higher exposure ∆m would be beneficial. After an increase in Σmm, the fictitious planner reduces

|∆m| to limit how vulnerable the economy is to εm. It follows that if ∆m > 0, there is a decline in

exposure, which lowers welfare. If instead ∆m < 0, the increase in risk Σmm leads to more exposure

∆m, which improves welfare.

A similar result holds for the impact of wedges.

Corollary 7. Suppose that the economy is diagonal and that τj > 0 for at least one firm j. Then
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an increase in wedges is more detrimental to welfare when risk-exposure decisions can adjust, that

is, dW
dτi

≤ ∂W
∂τi

.

This result shows that endogenous risk-exposure decisions by firms increase the welfare cost of

wedges. Indeed, recall from Corollary 2 that a higher τi leads to an increase in exposure to bad

risks and to a decline in exposure to good risks. Lemma 6, in turn, implies that additional exposure

to bad risks is detrimental to welfare, and vice-versa for good risks, which explains the result.

The last panel of Figure 3 illustrates how these economic forces operate in the model economy

of Figure 2. If ∆ is kept fixed, an increase in the wedge τ2 of the central firm makes the distortions

more important, which is detrimental for welfare (red line). But if the risk exposure ∆ of the

economy is free to adjust, the adverse impact of τ2 on welfare is exacerbated (blue line) due to the

higher exposure to the bad risk factor 2 and to the lower exposure to the good risk factor 1 (see

second panel of Figure 2).

Overall, the model captures a novel channel through which distortions like taxes and markups

are detrimental to welfare. Beyond their conventional distortionary effects, these wedges interfere

with firms’ risk-taking decisions, disrupting the macroeconomy’s risk profile and creating larger

welfare losses. This highlights the importance of accounting for endogenous risk taking when

assessing the welfare implications of taxation and other policy interventions.

7 Reduced-form evidence

In the model, the characteristics of a firm affect its risk-exposure choices and, hence, its TFP’s

variance and covariance with GDP. In this section, we verify that some of the key predictions of

the model are visible in the data. We focus on business cycle risk and, to simplify the exposition,

assume that there is a unique aggregate risk factor εt ∼ iid N (0,Σ). Specifically, we assume that

firm i’s TFP is

log TFPit = δitεt + γit+ vit, (41)

where γi is a firm-specific deterministic trend to capture long-run changes in TFP, and where

vit ∼ iid N (µv
i ,Σ

v
i ) is a firm-specific shock to capture variation that might be uncorrelated with

GDP.22

Given this setup, it is straightforward to see that firm i’s risk-exposure decision is time-

independent, such that δit = δi.
23 Proposition 2 further implies that

δi = δ◦i +
1

η

ωi

1 + τi
H−1

i E , (42)

22For simplicity, we assume that firms cannot adjust their exposure to vit or to the trend γi. The analysis is similar
if they can, but requires additional assumptions on the cost function κi. We can also allow for autocorrelation in εt
and vit, and for correlations between the vit of different firms at the cost of extra complications.

23See Appendix B.1 for a proof and for the derivation of the equations of this section.
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where E = − (ρ− 1)Σ∆ since E [εt] = 0. It is natural to think that the aggregate economy is

positively exposed to the aggregate risk such that ∆ > 0.24 In this case, business cycle risk is bad

(E < 0), and (42) implies that firms with larger revenue-based Domar weights ωi or smaller wedges

τi choose, all else equal, a lower risk exposure δi.

Through that channel, ωi and τi affect the variance of firm-level TFP growth, which is given by

V [log TFPit − log TFPit−1] = 2δ2iΣ+ 2Σv
i . (43)

It follows that if δi > 0, firms with larger Domar weights and smaller wedges have less volatile TFP

growth.25 Furthermore, ωi and τi affect how the TFP of a firm covaries with GDP. Using (16), we

can show that

Cov [log TFPit − log TFPit−1, yt − yt−1] = 2∆Σδi + 2ω̃iΣ
v
i . (44)

Together with (42), this equation implies that the productivity growth of firms with larger Domar

weights and lower wedges covaries less with aggregate TFP growth.

To see whether these predictions of the model are at work in reality, we use detailed firm-

level data from Orbis that contain the near-universe of Spanish firms between 1995 and 2018.

Our sample contains 7,513,081 firm-year observations. We use that data to construct firm-level

measures of TFP, markups (our measure of wedges) and Domar weights. We briefly describe how

we construct our sample below, but include more details in Appendix B.2.1.

We compute each firm’s revenue-based Domar weight as the ratio of its nominal sales to Spain’s

nominal GDP. Markups are estimated using the control function approach of De Loecker and

Warzynski (2012). Specifically, the estimated markup is given by 1 + τit = α̂Li

/(
Wage Billit

Salesit

)
,

where α̂Li is the Levinsohn and Petrin (2003)’s estimate of labor elasticity in production (specific

to each 2-digit sector) and Wage Billit
Salesit

is the share of labor expenditure in firms’ sales.26 The median

markup is 1.51 and the median Domar weight is 3.6× 10−7 across all firm-year observations in our

sample. Finally, we compute each firm’s TFP as a markup-corrected deflated Solow residual.

With these data, we first explore how the volatility of a firm’s TFP growth covaries with its

Domar weight and markup. To do so, we compute the standard deviation of TFP growth for

each firm, σi (∆ log TFPit), and the time-series average of its markup and Domar weight. We con-

struct deciles based on average Domar weights and markups, and create a set of dummy variables,

FEDomar
ji and FEMarkup

ji , such that FEDomar
ji = 1 if firm i’s Domar weight is in decile j, and

24Since E [εt] = 0, this is essentially a normalization that implies that on average firms have positive exposure
δit > 0. Alternatively, we can consider an equivalent tilde economy in which δ̃◦ = −δ◦, δ̃it = −δit, ∆̃ = −∆ < 0 and
Ẽ = −E > 0. That economy would be indistinguishable from the original one in terms of the variance of firm-level
TFP growth and its covariance with GDP, as (43) and (44) show below. Indeed, our results in Section 6 regarding
the effect of Σ on the moments of GDP and welfare depend on the sign of the product of ∆ and E , not on the signs
of ∆ and E separately.

25With δi < 0, a higher ωi or a lower τi implies more volatile TFP growth. In our sample, δi > 0 for most firms.
26In Appendix B.3, we show that our results are robust to using other measures of markups.

31



Figure 4: TFP volatility, Domar weights and markups

(a) TFP volatility by Domar weight decile
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(b) TFP volatility by markup decile
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Notes. Estimation results of (45) using a sample of Spanish firms from Orbis. Panel (a): βDomar
j + α + βMarkup

5 by Domar

weight decile j (j = 1 is lowest Domar weight, j = 10 is highest Domar weight). Panel (b): βMarkup
j +α+ βDomar

5 by markup

decile (j = 1 is lowest markup, j = 10 is highest markup). 90% confidence intervals are constructed using standard errors that
are clustered at the industry level. Sample construction is described in Appendix B.2.

analogously for markups. We then run the cross-sectional regression

σi (∆ log TFPit) = α+
10∑
j=1

βDomar
j FEDomar

ji +
10∑
j=1

βMarkup
j FEMarkup

ji + εi, (45)

and plot βDomar
j in panel (a) and βMarkup

j in panel (b) of Figure 4. We find that firms with lower

Domar weights and higher markups tend to have more volatile TFP growth. These relationships are

statistically and economically significant. A firm in the top decile of the Domar weight distribution

is about 15 p.p. less volatile than a firm in the bottom decile. In contrast, firms in the top decile

of the markup distribution are about 6 p.p. more volatile than firms in the bottom decile.27 Our

theory is consistent with these findings. In the model, firms with small Domar weights and high

markups are less aggressive in managing risk, and are therefore more volatile.

To confirm the empirical findings of Figure 4, we also run a simple cross-sectional regression of

the standard deviation of firm-level TFP growth on Domar weights and markups. The results are

reported in Table 2 in Appendix B.3. There, we see that a 1% increase in a firm’s Domar weight is

associated with a decline in TFP growth volatility of 0.032 log points, and a 1% increase in a firm’s

markup is associated with an increase in TFP growth volatility of 0.030 log points (in our sample,

average TFP growth volatility is 20.8%). The results are statistically significant. In Appendix B.3,

we conduct an analogous analysis using a sample of US firms from Compustat. Despite this data

having much fewer firms and covering a significantly smaller fraction of the US economy, we find

similar results.

Next, we turn to our model’s prediction that the TFP of firms with higher Domar weights

and lower markups should covary less with GDP. Again, we construct a set of dummy variables,

27See Stanley et al. (1996) and Yeh (2023) for evidence that sales growth volatility declines with firm size.
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FEDomar
jit and FEMarkup

jit , such that FEDomar
jit = 1 if firm i’s Domar weight is in decile j in year t,

and analogously for markups. Notice that these variables are time dependent for this exercise. We

then run the following panel regression,

∆ log TFPit =

10∑
j=1

βDomar
j

(
FEDomar

jit ×∆ logGDPt

)
+

10∑
j=1

βMarkup
j

(
FEMarkup

jit ×∆ logGDPt

)

+ α+ β0∆ logGDPt +
10∑
j=1

FEDomar
jit +

10∑
j=1

FEMarkup
jit + εit, (46)

where ∆ log TFPit is the annual growth of firm i’s log TFP and ∆ logGDPt is the annual growth of

Spanish log GDP. The coefficients of interest, βDomar
j and βMarkup

j , are reported in Figure 5. Panel

(a) shows that firms with Domar weights in the top decile covary substantially less with GDP than

firms in the bottom decile. The difference is economically large, about 64 p.p., and statistically

significant. Panel (b), in contrast, shows that firms with high markups covary more with GDP

than their low-markup counterparts. The relationship is economically and statistically significant.

Figure 5: Sensitivity of firm-level TFP to GDP

(a) Sensitivity of firm TFP to GDP by Domar weight decile
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(b) Sensitivity of firm TFP to GDP by markup decile
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Notes. Estimation results of (46) using a sample of Spanish firms from Orbis. Panel (a): βDomar
j + β0 + βMarkup

5 by Domar

weight decile j (j = 1 is lowest Domar weight, j = 10 is highest Domar weight). Panel (b): βMarkup
j +β0+βDomar

5 by markup

decile (j = 1 is lowest markup, j = 10 is highest markup). 90% confidence intervals are constructed using standard errors that
are clustered at the firm level. Sample construction is described in Appendix B.2.

In Appendix B.3, we investigate the relationship between these quantities through simple panel

regressions. Controlling for various sets of fixed effects, we still find that firms with high Domar

weights and low markups comove less strongly with the business cycles. Again, these regressions

and the results of Figure 5 are consistent with our theory. In the model, those firms manage their

risk exposure more aggressively and decide to be less exposed to aggregate fluctuations.28

28Large firm sales also covary less with GDP than those of small firms in US data (Crouzet and Mehrotra, 2020).
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Well-established facts about stock returns are also consistent with our model. As documented

by Fama and French (1992), larger firms tend to comove less with the aggregate stock market. The

mechanisms of the model provide an explanation for this stylized fact, provided that productivity

increases generally benefit a firm’s stock price. Additionally, we show in Appendix B.4 that firms

with higher markups exhibit greater covariance with the aggregate stock market, consistent with

our theoretical predictions.

Overall, the findings of this section suggest that key predictions of our theory are in line with

firm-level productivity data and stock market return data.29 Of course, other mechanisms could

also be at work (see Yeh (2023) for a discussion of the literature on firm size and volatility). For

instance, large firms might be able to average out many plant-level shocks, which would reduce their

volatility. We view our mechanism as complementing these other stories. We are also reassured by

the fact that our theory can explain patterns related to the variance and the covariance of firms

jointly.

8 Calibration to the Spanish economy

To evaluate the quantitative importance of endogenous risk-taking decisions for the macroecon-

omy, we provide a basic calibration of the model to the Spanish economy. We rely on the detailed

firm-level data already introduced in the previous section to identify the parameters of the model.

With the calibrated model in hand, we investigate how the presence of wedges affects aggregate

volatility, and how the economy handles an increase in the variance of a risk factor. We present an

overview of our calibration strategy below and include more detail in Appendix C.

8.1 Model with sectors

We specialize the general model of Section 2 to better map the moments of the data to model

quantities. Specifically, we assume that some firms act as sectoral aggregators, and that individual

firms purchase intermediate inputs from these aggregators directly. In that setup, we can use the

Spanish sectoral input-output data to discipline the matrix α of network connections. The model

that we present in this section is dynamic but firms make the same risk-exposure decisions every

period. We will therefore analyze the model in a single period.

There are S sectors. In each sector s, there is an aggregator that converts the output of the Ns

29There are also indications that the model mechanisms are visible in aggregate data. In Appendix B.5, we show
that richer countries have smaller TFP volatility. If richer countries have access to better technologies, including
risk-management technologies (smaller Hi or η), they should be better at reducing their risk exposure, consistently
with this pattern. We also find that countries with larger governments feature more volatile TFP. Larger governments
imply more taxes, and insofar as some of those taxes affect the gap between prices and production costs, our theory
would suggest that firms in these countries are less aggressive with their risk management, in line with the data.
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firms in that sector into a sector-specific good according to the production function

Qs = ezs
Ns∏
i=1

(
θ−1
si Qsi

)θsi ,
where

∑Ns
i=1 θsi = 1, zs ∼ iid N (µz

s,Σ
z
s) are sectoral productivity shocks, and where Qsi denotes

the output of firm i in industry s. This firm, in turn, produces according to the production function

Qsi = eδsitεt+γsit+vsitζsiL
1−

∑S
s′=1 α̂ss′

si

S∏
s′=1

X
α̂ss′
si,s′ , (47)

where Xsi,s′ denotes the use of the composite good of sector s′ by firm i in sector s. Notice that the

input elasticities α̂ are sector-specific, in line with the available data. As before, firms price their

goods at a markup τsi above marginal cost.30 Finally, the household only consumes goods produced

by the sectoral aggregators so that GDP is given by Y =
∏S

s=1

(
β−1
s Cs

)βs , where
∑S

s=1 βs = 1.

As in Section 7, the TFP of firm i is the sum of a trend γsit, an idiosyncratic shock vsit ∼
iid N (µv

si,Σ
v
si), and an aggregate component εt ∼ iid N (0,Σ) to which firms can adjust their

exposure. The stationary structure of the model implies that firms make the same risk-exposure

decisions in every period, and so from now on we drop the subscript t when writing δsi.

Below, we will look at how changes in the environment affect the variance of GDP growth. In

the context of this model, this quantity is given by

V [yt − yt−1] = 2Σ∆2 + 2ω̃⊤
f Σ

vω̃f + 2ω̃⊤
s Σ

zω̃s, (48)

where ω̃f and ω̃s are the vectors of firm-level and sectoral cost-based Domar weights. The last

two terms in that equation reflect exogenous sources of risk. They are the properly-weighted

aggregates of the firm idiosyncratic and sectoral productivity shocks, and correspond to the granular

contributions of the firms and sectors to aggregate risk (Gabaix, 2011). The first term, which

depends on the aggregate risk exposure ∆, is where the endogenous risk mechanism is at work. We

can rewrite (48) as

V [yt − yt−1] =
S∑

s=1

Ns∑
i=1

ω̃siCov [yt − yt−1, log TFPsi,t − log TFPsi,t−1] + 2ω̃⊤
s Σ

zω̃s. (49)

It follows that the endogenous part of the variance of GDP is driven by the Domar-weighted average

of the covariance of firm TFP growth with GDP growth. We will rely on that relation below to

explore the impact of changes in the environment.

