The Origin of Risk

Alexandr Kopytov University of Rochester Mathieu Taschereau-Dumouchel Cornell University Zebang Xu Cornell University Economists commonly assume that risk is exogenous

- Growing crops by the shore creates flood risk
- Growing crops inland creates drought risk

- Growing crops by the shore creates flood risk
- Growing crops inland creates drought risk

Tons of decisions affect the risk profile of a firm

• Hiring decisions, R&D projects, plant locations, investment choices, lobbying, etc.

- Growing crops by the shore creates flood risk
- Growing crops inland creates drought risk

Tons of decisions affect the risk profile of a firm

• Hiring decisions, R&D projects, plant locations, investment choices, lobbying, etc.

When aggregated, these individual decisions matter for aggregate risk

• If everybody grows crops by the shore, a flood can lead to mass starvation

- Growing crops by the shore creates flood risk
- Growing crops inland creates drought risk

Tons of decisions affect the risk profile of a firm

• Hiring decisions, R&D projects, plant locations, investment choices, lobbying, etc.

When aggregated, these individual decisions matter for aggregate risk

• If everybody grows crops by the shore, a flood can lead to mass starvation

What drives individual risk-taking decisions and how do they affect aggregate risk?

We construct a model in which risk is endogenous at both the micro and the macro levels

We construct a model in which risk is endogenous at both the micro and the macro levels

• Instead of modeling each decision that matters for risk we take a holistic approach

We construct a model in which risk is endogenous at both the micro and the macro levels

- Instead of modeling each decision that matters for risk we take a holistic approach
- Each firm can adjust its TFP process (mean, variance and correlation with other firms' TFP)

We construct a model in which risk is endogenous at both the micro and the macro levels

- Instead of modeling each decision that matters for risk we take a holistic approach
- Each firm can adjust its TFP process (mean, variance and correlation with other firms' TFP)
 - Adjusting risk is costly

We construct a model in which risk is endogenous at both the micro and the macro levels

- Instead of modeling each decision that matters for risk we take a holistic approach
- Each firm can adjust its TFP process (mean, variance and correlation with other firms' TFP)
 - Adjusting risk is costly

The theory predicts how firm characteristics affect their risk profile

• Since TFP multiplies the input bundle, larger firms manage risk more aggressively

We construct a model in which risk is endogenous at both the micro and the macro levels

- Instead of modeling each decision that matters for risk we take a holistic approach
- Each firm can adjust its TFP process (mean, variance and correlation with other firms' TFP)
 - Adjusting risk is costly

The theory predicts how firm characteristics affect their risk profile

- Since TFP multiplies the input bundle, larger firms manage risk more aggressively
- Firms with higher sales and lower markups are less volatile and covary less with GDP
- Detailed firm-level Spanish data supports these predictions

We construct a model in which risk is endogenous at both the micro and the macro levels

- Instead of modeling each decision that matters for risk we take a holistic approach
- Each firm can adjust its TFP process (mean, variance and correlation with other firms' TFP)
 - Adjusting risk is costly

The theory predicts how firm characteristics affect their risk profile

- Since TFP multiplies the input bundle, larger firms manage risk more aggressively
- Firms with higher sales and lower markups are less volatile and covary less with GDP
- Detailed firm-level Spanish data supports these predictions

The theory also has predictions for the aggregate economy

• Because of endogenous risk, distortions can make GDP more volatile

We construct a model in which risk is endogenous at both the micro and the macro levels

- Instead of modeling each decision that matters for risk we take a holistic approach
- Each firm can adjust its TFP process (mean, variance and correlation with other firms' TFP)
 - Adjusting risk is costly

The theory predicts how firm characteristics affect their risk profile

- Since TFP multiplies the input bundle, larger firms manage risk more aggressively
- Firms with higher sales and lower markups are less volatile and covary less with GDP
- Detailed firm-level Spanish data supports these predictions

The theory also has predictions for the aggregate economy

· Because of endogenous risk, distortions can make GDP more volatile

We calibrate the model to the Spanish economy

• Removing distortions leads to a large decline in aggregate volatility

A model of endogenous risk

Static model with two types of agents

- 1. A representative household owns the firms, supplies labor and risk management resources
 - · Risk mgmt. resources: land, managers, raw materials, lobbyists, etc.
- 2. N firms produce differentiated goods using labor and intermediate inputs
 - Firms are competitive and take all prices and aggregate quantities as given.
 - Firm *i* has a constant returns to scale Cobb-Douglas production function

$$F(\delta_i, L_i, X_i) = e^{a_i(\varepsilon, \delta_i)} \zeta_i L_i^{1-\sum_{j=1}^N \alpha_{ij}} \prod_{j=1}^N X_{ij}^{\alpha_{ij}}$$

► C

Firms choose the mean, variance and correlation structure of their TFP $a_i(\varepsilon, \delta_i)$

Firms choose the mean, variance and correlation structure of their TFP $a_i(\varepsilon, \delta_i)$

There are underlying sources of risk $\varepsilon = (\varepsilon_1, \dots, \varepsilon_M)$ with $\varepsilon \sim \mathcal{N}(\mu, \Sigma)$

- Examples: a river floods, discovery of a new drug, war between two countries, epidemic, etc.
- We don't take a stance on what ε is. Focus on quantity of risk and correlation structure.

Firms choose the mean, variance and correlation structure of their TFP $a_i (\varepsilon, \delta_i)$

There are underlying sources of risk $\varepsilon = (\varepsilon_1, \dots, \varepsilon_M)$ with $\varepsilon \sim \mathcal{N}(\mu, \Sigma)$

- Examples: a river floods, discovery of a new drug, war between two countries, epidemic, etc.
- We don't take a stance on what ε is. Focus on quantity of risk and correlation structure.

Firms pick exposure vector δ_i to these risk factors

 $a_i(\boldsymbol{\varepsilon}, \boldsymbol{\delta}_i) = \boldsymbol{\delta}_i^{\top} \boldsymbol{\varepsilon} - b_i(\boldsymbol{\delta}_i)$

Firms choose the mean, variance and correlation structure of their TFP $a_i(\varepsilon, \delta_i)$

There are underlying sources of risk $\varepsilon = (\varepsilon_1, \dots, \varepsilon_M)$ with $\varepsilon \sim \mathcal{N}(\mu, \Sigma)$

- Examples: a river floods, discovery of a new drug, war between two countries, epidemic, etc.
- We don't take a stance on what ε is. Focus on quantity of risk and correlation structure.

Firms pick exposure vector δ_i to these risk factors

 $a_i(\boldsymbol{\varepsilon}, \boldsymbol{\delta}_i) = \boldsymbol{\delta}_i^{\top} \boldsymbol{\varepsilon} - b_i(\boldsymbol{\delta}_i)$

Managing risk (picking δ_i) might incur costs

- Productivity cost *b*_i: workplace rules limit catastrophes but reduce average productivity
- Resource cost g_i : land, managers, raw materials, etc. (available at price W_R)

Firms choose the mean, variance and correlation structure of their TFP $a_i(\varepsilon, \delta_i)$

There are underlying sources of risk $\varepsilon = (\varepsilon_1, \dots, \varepsilon_M)$ with $\varepsilon \sim \mathcal{N}(\mu, \Sigma)$

- Examples: a river floods, discovery of a new drug, war between two countries, epidemic, etc.
- We don't take a stance on what ε is. Focus on quantity of risk and correlation structure.

Firms pick exposure vector δ_i to these risk factors

 $a_i(\boldsymbol{\varepsilon}, \boldsymbol{\delta}_i) = \boldsymbol{\delta}_i^{\top} \boldsymbol{\varepsilon} - b_i(\boldsymbol{\delta}_i)$

Managing risk (picking δ_i) might incur costs

- Productivity cost *b*_i: workplace rules limit catastrophes but reduce average productivity
- Resource cost g_i : land, managers, raw materials, etc. (available at price W_R)

$$b_{i}\left(\delta_{i}\right) = \frac{1}{2}\left(\delta_{i} - \delta_{i}^{\circ}\right)^{\top} B_{i}\left(\delta_{i} - \delta_{i}^{\circ}\right), \text{ and } g_{i}\left(\delta_{i}\right) = \frac{1}{2}\left(\delta_{i} - \delta_{i}^{\circ}\right)^{\top} G_{i}\left(\delta_{i} - \delta_{i}^{\circ}\right)$$

where δ_i° is the *natural* risk exposure ($b_i, g_i = 0$), and B_i and G_i are positive definite matrices

Owns the firms, supplies one unit of labor inelastically, supplies risk management resources

Representative household

Owns the firms, supplies one unit of labor inelastically, supplies risk management resources Values the consumption bundle (GDP)

$$Y = \prod_{i=1}^{N} \left(\beta_i^{-1} C_i\right)^{\beta_i}$$

Representative household

Owns the firms, supplies one unit of labor inelastically, supplies risk management resources Values the consumption bundle (GDP)

$$\mathsf{Y} = \prod_{i=1}^{N} \left(\beta_i^{-1} \mathsf{C}_i\right)^{\beta_i}$$

Maximizes King, Plosser, Rebelo (1988) preferences

 $\mathcal{U}(Y)\mathcal{V}(R)$

where \mathcal{U} is CRRA with risk aversion $\rho \geq 1$, and disutility of risk management $\mathcal{V}(R)$ is

 $\mathcal{V}(R) = \exp\left(-\eta \left(1 - \rho\right) R\right)$

Representative household

Owns the firms, supplies one unit of labor inelastically, supplies risk management resources Values the consumption bundle (GDP)

$$Y = \prod_{i=1}^{N} \left(\beta_i^{-1} C_i\right)^{\beta_i}$$

Maximizes King, Plosser, Rebelo (1988) preferences

 $\mathcal{U}(Y)\mathcal{V}(R)$

where \mathcal{U} is CRRA with risk aversion $\rho \geq 1$, and disutility of risk management $\mathcal{V}(R)$ is

$$\mathcal{V}(R) = \exp\left(-\eta \left(1 - \rho\right) R\right)$$

Budget constraint in each state of the world (set $W_L = 1$ from now on)

$$\sum_{i=1}^{N} P_i C_i \leq W_L + W_R R + \Pi$$

Timing

1. Before ε is realized: Firms choose their risk exposure δ_i

Timing

1. Before ε is realized: Firms choose their risk exposure δ_i

2. After ε is realized and under chosen δ_i : All other quantities are chosen

Timing

1. Before ε is realized: Firms choose their risk exposure δ_i

- 2. After ε is realized and under chosen δ_i : All other quantities are chosen
 - Standard cost minimization

Unit cost :=
$$K_i(\delta_i, P) = \frac{1}{e^{a_i(\varepsilon, \delta_i)}} \prod_{j=1}^N P_j^{\alpha_{ij}}$$

Timing

- 1. Before ε is realized: Firms choose their risk exposure δ_i
 - Maximize expected discounted profits

$$\delta_{i}^{*} \in \arg \max_{\delta_{i}} \operatorname{E} \left[\Lambda \left[P_{i} Q_{i} - \mathsf{K}_{i} \left(\delta_{i}, \mathsf{P} \right) Q_{i} - g_{i} \left(\delta_{i} \right) W_{\mathsf{R}} \right] \right]$$

where Q_i is equilibrium demand and Λ is the stochastic discount factor of the household.

- 2. After ε is realized and under chosen δ_i : All other quantities are chosen
 - Standard cost minimization

Unit cost :=
$$K_i(\delta_i, P) = \frac{1}{e^{a_i(\varepsilon, \delta_i)}} \prod_{j=1}^N P_j^{\alpha_{ij}}$$

Timing

- 1. Before ε is realized: Firms choose their risk exposure δ_i
 - Maximize expected discounted profits

$$\delta_{i}^{*} \in \arg \max_{\delta_{i}} \operatorname{E} \left[\Lambda \left[P_{i} Q_{i} - \mathsf{K}_{i} \left(\delta_{i}, \mathsf{P} \right) Q_{i} - g_{i} \left(\delta_{i} \right) W_{\mathsf{R}} \right] \right]$$

where Q_i is equilibrium demand and Λ is the stochastic discount factor of the household.