30We think of the sectoral producers as an aggregation device and so we assume that they have no markups and
that they make no risk-exposure decisions.
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8.2 Calibration strategy

Our calibration strategy aims at replicating the firm-level Orbis dataset into our model econ-

omy. Our calibrated economy therefore features 62 sectors and 492,917 individual firms. The

biggest sectors are “real estate (including imputed rents)” with a consumption share of 13% and

“accommodation and food services” with a consumption share of 12%.

Some model quantities can be identified directly from the data. For instance, we set (β1, . . . , βS)

to match the sectoral consumption shares in the Spanish National Accounts. The same data provide

the matrix of sectoral input shares α̂ directly. Consistent with the optimization problem of the

sectoral aggregators, we set θsi to match the share of firm i in sector s’s sales.

Our calibrated model is consistent with the reduced-form framework of Section 7. We therefore

rely on our markup estimates from that section to pin down the firm-level markups τsi. Our

reduced-form analysis also yielded estimates for the firm-level variance of TFP growth and for the

covariance of each firm’s TFP growth with GDP growth. We use that information together with

(43) and (44) to identify the risk exposure δsi and the variance Σv
si of each firm in the economy.

We provide more details about the procedure that we use in Appendix C.3.

Next, we can use the information gathered so far to pin down the value of exposure E . Doing so

requires setting a value for the risk-aversion ρ and the variance Σ of the underlying risk factor. It

turns out that given our calibration procedure, both numbers do not matter for the counterfactual

exercises that we conduct. Changing ρ and Σ only leads to a rescaling of some other objects in the

model, and so we do not need to take a stance on their values.31

Finally, we can estimate the parameters of the firm-level risk-management cost function, δ◦si

and H−1
si . We rely on Proposition 2, which states that

δi = δ◦i +
ωi

1 + τi

(
1

η
H−1

i

)
E . (50)

We proceed through a curve-fitting exercise. In our baseline calibration, we assume that 1
ηH

−1
si

is the sum of a constant and a power function of the firm’s Domar weight. We allow 1
ηH

−1
si to

potentially vary with ω̃i to capture the fact that bigger firms might face different costs of managing

risk. Both the constant and the parameters of the power function are free to change across sectors.

We also assume that δ◦si is the sum of a sector-specific term and a firm-specific residual. We estimate

these terms sector by sector by minimizing the sum of the squares of the residual.32 In Appendix

C.5, we show that our results are robust to assuming that H−1
si is constant by sector instead.

31To fix the scales in some of the figures and tables we set ρ = 5 and Σ = 1. With that normalization, the units
of ∆ are such that if ∆ increases by 1%, the standard deviation of GDP also increases by 1%.

32That is, we assume δsi = δ◦s + ωi
1+τi

1
η
H−1

si E + usi, where
1
η
H−1

si = asω̃
bs
si + cs, and where the parameters as ≥ 0,

bs ≤ 0 and cs ≥ 0 are sector-specific constants to be estimated. For a few sectors, the estimated 1
η
H−1

si is slightly
negative. We set those estimates to zero. These are sectors for which adjusting risk is infinitely costly in our
estimation.
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Of the five biggest sectors in the economy, “public administration and defense” and “health” are

the ones for which adjusting risk exposure is the most costly. In contrast, adjusting exposure in

“accommodation and food services” and “retail trade” is cheap.

Our calibration procedure cannot distinguish between 1
η andH−1

si , and only provides an estimate

for their product 1
ηH

−1
si . But since these quantities enter the model equations only through that

product, there is no need for us to pick values for 1
η and H−1

si separately. We therefore remain

agnostic about the supply elasticity η of risk management resources.

Overall, our calibration procedure ensures that we match certain features of the data exactly.

That is the case for the 1) sectoral shares of consumption, 2) the firm-level shares of sectoral sales, 3)

the sectoral input-output cost shares, 4) the variance of each firm’s TFP growth, 5) the covariance

of each firm’s TFP growth with GDP growth, and finally 6) the variance of GDP growth. Appendix

C.4 provides more details about the calibrated economy.

8.3 Increases in aggregate risk

When risk-exposure decisions are endogenous, the economy has more flexibility to handle an

increase in risk. To evaluate how important this mechanism is, we conduct an experiment in which

the variance Σ of the risk factor doubles. We compare the response of the economy to that change

when firms must keep their previous risk exposure δ fixed, and when they can adjust δ in response

to the change.

When Σ doubles and δ remains fixed, (48) implies that the endogenous component of GDP

volatility doubles as well. As Table 1 shows, this leads to a large increase in aggregate risk,

and the standard deviation of GDP moves from 2.4% in the calibrated economy to 3.1%. Now

that aggregate risk is more important, exposure value E becomes even more negative than in the

calibrated economy, and exposure to the aggregate risk factor is particularly unwanted. In the

economy in which firms are allowed to lower their risk exposure, they decide to do so, and ∆ falls

from 0.014 to 0.011 in response. This decline in ∆ leads to a decline in aggregate volatility, and the

standard deviation of GDP is reduced to 2.6%. Overall, while the doubling of Σ makes GDP more

volatile compared to the calibrated economy, we see that the endogenous response of the firms’

risk-taking decisions makes the increase in volatility substantially less severe.

We can also see the impact of the change in Σ in the firm-level micro data. The left panel in

Figure 6 shows that, keeping δ fixed, the distribution of the covariance between firm-level TFP

growth and GDP growth widens. Intuitively, as Σ increases, εt becomes a more important driver

of firm-level TFP. As a result, firms that are positively exposed to εt now covary more with GDP

while the opposite happens for negatively exposed firms.33 Since on average firms are positively

33This can be seen more readily in (44). When Σ increases, the term 2∆δiΣ grows for firms with δi > 0 but
shrinks for firms with δi < 0, which explains the widening of the covariance distribution. In equilibrium, δ responds
somewhat to mitigate that effect without offsetting it fully.
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exposed to εt (∆ > 0), this widening leads to an increase in the average covariance and, by (49),

to an increase in aggregate volatility. When δ is flexible, firms respond to this large increase in

aggregate volatility by managing their risk more aggressively, which undoes some of the widening,

and mitigates the overall increase in aggregate risk.

Table 1: Exposure and GDP volatility in different environments

Calibration Doubling Σ No wedges

Fixed δ Flexible δ Fixed δ Flexible δ

Std. Dev. of GDP growth 2.4% 3.1% 2.6% 2.4% 1.7%
Aggregate risk exposure ∆ 0.014 0.014 0.011 0.014 0.007
Exposure value E −0.06 −0.11 −0.09 −0.06 −0.03
Share of endogenous vol. 69% 81% 74% 69% 35%

Notes: Share of endogenous volatility is 2Σ∆2/
(
V

[
log GDPt − log GDPt−1

])
.

Figure 6: Changes in the environment and the covariance distribution

(a) Doubling of Σ (b) Setting τ = 0

Notes: Both panels show the cross-sectional distribution of the covariance of firm-level TFP growth with GDP growth. Panel
(a) shows how that distribution changes when Σ doubles. Panel (b) shows how that distribution changes under τ = 0.

8.4 Wedges and inefficient risk exposure

The presence of wedges pushes firms to make inefficient risk-exposure decisions. To evaluate

the quantitative importance of these inefficiencies, we compute the equilibrium in a version of

the calibrated economy without wedges. When wedges disappear, firms become larger and their

revenue-based Domar weights grow to reach their cost-based counterparts. Keeping δ fixed, this has

no impact on GDP volatility, as we can see from the next to last column in Table 1. Indeed, recall

from (48) that the volatility of GDP growth only depends on cost-based Domar weights (which are
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independent of τ), risk exposure δ (which is kept fixed), and the properties of the random variables

(which do not depend on τ).

The situation is different when firms are free to adjust their risk exposure. Since the removal

of the wedges makes firms larger, they manage their risk exposure more aggressively and, from

(50), this leads to a decline in δ. As a result, aggregate exposure ∆ falls from 0.014 to 0.007 (last

column of Table 1), and aggregate volatility declines by 70 basis points compared to the calibrated

economy. This last exercise shows that while wedges have no impact on volatility in standard

economic models without a risk-taking margin, they can have a large impact on fluctuations when

firms control how much risk they are exposed to.

Again, we can look at the impact of the removal of the wedges in firm-level micro data. The

right panel of Figure 6 shows that the distribution of the covariance of firm-level TFP growth with

GDP growth becomes more peaked as a result. Indeed, the removal of the wedges leads to a decline

in ∆Σ which, by (44), leads to a decline in the absolute value of each firm’s covariance with GDP.

Since the average firm is positively exposed to the aggregate risk (∆ > 0), this compression in the

covariance distribution leads to a decline in GDP volatility by (49).

Overall, our findings suggest that disregarding the risk-taking behavior of economic agents can

lead to an overestimation of the negative impact of fundamental risk on the economy and to an

underestimation of the adverse effect of taxes and markups on aggregate volatility. We interpret

these findings with caution. On the one hand, our estimation procedure is parsimonious, and

does not impose any parameter values on the risk aversion (ρ), the elasticity of risk-management

resources (η) and the underlying variance (Σ). This is reassuring given that these parameters could

be hard to estimate. At the same time, the model is stylized in some dimensions, most notably in

terms of functional forms and the nature of competition. We therefore do not view the exercises of

this section as providing precise quantitative answers about how changes in the environment affect

aggregate volatility. We believe, however, that they capture some of the key mechanisms at work

in reality, and that they provide a rough estimate of their importance for the economy.

9 Conclusion

This paper proposes a parsimonious theory of endogenous risk in which firms are free to pick

the properties of their productivity processes. The model is intentionally simple but can explain

key features of the data related to how firm characteristics influence their risk profiles. In a basic

calibration of the model, we find that changes in the environment can have a large impact on

aggregate volatility through their influence on risk-taking decisions.

The model is stylized, and many extensions would be worth exploring. For instance, we have

assumed that markets are complete such that firms value cash flows using the household’s stochas-

tic discount factor. However, in a model with entrepreneurs unable to diversify risks related to
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their businesses, risk management decisions would likely become more consequential, potentially

amplifying the model’s mechanisms (Greenwood and Jovanovic, 1990).

Another promising extension would involve a fully dynamic business cycle model. Indeed, it

seems natural that today’s risk management decisions would affect future payoffs. These decisions

might interact with investment, with potential consequences for business cycle dynamics.
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Online Appendix

A Additional derivations

This appendix contains the derivation of some expressions featured in the main text.

A.1 First-order conditions of the household

In this appendix, we derive equations (6) and (7).

The household chooses how much to consume after uncertainty about ε is realized but how

many risk management resources to supply before uncertainty is realized. We first consider the

problem of the household once the state ε has been realized. Its Lagrangian is

L =

((
C1
β1

)β1

× · · · ×
(
CN
βN

)βN
)1−ρ

(V (R))1−ρ

1− ρ
− Λ

(
N∑
i=1

PiCi −WLL−WRR−Π

)
,

where R is taken as given here. The first-order condition with respect to Ci is

βiU ′ (Y )Y (V (R))1−ρ = ΛPiCi,

where U (Y ) = Y 1−ρ

1−ρ . Summing over i on both sides of this equation and using the binding budget

constraint, we find

U ′ (Y )Y (V (R))1−ρ = Λ(WL +WRR+Π) . (51)

Combining with the first-order condition implies

PiCi = βi (WLL+WRR+Π) . (52)

Combining the first-order condition with Y =
∏N

i=1

(
β−1
i Ci

)βi yields

Y =

N∏
i=1

(
β−1
i Ci

)βi =

N∏
i=1

(
β−1
i

βiU ′ (Y )Y (V (R))1−ρ

ΛPi

)βi

⇔

Λ = U ′ (Y ) (V (R))1−ρ
N∏
i=1

P−βi
i , (53)

which we can combine with (51) to find

Y = (WLL+WRR+Π)
N∏
i=1

P−βi
i . (54)
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This last equation implicitly defines a price index,

P̄ =

N∏
i=1

P βi
i , (55)

such that P̄ Y = WLL+WRR+Π. Therefore, (53) is equivalent to (6).

Finally, we can also compute the household’s first-order condition with respect to R:

E
[
Y 1−ρ

]
(V (R))−ρ V ′ (R) + E [Λ]WR = 0. (56)

Using (53), we find

E
[
Y 1−ρ

] V ′ (R)

V (R)
+ E

[
Y 1−ρ

P̄ Y

]
WR = 0. (57)

By Lemma 1, P̄ Y = WLLΓ
−1
L . Given our choice of numeraire, WLL = 1 and so P̄ Y = Γ−1

L , which

is non-stochastic by Lemma 1. Therefore, (57) simplifies to (7).

B Appendix for Section 7

This appendix contains details about the reduced-form results of Section 7.

B.1 Derivation of (43) and (44)

From (16), we can write log real GDP in the model of Section 7 as

ỹ = ∆ε+ ω̃⊤ (v + γt)− ω̃⊤ log (1 + τ)− log ΓL,

where v is the column vector of the firm-level productivity shocks, and γ is the vector of the

firm-level growth trends γi. The fictitious planner’s problem is therefore

Wdist := max
∆

∆× 0 + ω̃⊤ (µv + γt)− ω̃⊤ log (1 + τ)− log ΓL︸ ︷︷ ︸
E[y]

− 1

2
(ρ− 1)

(
Σ∆2 + ω̃⊤Σvω̃

)
︸ ︷︷ ︸

V[y]

−κ̄ (∆) ,

where µv is the vector of expected values of v, and Σv is the covariance matrix of v. Notice that

the only non-stationary term, the growth trend vector γt, does not interact with the choice of ∆,

and so ∆ is constant over time. Consequently, δ is also constant over time as it solves (22).

Next, the TFP process for firm i is given by log TFPi = δiεt+γit+vit, where vit ∼ iid N (µv
i ,Σ

v
i )

44



and εt ∼ iid N (0,Σ). It follows that

V [log TFPit − log TFPit−1] = V [δiεt + vit + γit− δiεt−1 − vit−1 − γi (t− 1)]

= V [δiεt + vit − δiεt−1 − vit−1]

= V [δi (εt − εt−1) + vit − vit−1]

= 2δ2iΣ+ 2Σv
i .

Similarly, for the covariance we have

Cov [yt − yt−1, log TFPit − log TFPit−1] = Cov
[
∆(εt − εt−1) + ω̃⊤ (vt − vt−1) , δi (εt − εt−1) + vit − vit−1

]
= 2∆Σδi + 2ω̃iΣ

v
i .

Those are the equations reported in Section 7.

B.2 Data sources and variable construction

B.2.1 Orbis data

Our data of Spanish firms comes from the Orbis Historical Disk Product. The Orbis data

is known to be the largest cross-country firm-level database that covers public and private firms’

financial and real activities. We choose Spain for our analysis due to its near-universe (covering more

than 95% of total industry gross output after 2010) coverage of firms as detailed in Gopinath et al.