- 2. After ε is realized and under chosen δ_i : All other quantities are chosen
 - · Standard cost minimization

Unit cost :=
$$K_i(\delta_i, P) = \frac{1}{e^{a_i(\varepsilon, \delta_i)}} \prod_{j=1}^N P_j^{\alpha_{ij}}$$

- Prices are set at a constant wedge τ_i over marginal cost K_i : $P_i = (1 + \tau_i) K_i (\delta_i, P)$
 - · Example: markups, taxes, or other distortions

Equilibrium definition

An *equilibrium* is a risk choice for every firm δ^* and a stochastic tuple $(P^*, W_R^*, C^*, L^*, R^*, X^*, Q^*)$ such that

- 1. (Optimal technique choice) For each *i*, factor demand L_i^* , X_i^* and R_i^* , and the risk exposure decision δ_i^* solves the firm's problem.
- 2. (Consumer maximization) The consumption vector *C*^{*} and the supply of risk managers *R*^{*} solve the household problem.
- 3. (Unit cost pricing) For each *i*, $P_i = (1 + \tau_i) K_i (\delta_i, P)$.
- 4. (Market clearing) For each i,

$$C_i^* + \sum_{j=1}^N X_{ji}^* = Q_i^* = F_i(\alpha_i^*, L_i^*, X_i^*), \ \sum_{i=1}^N L_i^* = 1, \ \text{and} \ \sum_{i=1}^N g_i(\delta_i^*) = R^*.$$

Domar weights and GDP

Two measures of supplier importance

Cost-based Domar weights:

$$\tilde{\omega}^{\top} = \beta^{\top} (l - \alpha)^{-1}$$

Two measures of supplier importance

Cost-based Domar weights:

$$\tilde{\omega}^{\top} = \beta^{\top} (l - \alpha)^{-1}$$

- Depends on demand from household (β) and other firms ($(l \alpha)^{-1} = l + \alpha + \alpha^2 + ...$)
- Captures firm's importance as a supplier (share of production costs)

Two measures of supplier importance

Cost-based Domar weights:

$$\tilde{\omega}^{\top} = \beta^{\top} (l - \alpha)^{-1}$$

- Depends on demand from household (β) and other firms ($(l \alpha)^{-1} = l + \alpha + \alpha^2 + ...$)
- Captures firm's importance as a supplier (share of production costs)

Revenue-based Domar weights:

$$\omega^{\top} = \beta^{\top} \left(l - \left[\operatorname{diag} \left(1 + \tau \right) \right]^{-1} \alpha \right)^{-1}$$

- Also captures importance as a supplier (share of revenues)
- Declines with wedges au
- Are equal to the firm's sales share in nominal GDP

$$\omega_i = \frac{P_i Q_i}{PY}$$
Define the aggregate risk exposure vector Δ as

 $\Delta := \delta^\top \tilde{\omega}$

• Firms with high cost-based Domar weights contribute more to aggregate risk exposure

Define the aggregate risk exposure vector Δ as

 $\Delta := \delta^\top \tilde{\omega}$

• Firms with high cost-based Domar weights contribute more to aggregate risk exposure

Lemma (log) real GDP $y := \log Y$ is given by $y = \Delta^{\top} \varepsilon - \tilde{\omega}^{\top} b(\delta) - \tilde{\omega}^{\top} \log (1 + \tau) - \log (\text{Labor share} (\omega, \tau))$

- \cdot log GDP y is normal; aggregate risk exposure Δ determines how risky GDP is
- Without distortions ($\tau = 0$) we have Hulten's theorem: $y = \omega^{\top} a(\varepsilon, \delta)$

Firm risk-taking decisions

Lemma

In equilibrium, the risk exposure decision δ_i of firm *i* solves

 $\underbrace{\mathcal{E}\mathcal{K}_{i}\mathcal{Q}_{i}}_{\mathcal{E}\mathcal{K}_{i}} = \underbrace{\nabla b_{i}\left(\delta_{i}\right)\mathcal{K}_{i}\mathcal{Q}_{i}}_{\mathcal{E}\mathcal{K}_{i}} + \nabla g_{i}\left(\delta_{i}\right)\mathcal{W}_{R},$

marginal benefit of exposure to ϵ

marginal cost of exposure to arepsilon

where the marg. value of risk exposure per unit of size is defined as $\mathcal{E} := \mathbb{E}[\varepsilon] + \mathbb{Cov}[\lambda, \varepsilon]$.

Lemma

In equilibrium, the risk exposure decision δ_i of firm *i* solves

 $\underbrace{\mathcal{E}\mathbf{K}_{i}\mathbf{Q}_{i}}_{\mathbf{V}} = \underbrace{\nabla b_{i}\left(\delta_{i}\right)\mathbf{K}_{i}\mathbf{Q}_{i}}_{\mathbf{V}} + \nabla g_{i}\left(\delta_{i}\right)W_{R},$

marginal benefit of exposure to ε

marginal cost of exposure to ε

where the marg. value of risk exposure per unit of size is defined as $\mathcal{E} := \mathbb{E}[\varepsilon] + \mathbb{Cov}[\lambda, \varepsilon]$.

- \cdot Determinants of ${\cal E}$
 - High expected value factors and countercyclical factors have higher ${\cal E}$
 - We say that a risk factor is "good" if ${\cal E}>0$ and "bad" if ${\cal E}<0$

Lemma

In equilibrium, the risk exposure decision δ_i of firm *i* solves

 $\underbrace{\mathcal{E}\mathbf{K}_{i}\mathbf{Q}_{i}}_{\mathbf{V}_{i}\mathbf{Q}_{i}} = \underbrace{\nabla b_{i}\left(\delta_{i}\right)\mathbf{K}_{i}\mathbf{Q}_{i}}_{\mathbf{V}_{i}\mathbf{Q}_{i}} + \nabla g_{i}\left(\delta_{i}\right)W_{R},$

marginal benefit of exposure to ε

marginal cost of exposure to ε

where the marg. value of risk exposure per unit of size is defined as $\mathcal{E} := \mathbb{E}[\varepsilon] + \mathbb{Cov}[\lambda, \varepsilon]$.

- \cdot Determinants of ${\cal E}$
 - High expected value factors and countercyclical factors have higher ${\cal E}$
 - We say that a risk factor is "good" if ${\cal E}>0$ and "bad" if ${\cal E}<0$
- Impact of firm size K_iQ_i
 - Marginal benefit and marginal productivity cost b_i of exposure scale one-for-one with size
 - The resource cost g_i is scale invariant \Rightarrow Scale advantage in risk management
 - Data: larger firms are more likely to 1) have CRO, 2) implement Enterprise-wide Risk Management systems, etc.

Lemma

In equilibrium, the risk exposure decision of firm *i* solves

 $\underbrace{\mathcal{E}\mathsf{K}_{i}\mathsf{Q}_{i}}_{\text{inclusion}} = \underbrace{\nabla b_{i}\left(\delta_{i}\right)\mathsf{K}_{i}\mathsf{Q}_{i}}_{\text{inclusion}} + \underbrace{\nabla g_{i}\left(\delta_{i}\right)\mathsf{W}_{\mathsf{R}}}_{\text{inclusion}},$

marginal benefit of exposure to ε

marginal cost of exposure to ε

where the marg. value of risk exposure per unit of size is defined as $\mathcal{E} := \mathbb{E}[\varepsilon] + \mathbb{Cov}[\lambda, \varepsilon]$.

 \cdot We can rewrite the marginal cost

 $\nabla b_{i}\left(\delta_{i}\right) \mathbf{K}_{i} \mathbf{Q}_{i} + \nabla g_{i}\left(\delta_{i}\right) \mathbf{W}_{R} = \nabla h_{i}\left(\delta_{i}\right) \mathbf{K}_{i} \mathbf{Q}_{i}$

where the effective exposure $\cot h_i$ is defined as

$$h_{i}\left(\delta_{i}\right) := \frac{1}{2}\left(\delta_{i} - \delta_{i}^{\circ}\right)^{\top} H_{i}\left(\delta_{i} - \delta_{i}^{\circ}\right), \text{ with } H_{i} := B_{i} + G_{i}\frac{W_{R}}{K_{i}Q_{i}}$$

Cost of goods sold $K_i Q_i$ matters for risk decisions

$$K_i Q_i = rac{P_i Q_i}{1 + au_i} = rac{\omega_i}{1 + au_i} ar{P} Y$$

- Higher sales $P_iQ_i \Rightarrow$ Higher K_iQ_i
 - Pinned down by demand for goods from the household (β) and other firms (α) through ω_i
- Lower wedge $\tau_i \Rightarrow$ Higher $K_i Q_i$
 - For a given amount of sales, higher wedges imply lower cost

Cost of goods sold $K_i Q_i$ matters for risk decisions

$$K_i Q_i = rac{P_i Q_i}{1 + au_i} = rac{\omega_i}{1 + au_i} ar{P} Y$$

- Higher sales $P_iQ_i \Rightarrow$ Higher K_iQ_i
 - Pinned down by demand for goods from the household (β) and other firms (α) through ω_i
- Lower wedge $\tau_i \Rightarrow$ Higher $K_i Q_i$
 - For a given amount of sales, higher wedges imply lower cost

Corollary

Firms with higher ω_i and lower τ_i manage risk more aggressively:

$$\frac{\partial \left[\mathcal{E}^{\top} \delta_{i} \right]}{\partial \omega_{i}} > 0 \qquad \text{and} \qquad \frac{\partial \left[\mathcal{E}^{\top} \delta_{i} \right]}{\partial \tau_{i}} < 0$$

Economy is positively exposed ($\Delta > 0$) to a unique bad ($\mathcal{E} < 0$) risk factor (business cycle risk)

Existence, uniqueness and efficiency

Planner wants to achieve risk exposure Δ . What is the cheapest utility cost of doing so?

$$\bar{h}_{SP}(\Delta) = \underbrace{\bar{b}_{SP}(\Delta)}_{\substack{\text{best aggregate}\\\text{TFP cost}}} + \underbrace{\bar{g}_{SP}(\Delta)}_{\substack{\text{risk resources}}}$$

risk resources

Planner wants to achieve risk exposure Δ . What is the cheapest utility cost of doing so?

$$\bar{h}_{SP}(\Delta) = \underbrace{\bar{b}_{SP}(\Delta)}_{+} + \underbrace{\bar{g}_{SP}(\Delta)}_{+}$$

best util. loss from risk resources

The planner prefers aggregate risk exposure vectors Δ with

• 1) high expected GDP $\mathbf{E}[y_{SP}]$, 2) low GDP volatility $\mathbf{V}[y_{SP}]$, and 3) low risk mgmt. resource cost \bar{g}_{SP}

Equilibrium characterization through fictitious planner

Proposition (fictitious planner's problem)

There exists a unique equilibrium, and it solves

$$\mathcal{W}_{dist} := \max_{\Delta} \underbrace{\Delta^{\top} \mu - \bar{b} \left(\Delta\right) - \tilde{\omega}^{\top} \log\left(1 + \tau\right) - \log\Gamma_{L}}_{\mathbf{E}[y]} - \frac{1}{2} \left(\rho - 1\right) \underbrace{\Delta^{\top} \Sigma \Delta}_{\mathbf{V}[y]} - \bar{g} \left(\Delta\right)$$

The equilibrium solves a distorted planning problem

- Still seeks to maximize $\mathbf{E}[y]$ and minimize $\mathbf{V}[y]$
- But higher perceived cost of managing risk (\bar{g} instead of \bar{g}_{SP})

Detail

Equilibrium characterization through fictitious planner

Proposition (fictitious planner's problem)