(2017) and Kalemli-Özcan et al. (2024). We use the sample period 1995-2018 for our analysis.34

Sample cleaning Following the procedure of Kalemli-Özcan et al. (2024), we link multiple vin-

tages of Orbis products over time and link the firm’s descriptive information with its financial

information via the unique BVD firm identifier (BVDID). We restrict our analysis to Spanish firms,

defined as firms that satisfy two criteria: (1) their latest address is in Spain and (2) their BVDID

starts with the ISO-2 code ES. Within the Orbis Spanish sample, we apply the following standard

cleaning procedure:

1. We harmonize the calendar year of each firm-year observation using the variable

closing date: if the closing date is after or on July 1, the current year is assigned as the cal-

endar year. Otherwise, the previous year is assigned.

2. In a given year, firms might have multiple values of reported sales from different sources

(local registry, annual report, or others), for consolidated or unconsolidated accounts. Following

34Orbis offers good coverage of the Spanish economy starting from 1995. Moreover, the most recent observations
in the version of Orbis Historical Disk Product that we use are from 2021. We therefore use 2018 as the last year
of the sample since there is usually a two-year reporting lag for some variables (see Kalemli-Özcan et al. (2024) for
details). We also verify this by noting that the number of firms peaked in 2018, suggesting that data collection for
2019 has not yet been finalized in our version of data.
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Fan (2024), we keep the unconsolidated accounts as the consolidated account might include other

firms in the conglomerate which can lead to double counting.

3. We only keep firms with non-missing and positive sales (operating revenue turnover),

fixed assets (fixed assets), wage bills (costs of employees), and material costs

(material costs). We also harmonize the units of all monetary values to be in current

EUROs.

4. To prevent outliers from affecting the production function and markup estimation, we drop

firms if their average revenue products of any input (fixed asset, wage bills, and material costs) are

larger than the 99.9 percentile of the distribution in any year.

Variable definitions, firm-level markup and TFP estimation We calculate a firm i’s

revenue-based Domar weight as ωit =
salesit

GDPnom,t
, where GDPnom,t is the Spanish nominal GDP (in

EUROs) obtained from the Annual Spanish National Accounts produced by the National Statistics

Institute (INE).

We use the production function estimation approach to obtain estimates of firm-level markup

and productivity growth. To implement the estimation procedure, we consider a Cobb-Douglas

production function of the following form:

logQit = αLi logLit + αMi logMit + αKi logKit + εit, (58)

where the Qit, Lit, Mit and Kit are deflated values of, respectively, sales, wage bills, material costs

and fixed asset for each firm i in calendar year t. Sales, wage bills and material costs are deflated

using the industry-specific gross output price indices. We deflate fixed assets using the capital

price indices. All price indices are from the EU-KLEMS dataset, and we use the most detailed

sector-level price indices at the NACE 2-digit level whenever available. The output elasticities are

estimated using the Levinsohn and Petrin (2003) methodology with the Ackerberg et al. (2015)

correction. Following Levinsohn and Petrin (2003), we use capital as the “state” variable, labor

as the “free” variable and materials as the “proxy” variable. We estimate the production function

for each NACE 2-digit sector. As in De Loecker et al. (2020), we control for markups using firms’

sales shares (sales share at the NACE 3-digit and 4-digit industry level) in the production function

estimation.

Following De Loecker and Warzynski (2012), we compute the markup as 1 + τit =

α̂Li

/(
Wage Billit

Salesit

)
, where α̂Li is the estimated labor elasticity in production and Wage Billit

Salesit
is the

share of labor expenditure in firms’ sales. Our baseline markup measure regards labor as a variable

input in production.

To translate our production function estimates into productivity growth, we use an adjusted
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Solow residual of the following form,35

∆ logTFPit =∆ logQit − αLi∆ logLit − αMi∆ logMit − αKi∆ logKit (59)

−
(
∆ log (1 + τit)−∆ log

(
1 + τs(i)t

))
.

The first line is the standard Solow residual, where (deflated) output growth is adjusted by

the contribution of (deflated) input growth. We further adjust our measure by ∆ log (1 + τit) −
∆ log

(
1 + τs(i)t

)
, which accounts for the firm-specific markup growth net of the sectoral markup

growth, where s(i) represents the NACE 2-digit sector s to which firm i belongs. This adjustment

allows us to remove the change in firm-specific nominal price that are not taken into account by the

sector-level price deflator.36 We thus move closer to a quantity-based interpretation of our TFP

measure.

For all reduced-form exercises, we restrict our sample to only include firms with more than 10

non-missing observations of measured TFP growth (∆ logTFPit) such that TFP volatility can be

precisely estimated. Additionally, for all cross-sectional regressions, we only keep the firms with

positive average log markup, meaning that they do not constantly operate at a loss.

B.2.2 CRSP/Compustat Merged and US stock market data

This subsection describes the firm-level financial and stock market variables used in Appendix

B.4 below. We use two main sources of data: (1) the CRSP/Compustat Merged Fundamentals

Annual data that allows us to compute the firm-level Domar weight and markup and (2) the WRDS

Beta Suite database that provides stocks’ loading on the aggregate return, i.e. stock market betas.

CRSP/Compustat Merged Our sample selection and cleaning procedure follows standard

practices in the literature, particularly those carried out in Baqaee and Farhi (2019a).

1. We apply the following standard filters when processing the data: (1) consolidation level

is C; (2) industry format is INDL; (3) data format is STD; (4) population source is D; (5) currency

is USD; (6) we include both active and inactive companies; (7) we exclude financial, utilities and

public sector firms. We use the data from 1979 to 2015 due to the availability of industry-level

price indices.37

2. We use PERMNO as our firm identifier to allow for easy merge with stock market information.

3. We only keep firms with non-missing and positive sales (sale), gross book value of fixed

assets (ppegt), employees (emp), and costs of goods sold (cogs).

35To avoid outliers in TFP growth, we drop the top and bottom 0.5% firm-year observations for output growth,
(any of the three) input growth or markup growth.

36The sectoral markup growth is constructed as a revenue-weighted firm-level markup growth, which is consistent
with the Cobb-Douglas sectoral price aggregator in our quantitative model.

37Throughout, we use the KLEMS industry price indices obtained from the replication package by Baqaee and
Farhi (2019b).
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4. As in Baqaee and Farhi (2019b), we drop firm-year observations with COGS-to-sales and

XSGA-to-sales ratios in the top and bottom 2.5% of the corresponding year-specific distributions.

WRDS Beta Suite We estimate each stock’s equity beta in each year using the Beta Suite by

WRDS. We use PERMNO as our firm identifier. For each firm-month pair, we estimate the CAPM

market model using 5-year backwards-looking rolling window of monthly firm and aggregate stock

market returns. Specifically, the equity beta βi for each firm-month pair is obtained from the time

series regression:

rit − rft = αi + βCAPM
it mktrft + εit,

where rit is the firm i’s stock return, mktrft is the Fama-French Excess Return on the Market,

and rft is the risk-free rate during month t. The estimation procedure is internally executed

inside the Beta Suite with the following options: (1) frequency is set to be monthly; (2) both the

estimation window and the minimum window is set to be 60 months; (3) risk model is set to be

Market Model; (4) return type is Regular Return. After the estimation, we only keep the beta

estimates in December to be the firm’s equity beta of the calendar year.

Variable definitions, firm-level markup and TFP estimation The variable construction

procedure for the firm-level data from Compustat is similar to that for Spanish firms from Orbis.

We define firm i’s revenue-based Domar weight as ωit =
salesit

GDPnom,t
, where GDPnom,t is US nominal

GDP (the GDPA series from the U.S. Bureau of Economic Analysis).

Our production function estimation procedure for the Compustat sample largely follows Baqaee

and Farhi (2019a). To implement the estimation procedure, we consider a Cobb-Douglas production

function of the following form:

logQit = αV it log Vit + αKit logKit + εit, (60)

where Qit, Vit, and Kit are deflated values of, respectively, sales, costs of goods sold, and fixed asset

for each firm i in calendar year t.38 We deflate sales and costs of goods sold using the gross output

price indices and deflate fixed assets using the capital price indices.

The output elasticities are estimated using the Olley and Pakes (1996) methodology with the

Ackerberg et al. (2015) correction. We use fixed assets as the “state” variable, costs of goods sold

as the “free” variable and investment (capx deflated by the capital price indices) as the “proxy”

variable. We estimate the production function for each sector and each year.39 As panel data

are required in the Olley and Pakes (1996) approach, we use 5-year rolling windows such that

the elasticity estimates for year t is obtained using data from year t − 2 to year t + 2. In the

38As discussed in De Loecker et al. (2020), we use “costs of goods sold” as an input because material costs and
wage bills are not separately reported in Compustat.

39We use the same 14-sector partition as Baqaee and Farhi (2019a), which is based on SIC 2-digit codes.
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estimation, we also control for markups using firms’ sales shares at the SIC 3-digit and 4-digit

industry level. Treating “costs of goods sold” as a variable input in production, we compute the

markup as 1+τit = α̂V it

/(
Costs of Goods Soldit

Salesit

)
, where α̂V it is the estimated variable input elasticity

in production in year t and Costs of Goods Soldsit
Salesit

is the share of variable input expenditure in firms’

sales. We compute firm-level TFP growth as

∆ logTFPit = ∆ logQit −
(
αV it + αV it−1

2

)
∆ log Vit −

(
αKit + αKit−1

2

)
∆ logKit

−
(
∆ log (1 + τit)−∆ log

(
1 + τs(i)t

))
,

where ∆ log(1 + τs(i)t) is the sector-level markup growth and s(i) represents the SIC 2-digit sector

that firm i belongs to. For all reduced-form exercises, we only consider the firms with more than 10

observations of measured TFP growth and positive average log markup. Moreover, for the analysis

of equity beta in Section B.4, we further restrict our sample to firm-year observations that have

valid Domar weights, markups, and 5-year CAPM beta estimates.

Constructing NYSE breakpoints for the deciles of Domar weights We now discuss how

we construct the NYSE breakpoints for the deciles of Domar weights. Our approach resembles the

procedure used in Fama and French (1992) to construct the NYSE breakpoints for market equity

(ME), but instead is applied to Domar weights in our annual CRSP/Compustat Merged sample. We

make the following restrictions to the sample: (1) we exclude all firms from the financial, utilities,

and public sectors along with those with invalid annual sales data, (2) we drop all observations that

do not have a matched 5-year CAPM beta at the PERMNO-year level, and (3) we only consider

firms with a stock exchange code (exchg) of 10 or 11 such that we only keep the firms that are

traded in the NYSE to construct breakpoints.

After restricting the sample, we compute the 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th,

and 90th percentiles of Domar weights for each year. These annual percentile values are then used

to form the Domar weight deciles in the main sample.

B.3 Additional results

This section contains various additional results related to the reduced-form exploration of Sec-

tion 7.

Volatility of TFP growth First, we run a cross-sectional regression of firm-level standard

deviation TFP growth on average log Domar weights and log markups,

σi (∆ log TFPit) = α+ βDomar log (Domar Weighti) + βMarkup log (Markupi) + εi. (61)
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The results are given in column (1) of Table 2. Consistent with our theory, we find βDomar < 0

and βMarkup > 0 for both the Orbis Spain sample and the Compustat sample.

Table 2: Volatility of TFP growth, Domar weights and markups

Dependent variable: Volatility of
firm-level TFP growth

(1): Orbis Spain (2): Compustat

log (Domar Weighti) −0.032∗∗∗ −0.0025∗∗∗

(0.001) (0.0003)
log (Markupi) 0.030∗∗∗ 0.0098∗∗∗

(0.007) (0.0032)

Observations 241,557 3,589
R2 0.098 0.122

Notes: The table presents estimation results of (61). The sample includes all Orbis Spain (column 1) and Compustat (column 2) firms with 1)
at least 10 non-missing observations of TFP growth, and 2) positive average log markup. The sample is trimmed at the top and bottom 0.5% of
observations of average Domar weight, average markup, and the standard deviation of TFP growth. Standard errors (in parentheses) are clustered
at the NACE 4-digit industry level for the Orbis Spain sample in column (1), and at the NAICS 2-digit industry for the Compustat sample in
column (2). ∗,∗∗ ,∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively.

Sensitivity of firm-level TFP to GDP Next, we run a panel regression to examine whether

firms with different Domar weights and markups display different comovement patterns between

firm-level TFP growth and aggregate GDP growth:

∆ log TFPit = β1 log (Domar Weightit)×∆ logGDPt + β2 log (Markupit)×∆ logGDPt

α+ β0∆ logGDPt + β3 log (Domar Weightit) + β4 log (Markupit) + FE + εit. (62)

The coefficients of interest are β1 and β2, and we expect to find β1 < 0 and β2 > 0. Column (1) of

Table 3 shows the results of estimating (62) without any fixed effects. In column (2), we add firm

and year fixed effects, and in column (3), we use industry×year fixed effects. In all specifications,

we find the statistically significant coefficients whose signs are consistent with our theory.

Robustness with an alternative markup measure In this section, we verify that the our main

results from Table 2 and 3 are robust to an alternative markup measure. We compute this measure

as 1 + τit = α̂Mi

/(
Material Costsit

Salesit

)
, where we use the same set of production function estimates as

before but now treat materials as the variable input. Using the material-based markup measure,

we further compute a consistently defined measure of firm-level TFP growth using (59). Results

from estimating (61) and (62) with this alternative markup measure are reported in columns (2)

and (4) of Table 4, alongside our benchmark estimates in columns (1) and (3). The results are

qualitatively similar: smaller firms and those with higher markups show higher TFP volatility and

higher sensitivity of firm-level TFP to GDP.
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Table 3: Sensitivity of firm-level TFP to GDP

Dependent variable: Firm-level TFP growth
(1) (2) (3)

∆ logGDPt −0.770∗∗∗

(0.052)
log (Domar Weightit)×∆ logGDPt −0.064∗∗∗ −0.138∗∗∗ −0.147∗∗∗

(0.004) (0.004) (0.004)
log (Markupit)×∆ logGDPt 0.400∗∗∗ 0.428∗∗∗ 0.416∗∗∗

(0.009) (0.009) (0.010)

Firm FE No Yes Yes
Year FE No Yes No
Industry × Year FE No No Yes
Observations 4,141,982 4,141,982 4,053,751
R2 0.024 0.141 0.164

Notes: Table presents the results of estimation of (62) using a sample of Spanish firms from Orbis. For each firm, we compute its TFP as a
markup-corrected deflated Solow residual, following the approach of Baqaee and Farhi (2019a). Firms’ revenue-based Domar weights are computed
as ratios of their nominal sales to Spain’s nominal GDP. Firms’ markups are estimated using the control function approach of De Loecker and
Warzynski (2012) by treating wage bill as a flexible input. The estimation sample is trimmed at the top and bottom 0.5% of observations of TFP
growth, Domar weight and markup. Standard errors (in parentheses) are clustered at the firm level. ∗,∗∗ ,∗∗∗ indicate significance at the 10%,
5%, and 1% levels, respectively.

B.4 US stock market evidence

Our theory predicts that, all else equal, larger firms (as measured by Domar weights) and those

with lower markups tend to covary more weakly with aggregate shocks. One common way to

investigate this covariance is to use stock market equity betas that can be estimated using high

frequency financial data. As is well known in the finance literature (e.g., Fama and French, 1992),

firms’ equity betas are strongly negatively correlated with their stock market capitalizations. Since

firms with high market capitalizations tend to have high Domar weights, we expect to find a similar

relationship between betas and Domar weights, as our theory predicts. We also explore how equity

betas vary with firms’ wedges.