There exists a unique equilibrium, and it solves

$$\mathcal{W}_{dist} := \max_{\Delta} \underbrace{\Delta^{\top} \mu - \bar{b} \left(\Delta \right) - \tilde{\omega}^{\top} \log \left(1 + \tau \right) - \log \Gamma_{L}}_{\mathbf{E}[y]} - \frac{1}{2} \left(\rho - 1 \right) \underbrace{\Delta^{\top} \Sigma \Delta}_{\mathbf{V}[y]} - \frac{\bar{g} \left(\Delta \right)}{\mathbf{V}[y]}$$

The equilibrium solves a distorted planning problem

- Still seeks to maximize $\mathbf{E}[y]$ and minimize $\mathbf{V}[y]$
- But higher perceived cost of managing risk (\bar{g} instead of \bar{g}_{SP})

First-order condition

(Marginal util. benefit of Δ) $\mathcal{E} = \nabla \overline{h}$ (Marginal util. cost of Δ)

Detail

Equilibrium characterization through fictitious planner

Proposition (fictitious planner's problem)

There exists a unique equilibrium, and it solves

$$\mathcal{W}_{dist} := \max_{\Delta} \underbrace{\Delta^{\top} \mu - \bar{b} \left(\Delta \right) - \tilde{\omega}^{\top} \log \left(1 + \tau \right) - \log \Gamma_{L}}_{\mathbf{E}[y]} - \frac{1}{2} \left(\rho - 1 \right) \underbrace{\Delta^{\top} \Sigma \Delta}_{\mathbf{V}[y]} - \bar{g} \left(\Delta \right)$$

The equilibrium solves a distorted planning problem

- Still seeks to maximize $\mathbf{E}[y]$ and minimize $\mathbf{V}[y]$
- But higher perceived cost of managing risk (\bar{g} instead of \bar{g}_{SP})

First-order condition

(Marginal util. benefit of Δ) $\mathcal{E} = \nabla \overline{h}$ (Marginal util. cost of Δ)

- + Benefit of exposure ${\mathcal E}$ from firm problem coincides with social benefit
- Perceived cost \overline{h} is weighted average of firm individual costs H_i

Impact of changes in risk factors

Corollary

1. An increase in μ_m raises Δ_m

2. An increase in Σ_{mm} reduces Δ_m if $\Delta_m > 0$ and increases Δ_m if $\Delta_m < 0$

Impact of changes in risk factors

Corollary

1. An increase in μ_m raises Δ_m

2. An increase in Σ_{mm} reduces Δ_m if $\Delta_m > 0$ and increases Δ_m if $\Delta_m < 0$

Firm 2 must decide where to locate plants: Region 1 (good risk) or Region 2 (bad risk)

Definition. An economy is diagonal if Σ and H_i are diagonal for every *i*

Definition. An economy is diagonal if Σ and H_i are diagonal for every *i*

Corollary

In a diagonal economy, a higher wedge au_i

1. increases Δ_m for all m such that $\mathcal{E}_m < 0$ (bad risks)

2. reduces Δ_m for all *m* such that $\mathcal{E}_m > 0$ (good risks)

• Higher wedges make firms shrink \rightarrow manage risk less aggressively

Definition. An economy is diagonal if Σ and H_i are diagonal for every *i*

Corollary

In a diagonal economy, a higher wedge au_i

- 1. increases Δ_m for all m such that $\mathcal{E}_m < 0$ (bad risks)
- 2. reduces Δ_m for all *m* such that $\mathcal{E}_m > 0$ (good risks)
- Higher wedges make firms shrink \rightarrow manage risk less aggressively

Implications for GDP and Welfare

Use ∂ to denote changes in the economy with exogenous risk

Proposition
In a diagonal economy:
$$\operatorname{sign}\left(\frac{d \operatorname{E}[y]}{d\mu_m} - \frac{\partial \operatorname{E}[y]}{\partial\mu_m}\right) = \operatorname{sign}(\mu_m) \quad \text{and} \quad \frac{d \operatorname{V}[y]}{d\Sigma_{mm}} - \frac{\partial \operatorname{V}[y]}{\partial\Sigma_{mm}} < 0.$$

- Increasing μ_m raises $\Delta_m \rightarrow \text{additional increase in } E[y]$ if $\mu_m > 0$ compared to fixed risk
- Increasing Σ_{mm} decreases $|\Delta| \rightarrow$ smaller increase in V [y] than with fixed risk

Proposition (single risk factor)

$$\operatorname{sign}\left(\frac{d\operatorname{E}[y]}{d\tau_{i}}-\frac{\partial\operatorname{E}[y]}{\partial\tau_{i}}\right)=-\operatorname{sign}\left(\mu\mathcal{E}\right) \quad \text{and} \quad \operatorname{sign}\left(\frac{d\operatorname{V}[y]}{d\tau_{i}}-\frac{\partial\operatorname{V}[y]}{\partial\tau_{i}}\right)=-\operatorname{sign}\left(\Delta\mathcal{E}\right).$$

Suppose $\mathcal{E} < 0$ (bad risk, e.g. business cycle): increasing τ_i makes firms more exposed to risk factor

- if $\mu < 0$ this leads to a decline in $\mathbf{E}[\mathbf{y}]$
- if $\Delta > 0$ the economy becomes even more exposed and V [y] increases

Proposition (single risk factor)

$$\operatorname{sign}\left(\frac{d\operatorname{E}[y]}{d\tau_{i}}-\frac{\partial\operatorname{E}[y]}{\partial\tau_{i}}\right)=-\operatorname{sign}\left(\mu\mathcal{E}\right) \quad \text{and} \quad \operatorname{sign}\left(\frac{d\operatorname{V}[y]}{d\tau_{i}}-\frac{\partial\operatorname{V}[y]}{\partial\tau_{i}}\right)=-\operatorname{sign}\left(\Delta\mathcal{E}\right).$$

Suppose $\mathcal{E} < 0$ (bad risk, e.g. business cycle): increasing τ_i makes firms more exposed to risk factor

- if $\mu < 0$ this leads to a decline in $\mathbf{E}[\mathbf{y}]$
- + if $\Delta > 0$ the economy becomes even more exposed and V [y] increases

Implications for welfare

Proposition

In a diagonal economy, raising τ_i hurts welfare more than under exogenous risk.

- A higher τ_i increases exposure to bad risks and reduces exposure to good risks
- $\cdot\,$ Additional exposure to bad risks hurts welfare, and vice-versa for good risks

Implications for welfare

Proposition

In a diagonal economy, raising τ_i hurts welfare more than under exogenous risk.

- A higher au_i increases exposure to bad risks and reduces exposure to good risks
- $\cdot\,$ Additional exposure to bad risks hurts welfare, and vice-versa for good risks

(Blue: flexible risk; Red: fixed risk)

Reduced-form evidence

Model: firms with large Domar weights and small markups are less volatile and less corr. with GDP

▶ Details

Model: firms with large Domar weights and small markups are less volatile and less corr. with GDP

We test these predictions in the data

- Use detailed micro data from the near-universe of firms in Spain between 1995 and 2018 (Orbis) (7,513,081 firm-year observations)
- Compute markups using control function approach (De Loecker and Warzynski, 2012)
- Back out TFP growth as a residual

(a) TFP volatility by Domar weight decile

(b) TFP volatility by markup decile

(c) Sensitivity of firm TFP to GDP by Domar weight decile

(d) Sensitivity of firm TFP to GDP by markup decile

Calibration

- We aim at replicating as much of the firm-level Spanish data as possible
- Our calibrated model has 62 sectors and 492,917 individual firms
- We invert parts of the model to exactly match some moments
 - 1. Sectoral consumption shares and input/output cost shares
 - 2. Firm shares in sectoral sales
 - 3. Variance of firm TFP growth
 - 4. Covariance of firm TFP growth and GDP growth
 - 5. Variance of GDP growth

What if we double the volatility Σ of the risk factor?

- Fixed δ : Large increase in GDP variance; exposure to ε_t becomes more harmful (\mathcal{E} declines)
- Flexible δ : Firms manage risk more aggressively which limits increase in V[y]

What if we double the volatility Σ of the risk factor?

- Fixed δ : Large increase in GDP variance; exposure to ε_t becomes more harmful (\mathcal{E} declines)
- Flexible δ : Firms manage risk more aggressively which limits increase in V[y]

Impact of risk can be overestimated if reaction of agents is not taken into account
What if we set wedges au to zero?

	Calibration	No wedges	
		Fixed δ	Flexible δ
Agg. risk exposure Δ	0.014	0.014	0.007
Exposure value ${\cal E}$	-0.06	-0.06	-0.03
Std. Dev. of GDP growth	2.4%	2.4%	1.7%

- Fixed δ : Since only impact of τ is through δ , there is no change.
- Flexible δ : Firms manage risk more aggressively so V [y] declines

What if we set wedges au to zero?

	Calibration	No wedges	
		Fixed δ	Flexible δ
Agg. risk exposure Δ	0.014	0.014	0.007
Exposure value ${\cal E}$	-0.06	-0.06	-0.03
Std. Dev. of GDP growth	2.4%	2.4%	1.7%

- Fixed δ : Since only impact of τ is through δ , there is no change.
- Flexible δ : Firms manage risk more aggressively so V[y] declines

Distortions make GDP more volatile

Conclusion

Main contributions

- We construct a model of endogenous risk, at both the micro and macro levels.
- Model predicts which firms are more volatile and covary more with business cycle.
- Distortions lead to less aggressive risk management and can increase GDP volatility.

More results in the paper

- Comparative static with general preferences and costs of risk exposure
- · Explore substitution/complementarity patterns in risk exposure
- Model can explain patterns in stock market betas
- Full-fledged model with disaster risk
 - Changes in the environment (taxes, network, ...) affect the equity premium

The function $\zeta(\alpha_i)$ is

$$\zeta\left(\alpha_{i}\right) = \left[\left(1 - \sum_{j=1}^{n} \alpha_{ij}\right)^{1 - \sum_{j=1}^{n} \alpha_{ij}} \prod_{j=1}^{n} \alpha_{ij}^{\alpha_{jj}}\right]^{-1}$$

This functional form allows for a simple expression for the unit cost K

Given the log-normal nature of uncertainty $\rho \leq 1$ determines whether the agent is risk-averse or not. To see this, note that when log C normally distributed, maximizing

 $\mathrm{E}\left[C^{1-\rho}\right]$

amounts to maximizing

$$\mathbf{E}\left[\log \mathbf{C}\right] - \frac{1}{2}\left(\rho - 1\right)\mathbf{V}\left[\log \mathbf{C}\right].$$

Define $\bar{h}_{SP}(\Delta)$ as the smallest risk management utility cost needed to achieve Δ .

$$\bar{h}_{SP}\left(\Delta\right) := \min_{\delta} \tilde{\omega}^{\top} b\left(\delta\right) - \log V\left(\sum_{i=1}^{N} g_{i}\left(\delta_{i}\right)\right), \qquad \text{subject to } \Delta = \delta^{\top} \tilde{\omega}.$$

Define $\bar{h}_{SP}(\Delta)$ as the smallest risk management utility cost needed to achieve Δ .

$$\bar{h}_{SP}\left(\Delta\right) = \underbrace{\tilde{\omega}^{\top} b\left(\delta_{SP}\left(\Delta\right)\right)}_{\bar{b}_{SP}\left(\Delta\right)} \underbrace{-\log V\left(\sum_{i=1}^{N} g_{i}\left(\delta_{SP,i}\left(\Delta\right)\right)\right)}_{\bar{g}_{SP}\left(\Delta\right)}$$

Replace minimizer $\delta_{SP}(\Delta)$ back in the function

Define $\bar{h}(\Delta)$ as the perceived smallest risk management utility cost needed to achieve Δ .

$$\bar{h}(\Delta) := \min_{\delta} \tilde{\omega}^{\top} b(\delta) - \log V\left(\sum_{i=1}^{N} \kappa_{i} g_{i}(\delta_{i})\right), \qquad \text{subject to } \Delta = \delta^{\top} \tilde{\omega}.$$

where $\kappa_i = (1 + \tau_i) \frac{\tilde{\omega}_i}{\omega_i} \propto \frac{(\kappa_i Q_i)_{SP}}{(\kappa_i Q_i)_{\tau \neq 0}}$ is the efficiency gap of firm *i*. If $\tau = 0$, then $\kappa_i = 1$ for all *i*.