We use a sample of US public firms from the CRSP/Compustat Merged database (see Appendix

B.2.2 for a detailed description of the data). For each firm, we estimate its 5-year rolling-window

CAPM beta. As in the previous section, we use markups to proxy for wedges, where markups are

constructed as in Baqaee and Farhi (2019a) and De Loecker et al. (2020). To explore how firms’

equity betas correlate with their Domar weights and markups, we use the same approach as in the

previous section. Specifically, we construct deciles based on a firm’s Domar weight and its markup

each year.40 We then construct a set of dummy variables, FEDomar
jit and FEMarkup

jit , such that

FEDomar
jit = 1 if firm i’s Domar weight is in decile j in year t, and analogously for markups. We

40Following Fama and French (1992), we use NYSE breakpoints when defining the Domar weight deciles. The size
distribution of firms in the the other large market, Nasdaq, has changed substantially over time (historically, Nasdaq
was dominated by small tech companies). In contrast, the size distribution of the NYSE firms is more stable.
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Table 4: Results with alternative markup measures

Dependent variable Firm-level TFP growth Vol. of firm-level TFP gr.

Markups estimated with (1) Labor (2) Materials (3) Labor (4) Materials

∆ logGDPt −0.770∗∗∗ −0.301∗∗∗

(0.052) (0.053)
∆ logGDPt −0.064∗∗∗ −0.022∗∗∗

× log (Domar Weightit) (0.004) (0.004)
∆ logGDPt 0.400∗∗∗ 0.149∗∗∗

× log (Markupit) (0.009) (0.013)

log (Domar Weighti) −0.032∗∗∗ −0.028∗∗∗

(0.001) (0.004)
log (Markupi) 0.030∗∗∗ 0.141∗∗∗

(0.007) (0.009)

Observations 4,141,982 4,144,831 241,557 131,742
R2 0.024 0.039 0.098 0.224

Notes: Table presents the results of estimation of (62) (columns (1) and (2)) and (61) (columns (3) and (4)) using a sample of Spanish firms
from Orbis. In columns (1) and (2), the dependent variable in the regression is the TFP growth for each firm, and the independent variables are
the Domar weight and markup for each firm-year observation. The estimation sample for columns (1) and (2) is trimmed at the top and bottom
0.5% of observations of TFP growth, Domar weight and markup. In columns (3) and (4), the dependent variable in the regression is the standard
deviation of TFP growth for each firm, and the independent variables are constructed using the time-series averages of Domar weight and markup
for each firm. The estimation sample for columns (3) and (4) is trimmed at the top and bottom 0.5% of observations of average Domar weight and
average markup. We also trim at the top and bottom 0.5% before computing the standard deviation of TFP growth. Across all specifications, we
only keep the firms with more than 10 non-missing observations of measured TFP growth and positive average log markup. In columns (1) and (3),
a firm’s markup and markup-corrected TFP growth are computed using labor/wage bill-based markups. In columns (2) and (4), a firm’s markup
and markup-corrected TFP growth are computed using material-based markups. Standard errors (in parentheses) are clustered at the firm level.
∗,∗∗ ,∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively.

then run the following regression,

βCAPM
it = b0 +

10∑
j=1

bDomar
j FEDomar

jit +
10∑
j=1

bMarkup
j FEMarkup

jit + εit, (63)

and plot the estimated regression coefficients bDomar
j and bMarkup

j in Figure 6. Panel (a) shows

that larger firms tend to have lower CAPM betas. That relationship holds monotonically except

for firms in the first decile. For such small firms, the estimated betas can be noisy or even biased

downwards due to liquidity issues (Ibbotson et al., 1997). Panel (b) shows that firms with higher

markups tend to have higher CAPM betas. Both these results are in line with our theory as long

as increases in productivity growth and stock market returns are correlated.

B.5 Cross-country evidence

In this appendix, we show that countries with higher GDP per capita or a lower share of

government in GDP tend to have lower TFP growth volatility. To do so, we use data from the Penn

World Table (version 10.01). Our sample includes 6,171 country-year observations (unbalanced

panel of 118 countries from 1956 to 2019). For each country, we compute the standard deviation
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Figure 7: CAPM betas, Domar weights and markups
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Notes. Estimation results of (63) using a sample of US firms from Compustat. Panel (a): bDomar
j + b0 by Domar weight decile

j (j = 1 is lowest Domar weight, j = 10 is highest Domar weight). Panel (b): bMarkup
j + b0 by markup decile (j = 1 is lowest

markup, j = 10 is highest markup). 90% confidence intervals are constructed using standard errors that are clustered at the
firm level. Sample construction is described in Appendix B.2.

of TFP growth σTFP
it using 5-year rolling windows (we use TFP at constant national prices). The

cross-country average of σTFP
it in our sample is 3.37%. Following Acemoglu and Zilibotti (1997),

we then run the following regression:

log σTFP
it = α+ βGDP logGDPpc,it + βGov log govit + FEi + FEt + εit, (64)

where log(GDPpc,it) is log of GDP per capita of country i in year t (we use expenditure-side real

GDP divided by total population), govit is the share of government consumption in GDP. The

variables FEi and FEt are country- and year-fixed effects. The estimated coefficients are given in

Table 5, and the associated binscatters are shown in Figure 8.

Our model can rationalize these findings. Countries with larger government consumption shares

are taxed more heavily. Insofar as some of those taxes affect the wedge between the price at which

goods are sold and their production cost, our theory would suggest that firms in these countries are

less aggressive with their risk management, and aggregate volatility should be higher as a result.

Similarly, richer countries might have better risk management capabilities (lower Hi or η) which

would explain the lower aggregate volatility.

B.6 Evidence on the return-to-scale of risk management inputs

Figure 9 shows that the share of management expenditure (measured as

other operating expenses in the Orbis dataset) declines with a firm’s Domar weight. In-

sofar as some of this expenditure involves managing risk, this would be consistent with the model’s

implication that risk management expenditures as a share of sales decrease with firm size.
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Table 5: Cross-country TFP volatility, GDP per capita and government share

Dependent variable: country-specific TFP volatility
(1) (2) (3)

logGDPpc,it −0.181∗∗ −0.176∗∗

(0.075) (0.072)
log govit 0.114∗∗ 0.123∗∗

(0.056) (0.054)

Firm FE Yes Yes Yes
Year FE Yes Yes Yes
Observations 5,701 5,817 5,701
R2 0.646 0.639 0.649

Notes: Results of estimating (64) using a cross-country sample from Penn World Tables. σit is year t volatility of country i’s annual TFP growth,
computed using 5-year rolling windows; log GDPpc,it is expenditure-side real GDP at chained PPPs per capita; govit is share of government

consumption at curent PPPs. Standard errors (in parentheses) are clustered at the country level. ∗,∗∗ ,∗∗∗ indicate significance at the 10%, 5%,
and 1% levels, respectively.

Figure 8: Binscatters plots of cross-country TFP volatility, GDP per capita and government share

(a) TFP volatility and GDP per capita
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(b) TFP volatility and government share
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Binned scatter plots of cross-country TFP volatility by the log of GDP per capita (left panel) and the log of government share (right panel). Cross-
country TFP volatility is year t volatility of firm i’s annual TFP growth, computed using 5-year rolling windows; GDP per capita is expenditure-side
real GDP at chained PPPs per capita; government share is share of government consumption at current PPPs. The estimation sample is trimmed
at the top and bottom 1% of observations of the country-level TFP volatility, GDP per capita and government share.
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Figure 9: Administrative expenditure share and firm size
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Binned scatter plots of the (log) administrative expenditure share by (log) Domar weight. The administrative expenditure share is defined as the
ratio between “other operating expenses” and sales, and the Domar weight is computed as the ratio of the firm’s nominal sales to Spain’s nominal
GDP. The estimation sample is trimmed at the top and bottom 0.5% of observations of the constructed expenditure share and Domar weight.

C Appendix for Section 8

This appendix contains details about the calibration of Section 8.

C.1 Construction of the sample

This appendix describes the datasets used in the quantitative exercise and how the associated

aggregate and firm-level moments are computed.

1. We measure real GDP using the chain-linked volume index from the Annual Spanish National

Accounts (Gross domestic product at market prices and its components, Table 4). To be

consistent with the Orbis data, we use the mean and variance of GDP growth, yt − yt−1,

during the 1995-2018 period.

2. We calibrate the sectoral parameters using the 2010 input-output table from the Annual Span-

ish National Accounts. The 2010 input-output table partitions the Spanish economy into 62

sectors which are usually defined at the 2-digit NACE industry level.41 Conforming to the

accounting conventions in the data, we calibrate the input elasticities of good s′ in the pro-

duction of sector s as α̂ss′ =
Input from s′at basic prices
Total input at basic prices

× Intermediate consumption at purchaser’s prices
Output at basic prices

,

such that the residual labor share, 1 −
∑

s′ α̂ss′ , corresponds to the value added share of

output at basic price in the data. We calibrate the consumption share βs to be the share of

final consumption expenditure of good s in the sum of consumption expenditure spent on the

62 sectors.

3. We compute the firm-level objects from the Orbis sample. After steps 1-4 in Section B.2.1,

we follow a few additional steps.

41Sector 63 (household-related production activities) and sector 64 (services by extraterritorial organizations and
bodies) are also present in the 2010 input-output table, but their input-output data is missing.
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(a) We drop firm-year observations with average revenue product of any input (fixed asset,

wage bills, and material costs) in the top and bottom 1% of the corresponding year-

specific distributions.42

(b) We drop a firm if its sales, fixed assets, costs of employees, or material costs ever exceeds

the top or bottom 0.1% of the distribution of all firm-year observations.

(c) We drop firm-year observations if markup growth, real sales growth, real input (capital,

labor, material) growth, or the level of markups exceed the top or bottom 0.1% of the

distribution of all firm-year observations. We compute TFP growth using (59) and

drop a firm if it does not have more than 5 valid observations. We then compute the

correlation of each firm’s TFP growth with GDP growth. We collapse the panel data

into a cross-section of firms and compute the time series average of markups and revenue-

based Domar weights, which correspond to 1 + τsi and ωsi in the model. We further

winsorize firms’ markups at 1% at the top and the bottom in the cross-section of firms

to avoid outliers. Lastly, we compute θsi as the share of the firm’s Domar weight in the

sum of all firms’ Domar weights in the sector.

C.2 Stationarity of the risk-exposure decision

In the model of Section 8, log real GDP is given by

ỹ = ∆ε+
(
ω̃f
)⊤

(v + γt) + (ω̃s)⊤ z −
(
ω̃f
)⊤

log (1 + τ)− log ΓL, (65)

where ω̃f and ω̃s are the cost-based Domar weights vectors of the firms and of the sectoral aggre-

gators, v and z are the column vectors of the firm-level and sector-level productivity shocks, and γ

is the vector of the firm-level growth trends γsi. The fictitious planner’s problem is therefore

Wdist := max
∆

∆× 0 +
(
ω̃f
)⊤

(µv + γt) + (ω̃s)⊤ µz −
(
ω̃f
)⊤

log (1 + τ)− log ΓL︸ ︷︷ ︸
E[y]

− 1

2
(ρ− 1)

(
Σ∆2 +

(
ω̃f
)⊤

Σvω̃f + (ω̃s)⊤Σsω̃s

)
︸ ︷︷ ︸

V[y]

−κ̄ (∆) ,

where µv and µz are the expected value vectors of v and z, and Σv and Σz are the covariance

matrices of v and z. Notice that the only non-stationary term, the growth trend vector γt, does

not interact with the choice of ∆, and so ∆ is constant over time. Consequently, δ is also constant

over time as it solves (22).

42Trimming the data at the 0.1% level instead has only a minimal impact on the counterfactual exercises of Section
8 but leads to a greater number of extreme firms being dropped during the calibration procedure (see last part of
Appendix C.3).
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C.3 Identifying δsi and Σv
si

Combining firm i’s TFP from (47) with log real GDP from (65), we can write

Asi := V [log TFPsi,t − log TFPsi,t−1] = V [δsiεt + vsit + γsit− δsiεt−1 − vsit−1 − γsi (t− 1)]

= V [δsi (εt − εt−1) + vsi,t − vsi,t−1]

= 2δ2siΣ+ 2Σv
si. (66)

Similarly, for the covariance, we have

Bsi := Cov [yt − yt−1, log TFPsi,t − log TFPsi,t−1] = Cov

[
∆tεt −∆t−1εt−1 +

(
ωf
)⊤

(vt − vt−1)

+ (ωs)⊤ (zt − zt−1) , δsiεt − δsiεt−1 + vsi,t − vsi,t−1

]
= 2∆Σδsi + 2ω̃siΣ

v
si. (67)

In these equations, we define Asi and Bsi to simplify the notation in what follows. Notice also that

(66) and (67) are the same as in Section 7, and that we can therefore measure both Asi and Bsi

directly from the Spanish data, as explained in that section.

From the observed Asi and Bsi, we can then identify key objects of the calibrated economy.

From (66), we can write

Σv
si =

Asi

2
− δ2siΣ. (68)

Combining with (67), we find a quadratic equation in δsi, whose solutions are given by

δsi =
∆

2ω̃f
si

1±

√
1− 2ω̃f

si

Bsi − ω̃f
siAsi

∆2Σ

 . (69)

Since ∆ =
∑S

s=1

∑Ns
i=1 ω̃

f
siδsi, we find

2∆ =

S∑
s=1

Ns∑
i=1

(
∆±

√
∆2 − 2ω̃si

Bsi − ω̃siAsi

Σ

)
,

or

1 =
1

N − 2

S∑
s=1

Ns∑
i=1

√
1− 2ω̃si

Bsi − ω̃siAsi

Σ∆2
.

Given a normalization for Σ, we can solve this equation numerically for ∆2. Since aggregate

exposure is positive, this gives us ∆. Combining with (69), we find δsi (we pick the negative root

because it corresponds to a positive ∆, in line with our normalization). Finally, combining with
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(68) gives us Σv
si.

We use this procedure to pin down the risk exposure δsi and the idiosyncratic volatility Σv
si of

about 99% of the firms in the sample, but there are some firms that are too extreme to fit our setup.

Those are firms with covariance Bsi that are extremely large or extremely small compared to their

variance Asi.
43 Those firms are generally small and we suspect that measurement errors might

contribute to their extreme properties. To include these firms in the model, we simply endow them

with a new pair of measurement (Asi, Bsi) from the distribution of firms. We have experimented

with other ways to include these firms and have found that they only matter minimally for the

counterfactual exercises.

C.4 Calibrated economy

The calibrated economy matches several features of the data perfectly. Figure 10 shows the

distributions of four such features: 1) the sales share of each firm within its sector (panel a), 2) the

firm-level markups (panel b), 3) the correlation between firm-level TFP growth and GDP growth

(panel c),44 and 4) the standard deviation of firm-level TFP growth (panel d).

In contrast, our calibration strategy implies that some other quantities are not fitted perfectly.

This is the case for revenue-based Domar weights. We show the distribution of those weights in the

data and in the model in Figure 11. The calibration matches well the right-tail of the distribution,

where the biggest firms are located. This is reassuring as those firms are important drivers of GDP

fluctuations. In contrast, the calibration features too many small firms and too few midsize firms.

The right panel of Figure 11 shows that the calibrated distribution of cost-based Domar weights,

which we do not observe in the data, follow a similar shape.