Proposition

The response of the equilibrium aggregate risk exposure Δ to a change in wedge au_i is given by

$$\frac{d\Delta}{d\tau_i} = \mathcal{T}\left(\sum_{j=1}^N \frac{\partial \left[\nabla^2 \bar{\kappa}\right]^{-1}}{\partial g_j} \frac{dg_j}{d\tau_i}\right) \mathcal{E},\tag{1}$$

where the impact of g_j on $\left[\nabla^2 \bar{\kappa}\right]^{-1}$ is given by $\frac{\partial \left[\nabla^2 \bar{\kappa}\right]^{-1}}{\partial g_j} = -\frac{1}{\eta} \frac{\bar{\omega}_j^2}{g_i^2} H_j^{-1}$, and where

$$\mathcal{T} := \left(l - \left[
abla^2 ar\kappa
ight]^{-1} rac{\partial \mathcal{E}}{\partial \Delta}
ight)^{-1}.$$

Proposition

Let χ denote either μ_m , Σ_{mn} , or τ_i . Then the impact of a change in χ on the moments of log GDP are given by

$$\frac{d \operatorname{E}[y]}{d\chi} - \frac{\partial \operatorname{E}[y]}{\partial\chi} = \mu^{\top} \frac{d\Delta}{d\chi} \quad \text{and} \quad \frac{d \operatorname{V}[y]}{d\chi} - \frac{\partial \operatorname{V}[y]}{\partial\chi} = 2\Delta^{\top} \Sigma \frac{d\Delta}{d\chi}$$

where the use of a partial derivative indicates that Δ is kept fixed.

Simplified model

- Single risk factor $\varepsilon_t \sim \text{iid } \mathcal{N}(0, \Sigma)$
- Firm level TFP is $\log TFP_{it} = \delta_{it}\varepsilon_t + \gamma_i t + v_{it}$ where γ_i is deterministic trend and $v_{it} \sim \text{iid } \mathcal{N}(\mu_i^v, \Sigma_i^v)$

Simplified model

- Single risk factor $\varepsilon_t \sim \operatorname{iid} \mathcal{N}(0, \Sigma)$
- Firm level TFP is $\log TFP_{it} = \delta_{it}\varepsilon_t + \gamma_i t + v_{it}$ where γ_i is deterministic trend and $v_{it} \sim \text{iid } \mathcal{N}(\mu_i^v, \Sigma_i^v)$

Variance of firm-level TFP growth

 $V\left[\log TFP_{it} - \log TFP_{it-1}\right] = 2\delta_i^2 \Sigma + 2\Sigma_i^{\vee}$

Simplified model

- Single risk factor $\varepsilon_t \sim \text{iid } \mathcal{N}(0, \Sigma)$
- Firm level TFP is $\log TFP_{it} = \delta_{it}\varepsilon_t + \gamma_i t + v_{it}$ where γ_i is deterministic trend and $v_{it} \sim \text{iid } \mathcal{N}(\mu_i^v, \Sigma_i^v)$

Variance of firm-level TFP growth

$$V\left[\log TFP_{it} - \log TFP_{it-1}\right] = 2\delta_i^2 \Sigma + 2\Sigma_i^{\vee}$$

Covariance of firm-level TFP growth with GDP growth

$$\operatorname{Cov}\left[\log \mathsf{TFP}_{it} - \log \mathsf{TFP}_{it-1}, y_t - y_{t-1}\right] = 2\Delta \Sigma \delta_i + 2\tilde{\omega}_i \Sigma_i^{\vee}.$$

Simplified model

- Single risk factor $\varepsilon_t \sim \text{iid } \mathcal{N}(0, \Sigma)$
- Firm level TFP is $\log TFP_{it} = \delta_{it}\varepsilon_t + \gamma_i t + v_{it}$ where γ_i is deterministic trend and $v_{it} \sim \text{iid } \mathcal{N}(\mu_i^v, \Sigma_i^v)$

Variance of firm-level TFP growth

$$V\left[\log TFP_{it} - \log TFP_{it-1}\right] = 2\delta_i^2 \Sigma + 2\Sigma_i^{v}$$

Covariance of firm-level TFP growth with GDP growth

$$\operatorname{Cov}\left[\log TFP_{it} - \log TFP_{it-1}, y_t - y_{t-1}\right] = 2\Delta\Sigma\delta_i + 2\tilde{\omega}_i\Sigma_i^{\vee}.$$

Model-implied firm risk exposure ($\mathcal{E} < 0$)

$$\delta_i = \delta_i^\circ + \frac{1}{\eta} \frac{\omega_i}{1+\tau_i} H_i^{-1} \mathcal{E}$$

 \Rightarrow Firms with large Domar weights and small markups are less volatile and less corr. with GDP

Markup estimation

Assume Cobb-Douglas production function

 $\log Q_{it} = \alpha_{Li} \log L_{it} + \alpha_{Mi} \log M_{it} + \alpha_{Ki} \log K_{it} + \varepsilon_{it},$

- Elasticities estimated using Levinsohn and Petrin (2003) with the Ackberg et al. (2015) correction.
 - · Capital is the "state" variable, labor is the "free" variable and materials is the "proxy" variable.
- Production function estimated at NACE 2-digit sector level. As in De Loecker et al. (2020), we control for markups using firms' sales shares in the production function estimation.
- Following De Loecker and Warzynski (2012), we compute the markup as $1 + \tau_{it} = \hat{\alpha}_{Li} / \left(\frac{\text{Wage Bill}_{it}}{\text{Sales}_{it}} \right)$.
- We compute TFP growth as

$$\begin{split} \Delta \log \mathsf{TFP}_{it} = & \Delta \log Q_{it} - \alpha_{Li} \Delta \log L_{it} - \alpha_{Mi} \Delta \log M_{it} - \alpha_{Ki} \Delta \log K_{it} \\ & - \left(\Delta \log \left(1 + \tau_{it} \right) - \Delta \log \left(1 + \tau_{\mathsf{s}(i)t} \right) \right). \end{split}$$

The term $\Delta \log (1 + \tau_{it}) - \Delta \log (1 + \tau_{s(i)t})$ accounts for the firm-specific markup growth net of the sectoral markup growth. This adjustment allows us to remove the change in firm-specific nominal price that are not taken into account by the sector-level price deflator.

- We compute the standard deviation of TFP growth for each firm, $\sigma_i (\Delta \log TFP_{it})$, and the time-series average of its markup and Domar weight.
- We construct deciles based on average Domar weights and markups, and create dummy variables, FE_{ji}^{Domar} and FE_{ji}^{Markup} , such that $FE_{ji}^{Domar} = 1$ if firm *i*'s Domar weight is in decile *j*, and analogously for markups.
- We run the cross-sectional regression

$$\sigma_{i} \left(\Delta \log \textit{TFP}_{it} \right) = \alpha + \sum_{j=1}^{10} \beta_{j}^{\textit{Domar}} \textit{FE}_{ji}^{\textit{Domar}} + \sum_{j=1}^{10} \beta_{j}^{\textit{Markup}} \textit{FE}_{ji}^{\textit{Markup}} + \varepsilon_{i},$$

and plot β_j^{Domar} in panel (a) and β_j^{Markup} in panel (b).

TFP growth volatility

- \cdot We construct deciles based on firms' Domar weights and markups each year.
- We then construct a set of dummy variables, FE_{jit}^{Domar} and FE_{jit}^{Markup} , such that $FE_{jit}^{Domar} = 1$ if firm *i*'s Domar weight is in decile *j* in year *t*, and analogously for markups.
- We then run the following panel regression,

$$\Delta \log TFP_{it} = \sum_{j=1}^{10} \beta_j^{Domar} \left(FE_{jit}^{Domar} \times \Delta \log GDP_t \right) + \sum_{j=1}^{10} \beta_j^{Markup} \left(FE_{jit}^{Markup} \times \Delta \log GDP_t \right) \\ + \alpha + \beta_0 \Delta \log GDP_t + \sum_{j=1}^{10} FE_{jit}^{Domar} + \sum_{j=1}^{10} FE_{jit}^{Markup} + \varepsilon_{it},$$

where $\Delta \log TFP_{it}$ is the annual growth of firm *i*'s log TFP and $\Delta \log GDP_t$ is the annual growth of Spanish log GDP.

• The coefficients of interest, β_j^{Domar} and β_j^{Markup} , are reported in the figure.

- Unique risk factor ε (M = 1)
- S sectors with sectoral shocks $z_s \sim iid \mathcal{N}(\mu_s^z, \Sigma_s^z)$ and aggregator

$$Q_{\mathsf{s}} = \prod_{i=1}^{N_{\mathsf{s}}} e^{z_{\mathsf{s}}} \left(\theta_{\mathsf{s}i}^{-1} Q_{\mathsf{s}i} \right)^{\theta_{\mathsf{s}}}$$

Firms have production function

$$Q_{si} = \exp\left(\delta_{sit}\varepsilon_t - b_i\left(\delta_{sit}\right) + \gamma_{si}t + v_{sit}\right)\zeta_{si}L_{si}^{1-\sum_{s'=1}^{S}\hat{\alpha}_{ss'}}\prod_{s'=1}^{S}X_{si,s'}^{\hat{\alpha}_{ss'}}$$

where $\hat{\alpha}_{ss'}$ are sectoral shares, $v_{sit} \sim \text{iid } \mathcal{N}(\mu_{si}^{v}, \Sigma_{si}^{v})$ and $\varepsilon_{t} \sim \text{iid } \mathcal{N}(0, \Sigma)$

• Risk exposure

$$\delta_{\mathrm{S}i} = \delta_{\mathrm{S}i}^{\mathrm{o}} + \left(B_{\mathrm{S}} + \eta \frac{1 + \tau_{\mathrm{S}i}}{\omega_{\mathrm{S}i}}G_{\mathrm{S}}\right)^{-1} \mathcal{E}$$

• The variance of GDP growth is

$$V[y_t - y_{t-1}] = 2\Sigma\Delta^2 + 2\tilde{\omega}_f^{\top}\Sigma^{\nu}\tilde{\omega}_f + 2\tilde{\omega}_s^{\top}\Sigma^{z}\tilde{\omega}_s.$$

• The variance of firm-level TFP growth is

$$V\left[\log TFP_{si,t} - \log TFP_{si,t-1}\right] = 2\delta_{si}^2 \Sigma + 2\Sigma_{si}^{\vee}.$$

• The covariance of firm-level TFP growth with GDP growth is

$$\operatorname{Cov}\left[y_{t} - y_{t-1}, \log TFP_{si,t} - \log TFP_{si,t-1}\right] = 2\Delta \Sigma \delta_{si} + 2\tilde{\omega}_{si} \Sigma_{si}^{\vee}.$$

Figure 1: Data distributions that the calibration matches exactly

Figure 2: Data distributions that the calibration matches exactly

Figure 3: Domar weights of the firms in the data and in the model

Calibrated model

Figure 4: Estimated value of $\frac{1}{\eta}H_i^{-1}$ for each sector.

Notes. The scale of $\frac{1}{n}H_i^{-1}$ depends on our choice of ρ and Σ . We set $\rho = 5$ and $\Sigma = 1$ for this figure.

Figure 5: Distribution of the estimated firm-level natural risk exposure δ_i°

Notes. The scale of δ_i° depends on our choice of ρ and Σ . We set $\rho = 5$ and $\Sigma = 1$ for this figure.