43This happens when a firm covaries strongly with GDP while having a small variance. From (67) the strong
covariance implies that δi must be large, but then a negative Σv

si might be required to match the variance through
(66).

44The jumps in the tails of distribution are a consequence of the redrawing procedure for extreme firms described
at the end of Appendix C.3.
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Figure 10: Data distributions that the calibration matches exactly

(a) Sales share θsi (b) Wedges 1 + τi

(c) Correlation firm-level TFP and GDP growth (d) Standard deviation of firm-level TFP growth

Figure 11: Domar weights of the firms in the data and in the model

(a) Revenue-based Domar weights (b) Cost-based Domar weights
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Figure 12 shows the estimated value of 1
ηH

−1
i for each sector. The sectors to the left of “Elec-

tricity and gas” have an estimated value of 1
ηH

−1
i of zero, implying that their risk-taking behavior

is rigid. Figure 13 reports the distribution of the estimated firm-level natural risk exposure δ◦i .

Figure 12: Estimated value of 1
ηH

−1
i for each sector.

Notes. The scale of 1
η
H−1

i depends on our choice of ρ and Σ. We set ρ = 5 and Σ = 1 for this figure.

Figure 13: Distribution of the estimated firm-level natural risk exposure δ◦i .

Notes. The scale of δ◦i depends on our choice of ρ and Σ. We set ρ = 5 and Σ = 1 for this figure.

C.5 Robustness

In this appendix, we provide several robustness exercises in our calibrated economy.

C.5.1 Constant risk-exposure technology

In the baseline calibration, we pick δ◦ and H−1
i in the risk-exposure equation (50) by assuming

that H−1
i is, in each sector, the sum of a constant and a power function of ω̃i (see footnote (32)).
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In this appendix, we assume instead that H−1
i is constant across firms in a sector. The outcome

of the counterfactual exercises of Section 8 are presented in Figure 6. As we can see, they do not

vary much compared to the baseline results of Table 1.

Table 6: Exposure and GDP volatility in different environments

Calibration Doubling Σ No wedges

Fixed δ Flexible δ Fixed δ Flexible δ

Aggregate risk exposure ∆ 0.014 0.014 0.013 0.014 0.009
Exposure value E −0.06 −0.11 −0.10 −0.06 −0.04
Std. Dev. of GDP growth 2.4% 3.1% 2.9% 2.4% 1.9%
Share of endogenous vol. 69% 81% 79% 67% 51%

Notes: Share of endogenous volatility is 2Σ∆2/
(
V

[
log GDPt − log GDPt−1

])
.

D Proofs

D.1 Proof of Lemma 1

Lemma 1. Log (real) GDP y = log Y is given by

y (δ) = ∆⊤ε− ω̃⊤ log (1 + τ)− log ΓL, (16)

where the labor share of income ΓL is given by

ΓL :=
WLL

P̄Y
= 1− τ⊤ (diag (1 + τ))−1 ω. (17)

Proof. Total profit in this economy is

Π =

N∑
i=1

Πi =

N∑
i=1

τiKiQi −WR

N∑
i=1

κi (δi) =

N∑
i=1

τi
1 + τi

ωiP
⊤C −WRR,

where the last equality follows from the definition of revenue-based Domar weight. This equation

implies that the share of profit, gross of risk management expenditure, in household income is

ΓΠ :=
Π +WRR

P⊤C
=

N∑
i=1

τi
1 + τi

ωi = τ⊤ (diag (1 + τ))−1 ω.

Since ΓL + ΓΠ = 1, (17) follows. Next, from the definition of the labor share, we can write

P⊤C = Γ−1
L WLL. Taking the log and combining with (15) and (55), we find

y = log
(
P⊤C

)
− log P̄ = log

(
Γ−1
L WLL

)
+ ω̃⊤ (δε− log (1 + τ)) .

61



Since WLL = 1 given our choice of numeraire, we find (16).

Finally, differentiating (17) with respect to τi together with (14) yields

dΓL

dτi
= − ωi

1 + τi

(
1− τ⊤ (diag (1 + τ))−1

(
I − α⊤ [diag (1 + τ)]−1

)−1
1i

)
.

Notice that the expression in parentheses is the labor share in an economy with β = 1i, i.e.,

1− τ⊤ (diag (1 + τ))−1
(
I − α⊤ [diag (1 + τ)]−1

)−1
1i = ΓL|β=1i

> 0.

Therefore, dΓL
dτi

< 0.

dΓL

dτi
= −ω̃i

(
1− τ⊤ (diag (1 + τ))−1

(
I − α⊤ [diag (1 + τ)]−1

)−1
1i

)
.

dy (δ)

dτi
= −ω̃i

1

1 + τi
− 1

ΓL

dΓL

dτi

=
1

1 + τi

(
−ω̃i +

1

ΓL
ωi

(
1− τ⊤ (diag (1 + τ))−1

(
I − α⊤ [diag (1 + τ)]−1

)−1
1i

))
=

1

1 + τi

(
−ω̃i +

1

ΓL
ωi −

1

ΓL
ωiτ

⊤ (diag (1 + τ))−1
(
I − α⊤ [diag (1 + τ)]−1

)−1
1i

)

D.2 Proof of Lemma 2

Lemma 2. The aggregate cost function κ̄ is given by

κ̄ (∆) =
1

2
(∆−∆◦)⊤∇2κ̄ (∆−∆◦) , (24)

where ∆◦ := (δ◦)⊤ ω̃, and where the Hessian matrix of κ̄ is given by

∇2κ̄ = η

(
N∑
i=1

ω̃2
i

gi
H−1

i

)−1

. (25)

Proof. The Lagrangian of problem (22) is

L = η
N∑
i=1

giκi (δi)−
M∑

m=1

νm

(
∆m − 1⊤mδ⊤ω̃

)
, (70)

where νm is the Lagrange multiplier on the mth row of the constraint ∆ = δ⊤ω̃. The first-order
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condition with respect to δi is

ηgi∇κi = −νω̃i, (71)

which implies that for all i, k,

η
gi
ω̃i

∇κi = η
gk
ω̃k

∇κk = ∇κ̄, (72)

where the last equality comes from the envelope theorem. Using (3), we can write

gi
ω̃i

Hi (δi − δ◦i ) =
gk
ω̃k

Hk (δk − δ◦k) ⇔ δi = δ◦i +
ω̃i

gi

gk
ω̃k

H−1
i Hk (δk − δ◦k) .

Then, the constraint ∆ = δ⊤ω̃ can be rewritten as

∆ =
N∑
j=1

ω̃jδj =
N∑
j=1

ω̃j

(
δ◦j +

ω̃j

gj

gk
ω̃k

H−1
j Hk (δk − δ◦k)

)
= ∆◦ +

 N∑
j=1

ω̃2
j

gj
H−1

j

 gk
ω̃k

Hk (δk − δ◦k) ⇔

δk − δ◦k =
1

η

ω̃k

gk
H−1

k ∇2κ̄ (∆−∆◦) , (73)

where ∇2κ̄ is given by (25). Combining this last expression with (22) yields the result.

D.3 Proof of Proposition 1

Proposition 1. There exists a unique equilibrium, and its aggregate risk exposure ∆∗ solves

Wdist = max
∆

∆⊤µ− ω̃⊤ log (1 + τ)− log ΓL︸ ︷︷ ︸
E[y]

−1

2
(ρ− 1)∆⊤Σ∆︸ ︷︷ ︸

V[y]

−κ̄ (∆) . (26)

Without wedges (τ = 0), the equilibrium is efficient.

Proof. We first show that the set of equilibrium allocations coincides with the set of solutions to a

maximization problem. Consider the maximization problem

max
δ

ω̃⊤δµ− ω̃⊤ log (1 + τ)− log ΓL−
1

2
(ρ− 1) ω̃⊤δΣδ⊤ω̃+log

(
V

(
N∑
i=1

ω̃i (1 + τi)

ωi
κi (δi)

))
. (74)

Notice that we can write this problem as

max
∆

∆⊤µ−ω̃⊤ log (1 + τ)−log ΓL−
1

2
(ρ− 1)∆⊤Σ∆+ max

δ s.t. ∆=δ⊤ω̃
log

(
V

(
N∑
i=1

ω̃i (1 + τi)

ωi
κi (δi)

))
,

which is the maximization problem (26). Note also that the objective function of this problem is
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strictly concave if κ̄ is strictly convex. But recall from Lemma 2 that κ̄’s Hessian satisfies

(
∇2κ̄

)−1
=

1

η

N∑
i=1

ω̃2
i

gi
H−1

i . (75)

Since Hi is positive definite, so is H−1
i and so is the right-hand side of this equation. It follows

that ∇2κ̄ is also positive definite, and κ̄ is therefore strictly convex. This implies that there is a

unique solution to the maximization problems (74) and (26) and that the first-order conditions are

sufficient to characterize it. To complete the proof, we will show that the equilibrium conditions

coincide with these first-order conditions. This will imply that there is a unique equilibrium.

The first-order condition of the fictitious planner with respect to δim is

ω̃iµm − (ρ− 1) ω̃iω̃
⊤δΣ1m +

V ′
(∑N

i=1
ω̃i(1+τi)

ωi
κi (δi)

)
V
(∑N

i=1
ω̃i(1+τi)

ωi
κi (δi)

) ω̃i (1 + τi)

ωi

dκi (δi)

dδim
= 0.

Because of V ’s exponential form, this expression simplifies to

ω̃iµm − (ρ− 1) ω̃iω̃
⊤δΣ1m − η

ω̃i (1 + τi)

ωi

dκi (δi)

dδim
= 0. (76)

The system of these M × N equations fully characterizes the unique solution to the fictitious

planner’s problem.

Now consider the equilibrium. One can show that the firm’s problem (11) is strictly convex,

such that its first-order conditions are necessary and sufficient. They are given by

E [εKiQi] + Cov

(
εKiQi,

Λ

E [Λ]

)
= ∇κi (δi)WR,

where we used the fact that dai/dδi = ε. Next, the definition of revenue-based Domar weights

implies that ωi =
PiQi

P̄ Y
⇔ Qi =

ωiΓ
−1
L

Pi
. Together with (12), we can therefore write KiQi = ωiΓ

−1
L /

(1 + τi), such that KiQi is deterministic. The first-order conditions become

E [ε] + Cov (ε, λ) = ∇κi (δi)
WR

ωiΓ
−1
L / (1 + τi)

,

were we have used Stein’s Lemma to replace Λ/E [Λ] by λ = logΛ.

Then, using (53), we can write the stochastic discount factor as

Λ = U ′ (Y ) (V (R))1−ρ P̄−1 =
(
Γ−1
L WLL

)−ρ
(V (R))1−ρ P̄ ρ−1. (77)
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Taking the log, we get

λ = log
((

Γ−1
L WLL

)−ρ
(V (R))1−ρ

)
− (ρ− 1)β⊤L̃ (δε− log (1 + τ)) , (78)

where we have used the fact that p̄ = β⊤p together with (15). The first-order condition therefore

becomes

E [ε]− (ρ− 1) ω̃Σδ⊤ =
WR

ωiΓ
−1
L / (1 + τi)

.

Finally, from the definition of the labor share, we can write P̄ Y = Γ−1
L WLL = Γ−1

L . It follows from

(7) that ηΓ−1
L = WR, and so the first-order conditions of the firms are equivalent to those of the

factious planner (27), which completes the proof.

D.4 Proof of Lemma 3

Lemma 4. The equilibrium aggregate risk exposure ∆ solves

E (∆) = ∇κ̄ (∆) , (27)

where the marginal value of aggregate risk exposure E is given by

E := E [ε] + Cov [λ, ε] , (28)

and where λ = logΛ is the log of the stochastic discount factor.

Proof. The fictitious planner’s first-order conditions are given by

µ− (ρ− 1)∆Σ = ∇κ̄ (∆) .

Combining the definition of E given by (28) with (78), we can write

E = E [ε] + Cov
[
− (ρ− 1) ω̃⊤δε, ε

]
,

which with the definition of ∆ yields the result.

D.5 Proof of Lemma 4

Lemma 4. The equilibrium marginal value of exposure vector E can be written as

E = µ− (ρ− 1)Σ∆. (29)

Proof. This is an intermediary result that we proved in the proof of Lemma 3.
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D.6 Proof of Proposition 2

Proposition 2. The equilibrium individual and aggregate risk-exposure decisions are given by

δi = δ◦i +
1

η

ωi

1 + τi
H−1

i E and ∆ = ∆◦ +H−1E◦, (31)

where E◦ := µ− (ρ− 1)Σ∆◦ and where the M ×M positive definite matrix H−1 is

H−1 :=
(
∇2κ̄+ (ρ− 1)Σ

)−1
. (32)

Proof. We can write the fictitious planner’s first-order condition as

∆−∆◦ =
[
∇2κ̄

]−1 E (∆) .

It follows that

E −∇2κ̄ (∆−∆◦) = 0 ⇔ ∆ = ∆◦ +
(
∇2κ̄

)−1
(µ− (ρ− 1)Σ∆) ⇔

∆ = H−1
(
∇2κ̄∆◦ + µ

)
= ∆◦ +H−1E◦,

where E◦ = µ− (ρ− 1)Σ∆◦. Combining E = ∇2κ̄ (∆−∆◦) with (73) yields the equation for δ.

D.7 Proof of Proposition 3

Proposition 3. Let γ denote either the mean µm or an element Σmn of the covariance matrix.

The response of the equilibrium aggregate risk exposure ∆ to a change in γ is given by

d∆

dγ
= H−1∂E

∂γ
, (33)

where ∂E
∂γ is given by (30).

Proof. From (31), we can write

d∆

dµ
= H−1dE◦

dµ
= H−1dE

dµ
= H−1∂E

∂µ
.

For Σ,

d∆

dΣmn
=

dH−1

dΣmn
E◦ +H−1 dE◦

dΣmn
= − (ρ− 1)H−1 dΣ

dΣmn
H−1E◦ − (ρ− 1)H−1 dΣ

dΣmn
∆◦

= − (ρ− 1)H−1 dΣ

dΣmn
∆,

and the result follows from (30).
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D.8 Proof of Corollary 1

Corollary 1. An increase in the expected value µm of risk factor m leads to an increase in aggregate

risk exposure ∆m. An increase in the variance Σmm of risk factor m leads to a decrease in ∆m if

∆m > 0 and to an increase in ∆m if ∆m < 0.

Proof. By Proposition 3, H is positive definite and therefore so is H−1. It follows that the diagonal

elements of H−1 are positive and the result follows from (30).

D.9 Proof of Proposition 4

Proposition 4. The response of the equilibrium aggregate risk exposure ∆ to a change in wedge τi

is given by
d∆

dτi
=

dH−1

dτi
E◦, (34)

where

dH−1

dτi
= −H−1

 N∑
j=1

∂∇2κ̄

∂gj

dgj
dτi

H−1,

and where the response of the efficiency gap dgj/dτi is given by (23), and ∂∇2κ̄/∂gj is a positive

definite matrix.

Proof. The first equation follows directly from (31). Differentiating H−1 with respect to τi, we find

dH−1

dτi
= −H−1

 N∑
j=1

∂∇2κ̄

∂gj

dgj
dτi

H−1.

Next, using (75), we find
∂∇2κ̄

∂gi
=
(
∇2κ̄

)(1

η

ω̃2
i

g2i
H−1

i

)(
∇2κ̄

)
. (79)

Since ∇2κ̄ and H−1
i are positive definite, so is ∂∇2κ̄

∂gi
.

D.10 Proof of Corollary 2

Corollary 2. In a diagonal economy, a higher wedge τi increases ∆m for all m such that Em < 0

(bad risks) and decreases ∆m for all m such that Em > 0 (good risks).

Proof. By Proposition 4,

d∆

dτi
= −H−1

 N∑
j=1

1

η

ω̃2
j

g2j
∇2κ̄H−1

j ∇2κ̄
dgj
dτi

H−1E◦.
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Recall that
dgj
dτi

> 0 by (23). If Σ and Hi are diagonal for all i, then

H−1

(∑N
j=1

1
η

ω̃2
j

g2j
∇2κ̄H−1

j ∇2κ̄
dgj
dτi

)
H−1 is a positive diagonal matrix. Therefore, the sign of d∆m

dτi
is

the opposite of the sign of E◦
m. Finally, from the first-order condition of the fictitious planner we

have

E −∇2κ̄ (∆−∆◦) = 0 ⇔ E = ∇2κ̄H−1E◦. (80)

It follows that Em and E◦
m have the same sign and the result follows.

D.11 Proof of Lemma 5

Lemma 5. Suppose that τj > 0 for at least one firm j. Then (∆−∆SP )
⊤ E◦ < 0, where ∆

and ∆SP are the aggregate risk-exposure vectors in the equilibrium and the efficient allocation,

respectively.

Proof. We first show that H−1
SP −H−1 is positive definite. For any two positive definite matrix A

and B, if A−B is positive definite, so is B−1−A−1. It follows that H−1
SP −H−1 is positive definite

if H−HSP is. From (32),

H−HSP =

(
∇2κ̄− dE

d∆

)
−
(
∇2κ̄SP −

(
dE
d∆

)
SP

)
= ∇2κ̄−∇2κ̄SP ,

where we have used the fact that dE
d∆ = − (ρ− 1)Σ is the same in the equilibrium and in the efficient

allocation. It follows that H−1
SP −H−1 is positive definite if

(
∇2κ̄SP

)−1 −
(
∇2κ̄

)−1
is. From (25),

we can write (
∇2κ̄SP

)−1 −
(
∇2κ̄

)−1
=

1

η

N∑
k=1

ω̃2
k

(
1− 1

gk

)
H−1

k .

Recall that gk ≥ 1, with the equality holding only if τ = 0. Furthermore, Hk is positive definite.

Then
(
∇2κ̄SP

)−1 −
(
∇2κ̄

)−1
is also positive definite, and so is H−1

SP −H−1. Using Proposition 2,

we can write

(
∆−∆SP

)⊤ E◦ =
(
H−1E◦ −H−1

SPE
◦)⊤ E◦ = (E◦)⊤

(
H−1 −H−1

SP

)
E◦ < 0,

which is the result.

D.12 Proof of Corollary 3

Corollary 3. Suppose that the economy is diagonal and that τj > 0 for at least one firm j. Then

the sign of ∆i −∆SP,i is the opposite of the sign of E◦
i .
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Proof. Using Proposition 2, we can write

∆−∆SP =
(
H−1 −H−1

SP

)
E◦.

From the proof of Lemma 5, we know that H−1
SP −H−1 is positive definite. Furthermore, if the risk

factors are uncorrelated (diagonal Σ), and that individual risk exposures are neither complements

nor substitutes in the cost functions (κ1, . . . , κN ) (diagonal Hi for all i), then H and HSP are

diagonal matrices. Therefore, the sign ∆i − ∆SP
i is the opposite of the sign of E◦

i , which is the

result.

D.13 Proof of Corollary 4

Corollary 4. In a diagonal economy, the following statements hold.

1. The impact of an increase in µm on GDP satisfies

sign

(
dE [y]

dµm
− ∂ E [y]

∂µm

)
= sign (µm) and sign

(
dV [y]

dµm
− ∂V [y]

∂µm

)
= sign (∆m) . (36)

2. The impact of an increase in Σmm on GDP satisfies

sign

(
dE [y]

dΣmm
− ∂ E [y]

∂Σmm

)
= −sign (µm∆m) and

dV [y]

dΣmm
− ∂V [y]

∂Σmm
< 0. (37)

Proof. From (25), we see that given our assumptions, ∇2κ̄ is diagonal with positive entries. This

implies that H−1 is also diagonal with positive entries. Combining the first equation in (35) with

(33) and (30), we can write

sign

(
dE [y]

dµm
− ∂ E [y]

∂µm

)
= sign

(
µ⊤H−11m

)
= sign (µm) .

Combining the second expression in (35) with (33) and (30), we can write

sign

(
dV [y]

dµm
− ∂V [y]

∂µm

)
= sign

(
2∆⊤ΣH−11m

)
= sign (∆m) .

We can follow the same procedure for Σmm. From the first equation in (35) together with (33) and

(30), we find

sign

(
dE [y]

dΣmm
− ∂ E [y]

∂Σmm

)
= sign

(
−µ⊤H−1 (ρ− 1)∆m1m

)
= sign (−µm∆m) .
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From the second expression in (35) together with (33) and (30), we can write

dV [y]

dΣmm
− ∂V [y]

∂Σmm
= −2 (ρ− 1)∆⊤ΣH−1∆m1m,

which is always negative given our assumptions.

D.14 Proof of Corollary 5

Corollary 5. Suppose that there is a single risk factor. Then

sign

(
dE [y]

dτi
− ∂ E [y]

∂τi

)
= −sign (µE) and sign

(
dV [y]

dτi
− ∂V [y]

∂τi

)
= −sign (∆E) . (38)

Proof. When there is only one risk factor, we haveH−1 =
(
∇2κ̄+ (ρ− 1)Σ

)−1
> 0, where the

inequality follows since ∇2κ̄ and Σ are positive scalars given our assumptions. Furthermore, ∂∇2κ̄
∂gi

,

given by (79), is a positive scalar. Combining the first expression in (35) with (34) and (80), we

can write

sign

(
dE [y]

dτi
− ∂ E [y]

∂τi

)
= sign

−µH−1

 N∑
j=1

∂∇2κ̄

∂gj

dgj
dτi

(∇2κ̄
)−1 E

 ,

and the first result follows since
dgj
dτi

> 0 by (23). Combining the second expression in (35) with

(34), we can write

sign

(
dV [y]

dτi
− ∂V [y]

∂τi

)
= sign

−2∆ΣH−1

 N∑
j=1

∂∇2κ̄

∂gj

dgj
dτi

(∇2κ̄
)−1 E

 ,

and the second result follows.

D.15 Proof of Proposition 7

Proposition 7. Let χ denote either µm, Σmn, or τi. Then the impact of a change in χ on welfare

is given by
dW
dχ

− ∂W
∂χ

= (E −∇κ̄V )
⊤ d∆

dχ
= (∇κ̄−∇κ̄V )

⊤ d∆

dχ
, (40)

where partial derivatives indicates that ∆ is kept fixed, and where d∆/dχ is given by (33) for χ = µi

or Σmn, and by (34) for χ = τi.

Proof. Combining the definition of κ̄V with (31), we can write

κ̄V =
1

2
(∆−∆◦)⊤∇2κ̄

(∑
i

1

η

(
ω̃i

gi

)2

H−1
i

)
∇2κ̄ (∆−∆◦) .
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This equation implies that

∇κ̄V = ∇2κ̄V (∆−∆◦) ,

where

∇2κ̄V = ∇2κ̄

(∑
i

1

η

(
ω̃i

gi

)2

H−1
i

)
∇2κ̄.

Simple algebra implies that

∇κ̄−∇κ̄V = ∇2κ̄

(
1

η

N∑
i=1

ω̃2
i

gi

(
1− 1

gi

)
H−1

i

)
∇2κ̄ (∆−∆◦) . (81)

We can write welfare as

W = E [y]− 1

2
(ρ− 1)V [y]− κ̄V .

Differentiating it with respect to χ yields

dW
dχ

=
∂ E [y]

∂χ
+

(
d∆

dχ

)⊤ dE [y]

d∆
− 1

2
(ρ− 1)

(
∂V [y]

∂χ
+

(
d∆

dχ

)⊤ dV [y]

d∆

)
−

(
∂κ̄V
∂χ

+

(
d∆

dχ

)⊤ dκ̄V
d∆

)

or

dW
dχ

− ∂W
∂χ

=

(
d∆

dχ

)⊤ dE [y]

d∆
− 1

2
(ρ− 1)

(
d∆

dχ

)⊤ dV [y]

d∆
−
(
d∆

dχ

)⊤ dκ̄V
d∆

=

(
d∆

dx

)⊤
(∇κ̄−∇κ̄V ) ,

where we have used the definition of E given by (29) and the first-order condition (27).

D.16 Proof of Lemma 6

Lemma 6. Suppose that the economy is diagonal and that τj > 0 for at least one firm j. Then the

sign of [∇κ̄]i − [∇κ̄V ]i is the same as the sign of Ei.

Proof. Combining (81) with (80), we can write

∇κ̄−∇κ̄V = ∇2κ̄

(
1

η

N∑
i=1

ω̃2
i

gi

(
1− 1

gi

)
H−1

i

)
E . (82)

Under our assumptions, ∇2κ̄
(
1
η

∑N
i=1

ω̃2
i

gi

(
1− 1

gi

)
H−1

i

)
is a positive definite diagonal matrix.

Therefore, the sign of [∇κ̄]i − [∇κ̄V ]i is the same as the sign of Ei.
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D.17 Proof of Corollary 6

Corollary 6. Suppose that the economy is diagonal and that τj > 0 for at least one firm j. Then

the following holds.

sign

(
dW
dµm

− ∂W
∂µm

)
= sign (Em) and sign

(
dW

dΣmm
− ∂W

∂Σmm

)
= −sign (∆mEm) .

Proof. Using (81) and (80), we can write (40) as

dW
dχ

− ∂W
∂χ

=

(
d∆

dχ

)⊤
∇2κ̄

(
1

η

N∑
i=1

ω̃2
i

gi

(
1− 1

gi

)
H−1

i

)
E .

From Proposition 3, we have
d∆

dγ
= H−1∂E

∂γ
.

Setting χ = γ and combining the last two equations, we find

dW
dγ

− ∂W
∂γ

=

(
∂E
∂γ

)⊤
H−1∇2κ̄

1

η

N∑
j=1

ω̃2
j

gj

(
1− 1

gj

)
H−1

j

 E .

If γ = µm, this equation becomes

dW
dµm

− ∂W
∂µm

= 1⊤mH−1∇2κ̄

1

η

N∑
j=1

ω̃2
j

gj

(
1− 1

gj

)
H−1

j

 E .

Given our assumptions, the matrix H−1∇2κ̄

(
1
η

∑N
j=1

ω̃2
j

gj

(
1− 1

gj

)
H−1

j

)
is diagonal with positive

elements. It follows that the sign of dW
dµm

− ∂W
∂µm

is the same as the sign of Em. If instead γ = Σmm,

the equation becomes

dW
dΣmm

− ∂W
∂Σmm

= − (ρ− 1)∆m1⊤mH−1∇2κ̄

1

η

N∑
j=1

ω̃2
j

gj

(
1− 1

gj

)
H−1

j

 E ,

and so the sign of dW
dΣmm

− ∂W
∂Σmm

is the same as the sign of −∆mEm.

D.18 Proof of Corollary 7

Corollary 7. Suppose that the economy is diagonal and that τj > 0 for at least one firm j. Then

an increase in wedges is more detrimental to welfare when risk-exposure decisions can adjust, that

is, dW
dτi

≤ ∂W
∂τi

.
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Proof. Using (81) and (80), we can write (40) as

dW
dχ

− ∂W
∂χ

=

(
d∆

dχ

)⊤
∇2κ̄

(
1

η

N∑
i=1

ω̃2
i

gi

(
1− 1

gi

)
H−1

i

)
E .

From Proposition 4 and (80), we have

d∆

dτi
= −H−1∇2κ̄

 N∑
j=1

1

η

ω̃2
j

g2j
H−1

j

dgj
dτi

 E .

Setting χ = τi and combining the last two equations, we find

dW
dτi

− ∂W
∂τi

= − (∆−∆◦)⊤∇2κ̄

 N∑
j=1

1

η

ω̃2
j

g2j
H−1

j

dgj
dτi

⊤

∇2κ̄H−1∇2κ̄

1

η

N∑
j=1

ω̃2
j

gj

(
1− 1

gj

)
H−1

j

 E .

Using (80)again, this equation becomes

dW
dτi

− ∂W
∂τi

= −E⊤

 N∑
j=1

1

η

ω̃2
j

g2j
H−1

j

dgj
dτi

⊤

∇2κ̄H−1∇2κ̄

1

η

N∑
j=1

ω̃2
j

gj

(
1− 1

gj

)
H−1

j

 E .

Under our assumptions, the matrix between E⊤and E is diagonal with positive elements, and the

result follows.

E Robustness, extensions, and additional analysis

In this appendix, we provide additional analysis of the benchmark model presented in the main

text. We also show that that model can be extended in different ways.

E.1 Production network and aggregate risk exposure

The structure of the production network is a key determinant of the Domar weight vector. It

therefore affects, among other things, how firm’s individual exposure decisions contribute to ∆.

The following proposition describes how a change in the network affects ∆ when τ = 0, in which

case the forces at work are more transparent. The proof of the proposition also provides expressions

for the general case.

Proposition 8. Suppose that τ = 0. Then the response of the equilibrium aggregate risk exposure
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∆ to a change in network connection αij is given by

d∆

dαij
= H−1

[
∇2κ̄

] N∑
k=1

(
d∆◦

dω̃k
+

d
[
∇2κ̄

]−1

dω̃k
E

)
dω̃k

dαij
, (83)

where the response of Domar weights to a change in αij is given by dω̃k
dαij

= ω̃iL̃jk, the response of

the natural exposure to a change in Domar weight is given by d∆◦

dω̃k
= δ◦k, and the response of the

curvature of κ̄ to a change in Domar weight is given by
d[∇2κ̄]

−1

dω̃k
= 2

η ω̃kH
−1
k .

Proof. Using (31) and (80), we can write

∆−∆◦ =
[
∇2κ̄

]−1 E (∆) .

Using the implicit function theorem, we get

d∆

dαij
= H−1

[
∇2κ̄

](d∆◦

dαij
+

d
[
∇2κ̄

]−1

dαij
E

)
. (84)

Suppose that τ = 0. We have d∆◦

dαij
=

∑N
k=1

d∆◦

dω̃k

dω̃k
dαij

and, from (75),
d[∇2κ̄]

−1

dαij
=∑N

k=1
dω̃k
dαij

d[∇2κ̄]
−1

dω̃k
=
∑N

k=1
dω̃k
dαij

2
η ω̃kH

−1
k . By definition, ∆◦ =

∑N
j=1 δ

◦
j ω̃j and ω̃k = β⊤L̃1k =

β⊤ (I − α)−1 1k. Then
d∆◦

dω̃k
= δ◦k and dω̃k

dαij
= ω̃iL̃jk. Using these results, it is immediate to see that

(83) follows from (84).

If τ ̸= 0, the only difference is that

d
[
∇2κ̄

]−1

dαij
= −1

η

N∑
k=1

ω̃2
k

g2k

dgk
dαij

H−1
k +

2

η

N∑
i=1

dω̃k

dαij

ω̃k

gk
H−1

k ,

where
dgk
dαij

=
(1 + τk)

ωk

dω̃k

dαij
− ω̃k (1 + τk)

ω2
k

dωk

dαij
,

and dωk
dαij

= ωi
1+τi

Ljk. Therefore,
d[∇2κ̄]

−1

dαij
= 1

η

∑N
k=1

ω̃k
gk

(
dωk
dαij

ω̃k
ωk

+ dω̃k
dαij

)
H−1

k .

Equation (83) shows that when τ = 0, the impact of αij on the aggregate risk exposure ∆

operates exclusively through its effect on the Domar weights ω̃ (last term in (83)). Since dω̃k
dαij

=

ω̃iL̃jk, an increase in i’s cost share of good j always leads to an increase in ω̃k. Indeed, a higher αij

implies that firm j gains in importance as a supplier. It follows that the Domar weight of any firm

k that supplies to j (L̃jk > 0) also benefits from the larger αij . The magnitude of that increase is

larger when i is an important firm in the network (large ω̃i) or when k is an important supplier to

j (large L̃jk).
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This increase in Domar weights means that firms find it more cost-effective to manage risk.

Consequently, the aggregate cost function becomes less curved, in the sense that
∂[∇2κ̄]

−1

∂ω̃k
= 2

η ω̃iH
−1
i

is a positive definite matrix. Through that channel, exposure to good risks tends to increase, while

exposure to bad risk tends to decrease. Furthermore, the increase in Domar weights implies that the

natural aggregate risk-exposure vector ∆◦ also adjusts. Specifically, an increase in Domar weight

ω̃k means that k’s natural exposure δ◦k matters more for ∆◦. Both the adjustment in the curvature

of κ̄ and in the natural aggregate risk exposure ∆◦ are propagated through the matrix T to shape

the response of the aggregate risk exposure ∆ to a change in αij .

Figure 14 shows the impact of increasing the importance of good 1 in the production of good 2 in

the example economy of Figure 2. As α21 increases, firm 1 becomes a more important supplier and

its Domar weight rises. Because of firm 1’s rigid exposure to the good risk factor, ∆1 increases. This

triggers a response from firm 2, which reduces its own exposure to risk factor 1 to avoid creating

too much correlated risk. Since κ2 is parametrized so that both risk factors are substitutes, firm

2’s exposure to risk 2 increases, and ∆2 rises as a result.

Figure 14: Changes in network in the example economy

Notes. The structure of the economy is given in panel (a) of Figure 2. Blue solid line shows ∆1 (α21) , and red dashed line shows
∆2 (α21) . Initial parametrization is as follows. Household: ρ = 2 and β2 = 0.8, β1 = β3 = 0.1. Network: α21 = α23 = 0.25,
all other entries of α are zero. Beliefs: µ = (0.75, 0), Σ is diagonal with diag (Σ) = (0.5, 0.5). Risk exposures: δ◦11 = δ◦32 = 1,
δ◦22 = 1.9, δ◦12 = δ◦21 = δ◦31 = 0, H1 = H3 are diagonal with very large entries on the main diagonals; H2,11 = H2,22 = 1,
H2,12 = H2,21 = 0.75. α21 changes from 0.25 to 0.65.

E.2 Multiple risk management resources

In the baseline model, we assume that there is only one risk management resource. In this

appendix, we show that this setup can be easily extended to handle multiple such resources. Specif-

ically, suppose that there are K risk management resources, and that those can be supplied by the

household at a cost in terms of utility. Denote by R = (R1, . . . , RK) the vector of these resources.

We assume that the representative household’s utility function is U (Y )V (R), where, as in the

baseline model, U (Y ) = Y 1−ρ

1−ρ , and where V (R) = exp
(
(ρ− 1)

∑K
k=1 ηkRk

)
.
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The household’s first-order conditions take the same form as before. Specifically, following the

same steps as in Appendix A.1, we can derive

Λ =

(
N∏
i=1

P βi
i

)ρ−1

Γρ
L exp

(
(ρ− 1)

K∑
k=1

ηkRk

)
,

and

WR,k = ηkΓ
−1
L ,

for all k, and where WR,k is the price of risk management resource k.

We assume that to achieve risk exposure δi, firm imust use Rik = κi,k (δi) units of resource k. As

in the baseline model, we assume that κi,k (δi) is quadratic with κi,k (δi) =
1
2 (δi − δ◦i )

⊤Hi,k (δi − δ◦i ),

where Hi,k is a positive definite matrix. Consider now the problem of the firm. For a given risk

exposure δi, the cost minimization characterization is the same as in the baseline model (see Section

2.3). When choosing its risk exposure, firm i then solves

δ∗i ∈ arg max
δi∈Ai

E

[
Λ

[
Qi (Pi −Ki (δi, P ))−

K∑
k=1

κi,k (δi)WR,k

]]
.

Following the same steps as in the baseline model (see, in particular, the proof of Proposition 1),

we can show that the equilibrium exposure decisions follow

δi − δ◦i =
ωiΓ

−1
L

1 + τi

(
K∑
k=1

WR,kH
k
i

)−1

E =
ωi

1 + τi

(
K∑
k=1

ηkH
k
i

)−1

E . (85)

The key difference between this extension and the model with a single risk management resource

is that
∑K

k=1 ηkH
k
i replaces H−1

i . Since both objects are constant, we can think of the Hessian

matrix Hi from the main text has capturing the aggregated substitution patterns generated by the

resource-specific Hessians Hk
i .

We can again characterize the equilibrium using a distorted planner’s problem. Consider the

maximization problem

max
δ

ω̃⊤δµ− ω̃⊤ log (1 + τ)− log ΓL − 1

2
(ρ− 1) ω̃⊤δΣδ⊤ω̃ −

N∑
i=1

K∑
k=1

ηkgiκi,k (δi) , (86)
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where gi =
ω̃i(1+τi)

ωi
. Taking first-order conditions with respect to δi, we get

ω̃iµ− (ρ− 1) ω̃iω̃
⊤δΣ−

K∑
k=1

ηk
ω̃i (1 + τi)

ωi
Hi,k (δi − δ◦i ) = 0 ⇔

δi − δ◦i =
ωi

1 + τi

(
K∑
k=1

ηkH
k
i

)−1 (
µ− (ρ− 1) ω̃⊤δΣ

)
,

which is equivalent to (85). It follows that any equilibrium must coincide with a solution to the

optimization problem (86).

We can write (86). as

max
∆

∆⊤µ− ω̃⊤ log (1 + τ)− log ΓL − 1

2
(ρ− 1)∆⊤Σ∆− min

δ s.t. ∆=δ⊤ω̃

N∑
i=1

K∑
k=1

ηkgiκi,k (δi) ,

or, equivalently, as

Wdist := max
∆

∆⊤µ− ω̃⊤ log (1 + τ)− log ΓL︸ ︷︷ ︸
E[y]

−1

2
(ρ− 1)∆⊤Σ∆︸ ︷︷ ︸

V[y]

−κ̄ (∆) , (87)

where

κ̄ (∆) := min
δ

N∑
i=1

K∑
k=1

ηkgiκi,k (δi) , (88)

subject to ∆ = δ⊤ω̃.

As in the baseline model, we can solve for κ̄ (∆) .

Lemma 7. The aggregate cost function κ̄ is given by

κ̄ (∆) =
1

2
(∆−∆◦)⊤∇2κ̄ (∆−∆◦) , (89)

where ∆◦ = (δ◦)⊤ ω̃, and where the Hessian matrix of κ̄ is given by

∇2κ̄ =

 N∑
i=1

ω̃2
i

gi

(
K∑
k=1

ηkH
k
i

)−1
−1

. (90)

Proof. The Lagrangian of problem (88) is

L =

N∑
i=1

K∑
k=1

ηkgiκi,k (δi)−
M∑

m=1

νm

(
∆m − 1⊤mδ⊤ω̃

)
,

where νm is the Lagrange multiplier on the mth row of the constraint ∆ = δ⊤ω̃. The first-order
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condition with respect to δi is

gi

K∑
k=1

ηk∇κi,k (δi) = −νω̃i,

which implies that

η
gi
ω̃i

K∑
k=1

ηk∇κi,k (δi) = η
gj
ω̃j

K∑
k=1

ηk∇κj,k (δj) = ∇κ̄,

for all i, j, where the last equality comes from the envelope theorem. Notice that

gi
ω̃i

K∑
k=1

ηkHi,k (δi − δ◦i ) =
gj
ω̃j

K∑
k=1

ηkHj,k

(
δj − δ◦j

)
⇔ δi = δ◦i+

ω̃i

gi

gj
ω̃j

(
K∑
k=1

ηkHi,k

)−1( K∑
k=1

ηkHj,k

)
(δk − δ◦k) .

Then, the constraint ∆ = δ⊤ω̃ can be rewritten as

∆ =
N∑
i=1

ω̃iδi =
N∑
i=1

ω̃i

δ◦i +
ω̃i

gi

gj
ω̃j

(
K∑
k=1

ηkHi,k

)−1( K∑
k=1

ηkHj,k

)
(δk − δ◦k)


= ∆◦ +

 N∑
i=1

ω̃2
i

gi

(
K∑
k=1

ηkHi,k

)−1
 gj

ω̃j

(
K∑
k=1

ηkHj,k

)(
δj − δ◦j

)
⇔

δj − δ◦j =
ω̃j

gj

(
K∑
k=1

ηkHj,k

)−1

∇2κ̄ (∆−∆◦) ,

where ∇2κ̄ is given by (90). Combining this last expression with (88) yields the result.

Since (87) and (88) fully characterize the equilibrium, it follows that the only difference between

the baseline model and the multiple resources model comes from the cost functions κ̄. In turn, the

cost function in the baseline model is identical to (89) if we impose that

H−1
i =

K∑
k=1

ηkH
k
i

for all i, k. Under that restriction, both models behave identically. It follows that we can simply

think of the unique resource in the baseline model as an aggregate of various risk management

resources, each with its own supply elasticity ηk.

E.3 General cost function

In this appendix, we relax our assumption on the functional form of the cost function κi (δi).

Specifically, we assume that κi (δi) is a strictly convex—but not necessarily quadratic—function.

The Hessian of κi (δi) is denoted by Hi. It is a positive definite matrix. Unlike in the baseline

model, Hi is not necessarily constant, in the sense that it can depend on δi.
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All the results of Sections 2, 3, and 4 remain unchanged. However, Equation (24) does not hold

when κi is non-quadratic. Nevertheless, the Hessian of the aggregate cost function κ̄ is still given

by (25).

Lemma 8. The Hessian matrix of κ̄ is given by (25).

Proof. Equations (70), (71), and (72) do not use the assumption that κi is quadratic and, hence,

hold in this more general case. Differentiate (72) with respect ∆j to get

d2κ̄

d∆id∆j
= η

gi
ω̃i

1⊤i Hi
dδi
d∆j

(91)

and
gk
ω̃k

Hk
dδk
d∆j

=
gi
ω̃i

Hi
dδi
d∆j

for all i, k.

Next, we can differentiate the constraint ∆ = δ⊤ω̃ with respect to ∆j to find
∑N

k=1 ω̃k
dδk
d∆j

= 1j .

Combining this with the last equation, we find

gi
ω̃i

Hi
dδi
d∆j

=

(
N∑
k=1

ω̃2
k

gk
H−1

k

)−1

1j . (92)

Plugging this into (91) yields (25).

E.3.1 Risk exposures

Going to the results of Section 5, we are no longer able to solve for ∆ and δ in closed form.

Nevertheless, we can still derive similar comparative statics results. We start by characterizing

how δ depends on aggregate risk exposure ∆. We then characterize how ∆ depends on various

primitives of the model.

Proposition 9. The response of firm i’s risk exposure δi to a change in the aggregate risk exposure

∆j is given by
dδi
d∆j

=

(
1

η

ω̃i

gi
H−1

i

)
∇2κ̄1j . (93)

Proof. This result follows immediately from (92) and (25).

In the model with general cost functions, (27) still implicitly defines equilibrium ∆. Proposition

3 immediately follows by applying the implicit function theorem to (27). In what follows, we prove

analogues of Propositions 4 and 8.
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Proposition 10. The response of the equilibrium aggregate risk exposure ∆ to a change in wedge

τi is given by

d∆

dτi
= −H−1∇2κ̄

 N∑
j=1

1

η

ω̃2
j

g2j
H−1

j

dgj
dτi

 E , (94)

where H is given by (32), ∇2κ̄ is given by (25), and
dgj
dτi

is given by (23).

Proof. By the implicit function theorem applied to (27),

d∆

dτi
= −H−1

N∑
j=1

d∇κ̄

dgj

dgj
dτi

, (95)

where H is given by (32) and
dgj
dτi

is given by (23).

Next, applying the envelope theorem to (70) implies that dκ̄
dgj

= ηκj (δj), and so

d

d∆k

dκ̄

dgj
= η (∇κj)

⊤ dδj
d∆k

.

Using (72) and (93), we get

d∇κ̄

dgj
= ∇2κ̄

(
1

η

ω̃2
j

g2j
H−1

j

)
∇κ̄. (96)

Recall that from (27), ∇κ̄ = E . Therefore, plugging the equation above into (95), we get the

result.

Next, we derive an analogue of Proposition 8.

Proposition 11. The response of the equilibrium aggregate risk exposure ∆ to a change in network

connection αij is given by

d∆

dαij
= −H−1∇2κ̄

N∑
k=1

[
dgk
dαij

(
1

η

ω̃2
k

g2k
H−1

k

)
E − dω̃k

dαij

[
δk +

(
1

η

ω̃k

gk
H−1

k

)
E
]]

, (97)

where dgk
dαij

= (1+τk)
ωk

dω̃k
dαij

− ω̃k(1+τk)
ω2
k

dωk
dαij

, dω̃k
dαij

= ω̃iL̃jk,
dωk
dαij

= ωi
1+τi

Ljk, H is given by (32), and ∇2κ̄

is given by (25).

Proof. By the implicit function theorem applied to (27),

d∆

dαij
= −H−1

N∑
k=1

(
d∇κ̄

dgk

dgk
dαij

+
d∇κ̄

dω̃k

dω̃k

dαij

)
, (98)
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where H is given by (32), dω̃k
dαij

= ω̃iL̃jk,

dgk
dαij

=
(1 + τk)

ωk

dω̃k

dαij
− ω̃k (1 + τk)

ω2
k

dωk

dαij

and dωk
dαij

= ωi
1+τi

Ljk.

From (96) and (76),
d∇κ̄

dgk
= ∇2κ̄

(
1

η

ω̃2
k

g2k
H−1

k

)
E , (99)

where ∇2κ̄ is given by (25).

Next, applying the envelope theorem to (70) implies that dκ̄
dω̃k

= ν⊤δk, where ν = −∇κ̄ from

(72). Therefore,
d

d∆m

dκ̄

dω̃k
= −1⊤m∇2κ̄δk − (∇κ̄)⊤

dδk
d∆m

.

Using (93), this equation can be rewritten as

d∇κ̄

dω̃k
= −∇2κ̄δk −∇2κ̄

(
1

η

ω̃k

gk
H−1

k

)
E . (100)

Plugging (99) and (100) into (98), we get (97).

E.3.2 GDP and welfare

The results of Section 6 hold under general cost functions κi. As can be seen from the analysis

of the baseline model, we do not use the fact that κi is quadratic in this section, with the exception

of deriving the expression for ∇κ̄−∇κ̄V , which is given by (82). This equation holds under general

cost functions κi. Indeed, using the definition of κ̄V , we can derive

dκ̄V
d∆m

= η
N∑
i=1

(∇κi)
⊤ dδi
d∆m

.

From (72), we have ∇κi =
1
η
ω̃i
gi
∇κ̄. Furthermore, dδi

d∆m
is given by (93). Then we have

∇κV = ∇2κ̄

(
N∑
i=1

1

η

ω̃2
i

g2i
H−1

i

)
∇κ̄.

Using the definition of ∇2κ̄, given by (25), and the first-order condition (76), it is straightforward

to see that (82) holds.
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E.4 A general specification of the disutility from risk management

In the main model, we assume that the household’s disutility is given by (4), where V (R) =

exp (−η (1− ρ)R). In this appendix, we consider a general disutility from supplying risk manage-

ment resources. Specifically, the household’s utility function is given by

U
(
Y 1−ρ

1− ρ
,R

)
,

where Y =
∏N

i=1

(
β−1
i Ci

)βi . Denote by U1 and U2 the derivatives of U (·, ·) with respect to the first

and second inputs, respectively. Following the same steps as in the baseline model (see Appendix

A.1), we can derive

E [U2] = −WR E [Λ] , (101)

where

Λ = Γρ
LU1

(
N∏
i=1

P βi
i

)ρ−1

. (102)

As in the baseline model, the labor share of income ΓL is given by ΓL := WLL
P⊤C

= 1 −
τ⊤ (diag (1 + τ))−1 ω, and real GDP is given by Y = Γ−1

L

(∏N
i=1 P

−βi
i

)
(see Lemma 1).

For a given risk-exposure decision, firms’ cost minimization does not depend on the household’s

utility function. Therefore, the unit cost for firm i is given by (9), and the vector of prices is given

by (15). The choice of risk exposure for firm i is described by (10), which can be rewritten as

δ∗i ∈ arg min
δi∈Ai

E [Λ [QiKi (δi, P ) + κi (δi)WR]] .

Taking the first-order condition with respect to δim, we get

E

[
ΛQi

dKi

dδim

]
+ E [Λ]WR

dκi
dδim

= 0.

Using the expression for the unit cost (9) together with equations (101) and (102), this expression

can be simplified as

dκi
dδim

= −KiQi

E

[
Γρ
LU1

(∏N
i=1 P

βi
i

)ρ−1
εm

]
E [U2]

.

Recall that in equilibrium, KiQi =
ωiΓ

−1
L

1+τi
. Using the expression for prices (15), we can rewrite the

equation above as

dκi
dδim

= −
ωiΓ

ρ−1
L

1 + τi
exp

(
− (ρ− 1) ω̃⊤ log (1 + τ)

) E
[
U1 exp

(
− (ρ− 1) ω̃⊤δε

)
εm
]

E [U2]
. (103)
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The system of equations (103) for all i,m implicitly defines the equilibrium risk-exposure matrix

δ. In our baseline model, we show that the equilibrium allocation is a solution to a distorted

planner’s problem (26). This distorted planner chooses the aggregate risk exposure ∆, and then

chooses δ to minimize the aggregate cost function (22) subject to the ∆ = δ⊤ω̃ constraint. For

a general utility function, we are not able to write the equilibrium allocation as a solution to a

distorted planner’s problem. Therefore, to characterize the equilibrium, we need to work with

equation (103) directly. In what follows, we use the implicit function theorem to characterize how

equilibrium δ changes in response to a change in the environment. It is then straightforward to

characterize how the aggregate risk exposure ∆ = δ⊤ω̃ responds.

In general, one cannot compute the expectations on the right-hand side of (103) analytically.

Therefore, it is generally infeasible to compute the derivatives of δ with respect to changes in the

environment in closed form. We consider two special cases for which this is possible.

E.4.1 Multiplicative disutility

Suppose that the household’s utility function is U
(
Y 1−ρ

1−ρ , R
)
= Y 1−ρ

1−ρ V (R), where V (R) takes

positive values and is an increasing convex function. One special case, considered in the baseline

model, is V (R) = exp ((ρ− 1) ηR). Under this specification, (103) becomes

dκi
dδim

= (ρ− 1)
ωi

1 + τi

E
[
exp

(
− (ρ− 1) ω̃⊤δε

)
ε
]

E [exp (− (ρ− 1) ω̃⊤δε)]

V (R)

V ′ (R)

= (ρ− 1)
ωi

1 + τi

(
µm − (ρ− 1)1⊤mΣδ⊤ω̃

) V (R)

V ′ (R)
.

Market clearing implies that R =
∑N

i=1 κi (δi). While we cannot solve for δ in closed form for a

general V (·) function, we can characterize how δ changes when one of the parameter changes using

the implicit function theorem. Specifically, write the first-order condition for δim as

Fim =
∂κi
∂δim

− (ρ− 1)
ωi

1 + τi

(
µm − (ρ− 1)1⊤mΣδ⊤ω̃

) V
(∑N

i=1 κi (δi)
)

V ′
(∑N

i=1 κi (δi)
) = 0.

Then, by the implicit function theorem,

83





dδ11
dχ
...

dδ1M
dχ
...

dδN1
dχ
...

dδNM
dχ


= −



∂F11
∂δ11

. . . ∂F11
∂δ1M

. . . ∂F11
∂δN1

. . . ∂F11
∂δNM

...
. . .

...
. . .

...
. . .

...
∂F1M
∂δ11

. . . ∂F1M
∂δ1M

. . . ∂F1M
∂δN1

. . . ∂F1M
∂δNM

...
...

...
...

...
...

...
∂FN1
∂δ11

. . . ∂FN1
∂δ1M

. . . ∂FN1
∂δN1

. . . ∂FN1
∂δNM

...
. . .

...
. . .

...
. . .

...
∂FNM
∂δ11

. . . ∂FNM
∂δ1M

. . . ∂FNM
∂δN1

. . . ∂FNM
∂δNM



−1

∂F11
∂χ
...

∂F1M
∂χ
...

∂FN1
∂χ
...

∂FNM
∂χ


, (104)

where

∂Fim

∂δjl
=

∂2κi
∂δim∂δil

1j=i +
ωi

1 + τi
(ρ− 1)2Σmlω̃j

V (R)

V ′ (R)
− ∂κi

∂δim

∂κj
∂δjl

(
V ′ (R)

V (R)
− V ′′ (R)

V ′ (R)

)
,

and ∂Fim
∂χ is the derivative of Fim with respect to parameter χ. For example, if χ = µj , we have

∂Fim

∂µj
= −1j=m (ρ− 1)

ωi

1 + τi

V (R)

V ′ (R)
,

Similarly, one can compute

∂Fim

∂Σjl
= (ρ− 1)2

ωi

1 + τi

1

2
(1j=m∆l + 1l=m∆j)

V (R)

V ′ (R)
,

∂Fim

∂τj
= (ρ− 1)

1

1 + τi

ωj

1 + τj
Lji

(
µm − (ρ− 1)1⊤mΣ∆

) V (R)

V ′ (R)
,

∂Fim

∂αjl
= − (ρ− 1)

Lli

1 + τi

ωj

1 + τj

(
µm − (ρ− 1)1⊤mΣ∆

) V (R)

V ′ (R)
+ (ρ− 1)2

ωi

1 + τi
1⊤mΣ

(
N∑
k=1

δkL̃lk

)
ω̃j

V (R)

V ′ (R)
,

where we have used that dω̃k
dαij

= ω̃iL̃jk and dωk
dαij

= ωi
1+τi

Ljk (see the proof of Proposition 8), and

d

(
ωj

1+τj

)
dτi

= − Lij

1+τj
ωi

1+τi
.

E.4.2 Additive disutility

Suppose that the household’s utility function is U
(
Y 1−ρ

1−ρ , R
)
= Y 1−ρ

1−ρ − V (R), where V (R) is

an increasing convex function. Under this specification, (103) becomes

dκi
dδim

=
ωiΓ

ρ−1
L

1 + τi
exp

(
− (ρ− 1) ω̃⊤ log (1 + τ)

)
E
[
exp

(
− (ρ− 1) ω̃⊤δε

)
εm

] 1

V ′ (R)
,

=
ωiΓ

ρ−1
L

1 + τi

(
µm − (ρ− 1)1⊤mΣδ⊤ω̃

)
exp

(
− (ρ− 1) ω̃⊤ (δµ− log (1 + τ)) +

1

2
(ρ− 1)2 ω̃⊤δΣδ⊤ω̃

)
1

V ′ (R)
.
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Market clearing implies that R =
∑N

i=1 κi (δi). As in the previous section, we cannot solve for δ

in closed form. However, we can similarly characterize how δ changes when one of the parameter

changes using the implicit function theorem. Specifically, write the first-order condition for δim as

Fim =
∂κi
∂δim

−
ωiΓ

ρ−1
L

1 + τi

(
µm − (ρ− 1)1⊤mΣδ⊤ω̃

)
×

exp

(
− (ρ− 1) ω̃⊤ (δµ− log (1 + τ)) +

1

2
(ρ− 1)2 ω̃⊤δΣδ⊤ω̃

)
1

V ′
(∑N

i=1 κi (δi)
) = 0.

We can again use the implicit function theorem to get (104), where

∂Fim

∂δjl
=

∂2κi
∂δim∂δil

1j=i +
∂κi
∂δim

{
(ρ− 1)Σmlω̃j

µm − (ρ− 1)1⊤mΣδ⊤ω̃
+

V ′′ (R)

V ′ (R)

∂κj
∂δjl

++(ρ− 1) ω̃j

(
µl − (ρ− 1)1⊤l Σδ

⊤ω̃
)}

,

and ∂Fim
∂χ is the derivative of Fimwith respect to parameter χ. For example, if χ = µj , we have

∂Fim

∂µj
=

(
−1j=m

1

µm − (ρ− 1)1⊤mΣδ⊤ω̃
+ (ρ− 1) ω̃⊤δ1j

)
∂κi
∂δim

.

Similarly, one can compute derivatives of Fim with respect to Σjl, τj and αjl in a straightforward

way.

E.5 Choice of numeraire

In the baseline model, we set WL = 1 in all states of the world. In this appendix, we show

that this normalization is innocuous. Specifically, we treat WL as a random variable and show that

the equilibrium risk-exposure decisions by firms δ, the aggregate supply of risk risk management

resources R and, hence, all macroeconomic aggregates are the same as in the baseline model.

The household’s choice of R is governed by the first-order condition (56), which we can write

as

WR = −V ′ (R) (V (R))−ρ E
[
Y 1−ρ

]
E [Λ]

, (105)

where Λ is given by (53).

Next, given the Cobb-Douglas production function, the unit cost is given by

Ki (δi, P,WL) = exp
(
−δ⊤i ε

)
W

1−
∑n

j=1 αij

L

N∏
j=1

P
αij

j .

Since Pi = (1 + τi)Ki,this implies that

p− wL = −L̃ (δε− log (1 + τ)) , (106)
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where wL = logWL and L̃ = (I − α)−1.

Firms’ risk exposure solves (10). Taking first-order condition with respect to δim, we get

dκi (δi)

dδim
=

1

WR

E [ΛQiKiεm]

E [Λ]
.

Combining this equation with (105), we get

dκi (δi)

dδim
= − 1

V ′ (R) (V (R))−ρ

E [ΛKiQiεm]

E [Y 1−ρ]
. (107)

Next, from the market-clearing condition (13),

PiQi = PiCi +
∑
j

PiXji.

Using (52) and the fact that Pi = (1 + τi)Ki, we can derive that KiQi

WL+WRR+Π = ωi
1+τi

, where ω is

non-stochastic vector of Domar weights, given by (14). Hence, (107) can be rewritten as

dκi (δi)

dδim
= − 1

V ′ (R) (V (R))−ρ

ωi

1 + τi

E [Λ (WL +WRR+Π) εm]

E [Y 1−ρ]
.

Combining this with (51), we get

dκi (δi)

dδim
= − V (R)

V ′ (R)

ωi

1 + τi

E [U ′ (Y )Y εm]

E [Y 1−ρ]
= − V (R)

V ′ (R)

ωi

1 + τi

E
[
Y 1−ρεm

]
E [Y 1−ρ]

. (108)

From (54), we can write GDP Y as

Y =

(
WL +WRR+Π

WL

) N∏
i=1

(
Pi

WL

)−βi

. (109)

Furthermore, total profit in the economy is Π =
∑

i
τi

1+τi
PiQi − WRR ⇔ Π + WRR =

(WL +WRR+Π)
∑

i
τi

1+τi
ωi, which implies WRR + Π = WL

∑
i

τi
1+τi

ωi

1−
∑

i
τi

1+τi
ωi
. Therefore, (109) can

be written as

Y =
1

1−
∑

i
τi

1+τi
ωi

N∏
i=1

(
Pi

WL

)−βi

.

Hence, using (106), (109) becomes

dκi (δi)

dδim
= − V (R)

V ′ (R)

ωi

1 + τi

E
[
exp

(
− (ρ− 1)∆⊤ε

)
εm
]

E [exp (− (ρ− 1)∆⊤ε)]
.

Using the properties of the normal distribution to simplify the right-hand side of this equation, it

is straightforward to see that this equation coincides with (76). Therefore, setting WL = 1 does
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not affect equilibrium risk exposures and hence moments of GDP.

87


	Introduction
	A model of endogenous risk
	Firms and production functions
	Household preferences
	Firm problem
	Equilibrium conditions

	Equilibrium prices and GDP
	Equilibrium existence, uniqueness and efficiency
	A planning problem
	A distorted planning problem

	Forces shaping risk-exposure decisions
	Aggregate and individual risk exposure
	Beliefs and aggregate risk exposure
	Wedges and aggregate risk exposure
	Equilibrium and efficient risk exposure

	GDP and welfare
	Moments of GDP
	Welfare

	Reduced-form evidence
	Calibration to the Spanish economy
	Model with sectors
	Calibration strategy
	Increases in aggregate risk
	Wedges and inefficient risk exposure

	Conclusion
	Additional derivations
	First-order conditions of the household

	Appendix for Section 7
	Derivation of (43) and (44)
	Data sources and variable construction
	Orbis data
	CRSP/Compustat Merged and US stock market data

	Additional results
	US stock market evidence
	Cross-country evidence
	Evidence on the return-to-scale of risk management inputs

	Appendix for Section 8
	Construction of the sample
	Stationarity of the risk-exposure decision
	Identifying si and siv
	Calibrated economy
	Robustness
	Constant risk-exposure technology


	Proofs 
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Proposition 1
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Corollary 1
	Proof of Proposition 4
	Proof of Corollary 2
	Proof of Lemma 5
	Proof of Corollary 3
	Proof of Corollary 4
	Proof of Corollary 5
	Proof of Proposition 7
	Proof of Lemma 6
	Proof of Corollary 6
	Proof of Corollary 7

	Robustness, extensions, and additional analysis
	Production network and aggregate risk exposure
	Multiple risk management resources
	General cost function
	Risk exposures
	GDP and welfare

	A general specification of the disutility from risk management
	Multiplicative disutility
	Additive disutility

	Choice of numeraire


